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Abstract Variations, such as those in product operation
environment and material properties, result in random
fatigue life. Variations in material fatigue properties depend
on stochastic stress responses due to their nonlinear relation-
ships with other random variables such as stochastic loading
and dimensions. In this work, an efficient fatigue reliability
analysis method is developed to accommodate those uncer-
tainties for structures under cyclic loads with known loading
trend. To reduce the computational cost, the method incor-
porates the fatigue life analysis model and the saddlepoint
approximation method with the fast integration method. The
new method is applied to the fatigue reliability analysis of a
cantilever beam and a door cam. The results show high accu-
racy and efficiency of the proposed method benchmarked
with Monte Carlo Simulations.

Keywords Fatigue reliability · Stress-dependent · Monte
Carlo simulation · Cyclic load

1 Introduction

Fatigue life assessment is a critical issue during the design
process for many products. Due to inherent uncertainties,
fatigue life always varies around the designed fatigue life.
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It is desirable to assess the fatigue life probabilistically
rather than deterministically. The most commonly used
probabilistic assessment method is the fatigue reliability
analysis, which provides the probability that the actual
fatigue life is greater than a desired life.

Fatigue reliability analysis methods are classified into the
following three categories:

• Strain-life based method (Correia et al. 2013; Zhang
et al. 2013)

The method predicts fatigue life according to the
strain response, which is usually related to the initial
crack.

• Stress-life based method (Asi and Yeşil 2013; Sousa
et al. 2013; Lee and Song 2012; Li and Low 2012;
Rathod et al. 2012)

Fatigue life is evaluated based on the material S-
N curve. The initiation and propagation of the crack
are not differentiated from each other in the stress-life
model. Only the total fatigue life is considered.

• Fracture mechanics method (Beck and Gomes 2013;
Chan et al. 2012; Larsen et al. 2013)

Fracture mechanics methods are used to estimate if
a crack grows to a critical size. This method usually
combines the strain-life method to estimate the crack
initiation.

This work employs the stress-life based fatigue reliabil-
ity analysis method, and the effects of uncertainties in the
design variables and the S-N curve on the fatigue life are
investigated. The relevant research is reviewed below.

In addition to aforementioned methods (Asi and Yeşil
2013; Lee and Song 2012; Li and Low 2012; Rathod et al.
2012; Sousa et al. 2013), other methods have also been pro-
posed. For instance, Guo and Chen (Guo and Chen 2013)
developed a fatigue reliability analysis method for steel
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bridges based on the long-term stress monitoring. Liu (Liu
and Mahadevan 2009) proposed an efficient time-dependent
fatigue reliability analysis method by using the moment
matching method and the First Order Reliability Method
(FORM). A unimodal distribution characterized by four
parameters was introduced by Low (2013) in predicting the
uncertainty in fatigue damage. To account for the correla-
tion effect of fatigue reliability, a fast reliability assessment
approach was proposed based on the detail fatigue rating
method (Huang et al. 2013a). The Kriging and radial basis
functions were applied to the fatigue reliability analysis of a
wire bond structure by Rajaguru et al. (2012). Baumert and
Pierron (2012) studied the implication of fatigue properties
of batteries on the reliability of flexible electronics. To over-
come the expensive computational effort of Monte Carlo
simulation (MCS), Norouzi and Nikolaidis (2012) presented
an efficient fatigue reliability analysis method for structures
subjected to a dynamic load.

Many probabilistic models have also been developed to
model the statistical characteristics of the S-N curve (Ayala-
Uraga and Moan 2007; Bengtsson and Rychlik 2009; Hasan
et al. 2012; Jha et al. 2013; Lee et al. 2013; Wei et al. 2011a,
b, 2013; Xu et al. 2012; Gu and Moan 2002). Studies of
the S-N curve indicate that material fatigue properties are
uncertain with stress-dependent characteristics (Kam et al.
1998; Kamiński 2002; Le and Peterson 1999; Liu and
Mahadevan 2007; Liao et al. 1995; Ni and Zhang 2000;
Pascual and Meeker 1999; Rowatt and Spanos 1998). Since
stress responses are usually also uncertain, material fatigue
properties are uncertain factors whose stochastic nature
is governed by other uncertainties. The stress-dependent
fatigue properties make the fatigue reliability analysis dif-
ferent from and more difficult than regular reliability analy-
sis problems.

The stress-dependent uncertainty in fatigue properties
has not been sufficiently considered in the majority of
fatigue reliability analysis methods. A few studies, such as
the two methods developed by Liu and Mahadevan (2009),
have concentrated on the reliability analysis with the stress-
dependent properties, and their accuracy and efficiency
can be further improved. For instance, the assumption of
known stress distribution in the methods can be released
by relating the fatigue reliability with basic random design
variables.

The objective of this work is to improve the accuracy
and efficiency of fatigue reliability analysis for special
problems where structures are under cyclic loads with
known loading trend. This kind of problem is common in
many applications, especially for mechanisms with cyclic
motions (Huang et al. 2013b; Petrescu and Petrescu 2013),
for example, the transmission shaft under periodic load-
ings (Cihan and Yuksel 2013; Hu and Du 2012), cams
with known motion trajectory, and linkage mechanisms.

The new method can account for uncertainties in both
design variables and stress-dependent uncertainties in mate-
rial fatigue properties. With the saddlepoint approximation
(SPA) (Huang and Du 2006) imbedded in the fast integra-
tion (Wen and Chen 1987), the method can produce a quick
and accurate solution. The information required (inputs) and
the outcome of the method are summarized below.

Input:

• Distributions of random input variables (dimensions,
loading, etc.) for stress responses

• Distributions of random fatigue material properties
• Cyclic loading trend

Outputs:

• The distribution of fatigue life
• Fatigue reliability

A review of the fatigue life analysis under known loading
trend is given in Section 2, followed by uncertainty anal-
ysis for fatigue life in Section 3. Section 4 discusses the
proposed method, whose numerical procedure is summa-
rized in Section 5. Two numerical examples are presented in
Section 6, and conclusions are made in Section 7.

2 Fatigue life analysis with known loading trend

This work is for structures under cyclic load with known
loading trend. As shown in Fig. 1, the known loading trend
means that the same trend of the load repeats cycle by
cycle and that each cycle of the load is identical. As stress
responses in one load cycle is predictable with a mathemati-
cal model or computer aided engineering (CAE) simulation
model, the trend of the stress responses is also known.
As mentioned previously, this assumption is applicable for
many problems.

Many fatigue life prediction methods (Fitzwater and
Winterstein 2001; Huang and Moan 2007; Ko 2008; Kwon
and Kareem 2011; Li and Wang 2012) and fatigue damage
accumulation models (Cruzado et al. 2013; El Aghoury and
Galal 2013; Suyuthi et al. 2013) are available. We herein

Cycle 1

t

Load Cycle 2

Fig. 1 Illustration of cyclic load with known loading trend
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briefly review the fatigue life analysis model for structures
with known loading trend.

Let x = [x1, x2, · · · , xn] be a vector of input variables
to the nonlinear function or simulation model for stress
responses as follows:

so = g(x) (1)

where g(x) is the stress responses function, and so =[
so1 , s

o
2 , · · · , som

]
are blocks of stress responses in one cycle

of the cyclic load. It should be noted that the left-hand
side of (1) is a vector because one cycle of the cyclic load
may contain multiple loading peaks as will be seen in the
numerical examples.

When the stress response is available and deterministic,
the fatigue life analysis is straightforward. The most com-
monly used model is the Palmgren-Miner’s rule (Siddiqui
and Ahmad 2001), which is given by Siddiqui and Ahmad
(2001)

D =
m∑

i=1

ni

Ni

(2)

where D is the accumulative fatigue damage, m is the num-
ber of stress blocks, ni is the number of stress cycles at stress
level si , and Ni is the number of cycles to failure at stress
level si . Ni is obtained from the constant amplitude fatigue
experiment.

In this work, we use the Palmgren-Miner’s rule for
fatigue damage analysis. However, other fatigue damage
analysis methods can also be used with the proposed
method. Since the fatigue experiments are conducted under
constant amplitude loadings, the mean value corrections are
usually applied before evaluating the fatigue damage using
the Palmgren-Miner’s rule (Siddiqui and Ahmad 2001).
Many empirical corrections were developed in the past
decades. The most widely accepted corrections include the
Goodman’s and the Gerber’s corrections. The two correc-
tions relate the alternating stress amplitude to the mean
stress response with the ultimate tensile strength (Aygül
et al. 2013).

For a general stress response so (a component of so), the
Goodman’s correction is given by Wang and Sun (2005)
sa

s
+ sm

su
= 1 (3)

where su is the ultimate tensile strength, s is the stress
response after correction, and sa and sm are the alternating
stress amplitude and the mean stress, respectively, which are
given by

sa = somax − somin

2
(4)

and

sm = somax + somin

2
(5)

in which somax and somin are the maximum and minimum
values of so, respectively.

The Gerber’s correction is Kihl and Sarkani (1999)

sa

s
+

(
sm

su

)2

= 1 (6)

It is usually recommended that the Goodman correction is
used for brittle materials and that the Gerber’s correction is
used for ductile materials. After the mean value correction
is made, the number of cycles to failure at stress level s is
then computed by

N = h(s) (7)

where h(s) is obtained from the S-N curve and is a function
of stress level s.

With the Palmgren-Miner’s rule, the fatigue life is esti-
mated by

LF = 1

1/N1 + 1/N2 + · · · + 1/Nm

= 1
m∑

j=1
1/Nj

(8)

where LF is the number of load cycles or fatigue life, and∑m
j=1 1/Nj is the fatigue damage in one cycle.

3 Uncertainty analysis of fatigue life

3.1 Uncertainties in stress responses

The fatigue life analysis model in Section 2 is in a determin-
istic form. In reality stress responses from one product to
another vary inevitably even if the design is the same. The
stress variations stem from variations in stress analysis input
variables, for instance, stochastic loading, manufacturing
imprecision, and other noises in the operating environment.

We divide input variables into deterministic variables
d and random variables X. The stress response is then
presented by

So = g(X, d) (9)

Output variables So become random variables with distri-
butions governed by the nonlinear function g(·) and the
distributions of X. The cumulative distribution function
(CDF), or the probability that So, which is a component of
So, is less than a specific value s, is then computed by

Pr{So ≤ s} =
∫

S0≤s

f (x)dx (10)

in which Pr{·} stands for a probability, and f (x) is the joint
probability density function (PDF) of X.
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3.2 Uncertainty in material fatigue properties

Uncertainty in material fatigue properties also results in
uncertainty in fatigue life. The variations in material fatigue
properties have been extensively studied (Ayala-Uraga and
Moan 2007; Bengtsson and Rychlik 2009; Gu and Moan
2002; Hasan et al. 2012; Jha et al. 2013; Lee et al. 2013;
Wei et al. 2011a, b, 2013; Xu et al. 2012). For instance,
the uncertainty of the fatigue crack growth model has been
investigated (Hasan et al. 2012; Jha et al. 2013; Lee et al.
2013; Wei et al. 2013), several probabilistic fatigue damage
accumulation models have been developed (Bengtsson and
Rychlik 2009; Wei et al. 2011a, b; Xu et al. 2012), and mod-
els for probabilistic S-N curves have also been developed
(Ayala-Uraga and Moan 2007; Gu and Moan 2002).

As the stress-life model is used in this work, we
mainly consider variations in the S-N curve. In the past
decades, many models were developed for describing
the statistical nature of the S-N curve. The associated
methods are classified into three groups - the statisti-
cal S-N curve (Kam et al. 1998; Kamiński 2002; Le
and Peterson 1999; Liao et al. 1995), the quantile S-N
curve (Ni and Zhang 2000; Pascual and Meeker 1999;
Rowatt and Spanos 1998), and the stochastic S-N curve
(Liu and Mahadevan 2007). A detailed review about all
the three groups can be found in Liu and Mahadevan
(2007).

What distinguishes the three groups is the way of han-
dling correlations between stress levels. The statistical S-N
curve assumes that the distributions of the cycle number
at stress levels are independent while the quantile S-N
curve assumes that they are dependent. The stochastic S-
N curve developed by Liu and Mahadevan (2007) releases
the assumptions by modeling the dependence between stress
levels using the Karhunen-Loeve (KL) expansion method
(Phoon et al. 2002, 2005; Loeve 1977). We use the statistical
S-N curve in this paper since the dependence between stress
levels is not our focus and the dependent random variables

can be transformed into independent ones using the Nataf
transformation (Goda 2010; Noh et al. 2009) or other meth-
ods, such as the method proposed by Noh, Choi, and Du
(Gupta et al. 2000; Noh et al. 2007). The developed method
is also applicable for the other two groups of S-N curves.

What is in common between the three groups is that
the number of cycles to failure under a stress level is a
stress-dependent random variable. As a result, the mean and
standard deviation of the number of cycles depend on stress
levels (Pascual and Meeker 1999). For a specific stress level
s, the number of cycle, N|s follows a Lognormal distribution
or a Weibull distribution (Liu and Mahadevan 2007). For the
Lognormal distribution,

log(N | s)− μlog N

σlog N
∼ N(0, 12) (11)

where μlogN and σlogN are respectively the mean and stan-
dard deviation of log(N|s) and are given by

μlog N = h1(s) (12)

and

σlog N = h2(s) (13)

in which h1(s) and h2(s) are functions of mean and stan-
dard deviation. These two functions are obtained based on
the experimental testing data under the constant amplitude
fatigue life testing. N(·,·) stands for a normal distribution
with the first parameter being the mean and the second
parameter being the variance.

In the subsequent sections, the effect of the uncertainties
on the fatigue life is analyzed. Based on the analysis, the
new fatigue reliability analysis method is developed.

Fig. 2 Flowchart of MPP
search



Fatigue reliability analysis for structures

Fig. 3 A cantilever beam subjected to cyclic load

4 The proposed fatigue reliability analysis approach

4.1 Fatigue life reliability

Due to the uncertainties in the stress response and material
fatigue properties, the fatigue life given in (8) is random.
The CDF of the fatigue life LF or the probability that LF is
less than a specific value l is given by

pf = Pr{LF < l} = Pr

{
1

1/(N1|S1)+ 1/(N2| S2)+ · · · + 1/(Nm| Sm) < l

}

(14)

where Ni | Si, i = 1, 2, · · · , m, are random numbers of
cycles dependent on random stresses Si given by

S = [S1, S2, · · · , Sm] = gC(X, d) (15)

in which gC(·) is the stress response function after mean
value correction on So = g(X, d). Equations (14) and (15)
show that the fatigue life is a random variable and is a non-
linear function of random variables Ni whose distributions
are dependent on Si . Liu and Mahadevan (2007) developed
two methods for estimating the probability given in (14)
when the distribution of Si is known. The two methods
include the moment-based method and FORM. Even though
they can efficiently approximate the fatigue reliability given
the stress distribution, there are still some limitations. The
major limitation is to know the stress distribution, but it is
usually unknown in the design stage. To obtain the distribu-
tion of the stress, we need to call (15) many times. If (15)
involves CAE simulations, the computational cost will be
high. As will be seen, the method proposed in this work can

cut the computational cost. To use the new method, we first
transform the probability in (14) into

pf = Pr{LF < l}
= Pr {1/(N1| S1)+ 1/(N2| S2)+ · · · + 1/(Nm| Sm) > 1/l}

(16)

The distribution of Ni is dependent on Si , which is governed
by g(X, d). The fatigue probability of failure pf depends on
X as shown below.

pf = Pr{LF (X, N|X) < l} (17)

where N|X = [N1|X, N2|X, · · · , Nm|X] are random
numbers of cycles dependent on X.

In the following sections, we at first discuss the direct
use of FORM and SORM for the fatigue reliability analy-
sis. As will be seen, this treatment may not be accurate and
efficient. We then present the new method, which improves
both accuracy and efficiency. The comparison of the direct
FORM/SORM and improved FORM/SORM are shown in
the example section.

4.2 Direct FORM and SORM

One way of approximating the fatigue reliability is using
FORM or SORM directly with the Rosenblatt transforma-
tion (Choi et al. 2007). Before applying FORM or SORM,
the most probable point (MPP), at which the joint proba-
bility density of random variables is the highest, needs to
be identified. To determine the MPP, the dependent random
variables X and N|X are transformed into independent stan-
dard normal variables using the Rosenblatt transformation
as follows (Choi et al. 2007):

UX = �−1(FX(X))

UN = �−1
(
FN|X (N|X)

) (18)

where �−1(·) is the inverse CDF of a standard normal vari-
able, Fx(·) is the CDF of random variable Xi , FN|X(·) is
the CDF of random variable Ni |X conditioned on X, and
UX and UN are independent standard normal variables cor-
responding to random variables X and N = [N1, · · · , Nm],
respectively.

After the transformation, (17) becomes

pf = Pr{LF (UX,UN) < l} = Pr {−1/LF (UX,UN) < −1/l} (19)

Fig. 4 Load trend over time



Z. Hu et al

Table 1 Random variables

Variable Mean value Standard deviation Distribution type

l (in) 9 0.01 Normal

b (in) 0.2 0.005 Normal

h (in) 0.4 0.005 Normal

Su (ksi) 221.7 5 Lognormal

F1 (lb) 80 3 Lognormal

F2 (lb) 60 2 Lognormal

F3 (lb) 70 2 Lognormal

F4 (lb) 65 2 Lognormal

The MPP u∗ is then obtained by solving the following
optimization model
⎧
⎪⎨

⎪⎩

min
u=[uX,uN ] ‖u‖
subject to

−1/LF (uX, uN) ≤ −1/l

(20)

in which || · || is the norm of a vector, and 1/LF (uX, uN) is
given by

1/LF (uX, uN) = 1/(N1)+ 1/(N2)+ · · · + 1/(Nm) (21)

where

Ni = F−1
Ni |si (�(uN)), i = 1, 2, · · · , m (22)

and

s = [s1, s2, · · · , sm] = gC

(
F−1
X1

(
�(uX1), F

−1
X2

(
�(uX2 ) ,

. . . , F−1
Xm

(�(uXm)), d
)

(23)

in which F−1
Ni |si (·) is the inverse CDF of Ni |si conditional

on si , and F−1
Xi

(·) is the inverse CDF of Xi .
Once the MPP u∗ is available from (20), pf is approxi-

mated using FORM as follows:

pf = �(−β) (24)

where

β = ∥∥u∗∥∥ (25)

When the accuracy of FORM is not good, SORM can be
employed. SORM is in general more accurate than FORM

but is more computationally expensive than FORM as sec-
ond derivatives are required. The Breitung’s formulation for
SORM is given by Breitung (1984)

pf = �(−β)

m+n−1∏

i=1

(1 + βνi)
1
2 (26)

where νi(i = 1, 2, · · · , m+ n− 1) are the principal curva-
tures of −1/LF (UX,UN) at the MPP. Details of SORM can
be found in Choi et al. (2007).

For n random variables in X and m stress responses in S,
there are totally n+m variables in (20). Herein, the m stress
responses in S are m different peak stresses in the dynamic
stress responses. When m is large, the number of calling the
stress response function in (15) will be high, and the effi-
ciency will be low. In this work, we regard the situation that
given a group of x and getting the corresponding m stresses
as one function evaluation. The efficiency of direct use of
FORM and SORM for reliability analysis can be improved.
As will be seen in the example, the accuracy of the direct
use of FORM may not be good either, and its accuracy also
needs to be improved.

4.3 Proposed method

To overcome the drawbacks of the direct use of FORM
or SORM, we propose a new method that integrates the
fast integration method (Wen and Chen 1987) and SPA
(Huang and Du 2006). The fatigue reliability introduced in
Section 4.1 is computed with two steps: calculating the con-
ditional fatigue reliability and calculating the unconditional
fatigue reliability.

4.3.1 Conditional fatigue reliability analysis

The conditional fatigue reliability is based on the condi-
tion that random variables X are fixed at specific values x,
which lead to specific (deterministic) stress responses s. The
conditional probability of failure is then given by

pf (x) = Pr{LF < l|X = x} (27)

or

pf (x) = Pr

{

LN = 1

LF

=
m∑

i=1

1

Ni | si ≥ 1

l

∣∣∣∣∣
X = x

}

(28)

With the known values of s, computing the above proba-
bility is just a traditional reliability analysis problem, and

Table 2 Results of fatigue
reliability analysis of a
cantilever beam

Method FORM Improved FORM SORM Improved SORM MCS

pf 0.0056 0.0096 0.0085 0.0096 0.0095 [0.0094, 0.0097]

Error (%) 41.32 1.06 10.67 1.06 –

NOF 261 80 352 135 3 × 106
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therefore existing methods, such as FORM, SORM, and
SPA, can be used. In this work, we use SPA (Huang and Du
2006) because of the following reasons: (1) The limit-state

function
m∑

i=1
1/(Ni | si)(i = 1, 2, . . . , m) in (28) is nonlinear

with respect to random variables Ni | si(i = 1, 2, . . . , m).
The first order and second order approximations of the
limit-state function may result in errors if FORM and
SORM are used. (2) SPA treats the limit-state func-

tion
m∑

i=1
1/(Ni | si)(i = 1, 2, . . . , m) as a function of ran-

dom variables1/(Ni| si)(i = 1, 2, . . . , m), and the limit-
state function becomes the sum of independent random
variables and is therefore linear. There will be no error from
the function approximation.

To use SPA, we first derive the Cumulant Generating

Function (CGF) of LN =
m∑

i=1
1/(Ni | si), which is given by

KLN (t) = ln

[∫ ∞

−∞
etlnfLN (ln)dln

]
(29)

where fLN (ln) is the probability density function (PDF) of
the random response LN .

When Ni |si , i = 1, 2, · · · , m are independent, we have

fLN (ln) = fN1|s1(n1)fN2|s2(n2) · · · fNm|sm(nm) (30)

in which fNi |si (ni) is the PDF of Ni |si .
Substituting (30) into (29) yields

KLN (t) = ln

⎡

⎣
∫ ∞

−∞
e
t

m∑

i=1
1/( ni |si )

fN1|s1(n1)fN2|s2(n2)

· · · fNm|sm(nm)dn1dn2 · · · dnm
⎤

⎦ (31)

Fig. 5 Probability of failure under different failure levels
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Table 4 Percentage of error under different failure levels

Limit state Error (%)

FORM Improved SORM Improved

FORM SORM

0.8 × 104 30.42 9.32 2.23 3.70

0.9 × 104 39.72 8.80 10.29 2.87

1.1 × 104 42.30 0.72 12.48 0.72

1.2 × 104 42.14 3.29 11.69 3.29

1.4 × 104 41.74 2.97 10.69 2.97

1.6 × 104 41.01 0.77 10.28 0.76

1.8 × 104 39.62 4.74 9.95 2.57

2.0 × 104 37.43 7.44 9.40 0.09

2.2 × 104 34.98 9.11 9.28 1.26

2.4 × 104 32.42 9.68 9.58 1.93

2.6 × 104 29.87 9.31 10.26 2.74

2.8 × 104 27.28 8.19 11.07 3.81

3.0 × 104 24.78 6.89 12.11 4.72

Equation (31) is rewritten as

KLN (t) = KN1|s1(t) +KN2|s2(t) + · · · +KNm|sm(t) (32)

Directly evaluating (32) is very difficult. Herein, we use the
power expansion of the CGF (Kendall and Stuart 1958). For
KNi |si (t), the power expansion is given by

KNi |si (t) =
∞∑

j=1

κi,j
tj

j ! (33)

where κi,j is the j-th cumulant of Ni |si .

Fig. 6 Percentage error under different failure levels

Table 5 Number of function calls needed under different failure levels

Limit state NOF

FORM Improved SORM Improved MCS

FORM SORM

0.8 × 104 313 100 404 155 3 × 106

0.9 × 104 287 80 378 135 3 × 106

1.1 × 104 287 80 378 135 3 × 106

1.2 × 104 261 80 352 135 3 × 106

1.4 × 104 261 80 352 135 3 × 106

1.6 × 104 235 80 326 135 3 × 106

1.8 × 104 235 80 326 135 3 × 106

2.0 × 104 209 80 300 135 3 × 106

2.2 × 104 183 100 274 155 3 × 106

2.4 × 104 183 100 274 155 3 × 106

2.6 × 104 157 100 248 155 3 × 106

2.8 × 104 157 80 248 135 3 × 106

3.0 × 104 131 60 222 115 3 × 106

If the first four cumulants are used, the cumulants κi,j , j
= 1, 2, 3, 4, are given in terms of moments as follows:

⎧
⎪⎪⎨

⎪⎪⎩

κi,1 = mi,1

κi,2 = mi,2 −m2
i,1

κi,3 = 2m3
i,1 − 3mi,1mi,2 +mi,3

κi,4 = mi,4 − 4mi,1mi,3 − 6m4
i,1 + 12m2

i,1mi,2 − 3m2
i,2

(34)

in which mi,j , j = 1, 2, 3, and 4, are the first four moments
about zero of Ni |si .

mi,j , j = 1, 2, 3, 4, are given by

mi,j =
∫ ∞

0

(
1

ni

)j

fNi |si (ni)dni, ∀j= 1,2,3,4 (35)

Fig. 7 Function evaluations under different failure levels
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Fig. 8 A door cam

If higher order cumulants are used, the n-th order cumulant
is given by

κi,n = mi,n −
n−1∑

j=1

(
n− 1
j − 1

)
ki,jmi,n−j (36)

Plugging (33) into (32), we have

KLN (t) =
∞∑

j=1

(
m∑

i=1

κi,j

)
tj

j ! (37)

Once the expressions of KLN (t) are available, the saddle-
point is obtained by solving the following equation:

1

l
=

(
m∑

i=1

κi,1

)

+
(

m∑

i=1

κi,2

)
η

1! +
(

m∑

i=1

κi,3

)
η2

2!

+
(

m∑

i=1

κi,4

)
η3

3! (38)

With the saddlepoint η solved from (38), the conditional
probability of failure is then calculated by Huang and Du
(2006)

pf (x) = Pr

{
LN ≥ 1

l

∣∣∣∣X = x
}

= 1 −�(w) − φ(w)

(
1

w
− 1

v

)
(39)

Fig. 9 Door cam and door

in which

w = sign(η)
{
2
[
ηK ′

LN
(η)−KLN (η)

]}1/2 (40)

v = η
[
K ′′

LN
(η)

]1/2 (41)

KLN (η) =
4∑

j=1

(
m∑

i=1

κi,j

)
ηj

j ! (42)

sign(η) =
⎧
⎨

⎩

1, η > 0
0, η = 0
−1, η < 0

(43)

where φ(·) is the PDF of a standard normal variable,
K ′

LN
(η) and K ′′

LN
(η) are the first and second derivatives of

KLN (η), respectively.
The derivation of KLN (t) is based on the condition that

Ni |si , i = 1, 2, · · · , m, are independent. It is the assump-
tion for the statistical S-N curve we use in this work.
When Ni |si , i = 1, 2, · · · , m, are dependent (i.e. stochas-
tic S-N curve), the dependent random variables should be
transformed into independent random variables. Then, the
dimension reduction method (DRM) can be applied to esti-
mate KLN (t) (Huang and Du 2006). Once the KLN (t) is
available, (37) through (43) are used to approximate the
conditional probability of failure.

Note that, the above analysis only calls the stress analysis
once.

Fig. 10 Working position of the shoulder and force analysis for the
engagement
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Fig. 11 Working position of the shoulder and force analysis for the
disengagement

4.3.2 Unconditional fatigue reliability analysis

The conditional probability of failure obtained in the last
subsection is conditional on the stress or random variables
X. The unconditional probability of failure is given by

pf =
∫

pf (x)fX(x)dx (44)

Directly calculating the integral above is costly, especially
when the dimension of X is high. To reduce the cost, fol-
lowing the same principle in Wen and Chen (1987), we
introduce a new random variable Ue ∼ N(0, 12) such that

�(upf ) = Pr{Ue ≤ upf } = pf (x) (45)

Then

upf = �−1[pf (x)] (46)

Substituting (45) into (44) yields

pf =
∫

Pr{Ue ≤ upf }fX(x)dx =
∫ ∫

Ue≤upf

φ(ue)duefX(x)dx

(47)

Equation (47) can be further written as

pf = Pr{Ue ≤ upf (X)} = Pr{Ue − upf (X) ≤ 0} (48)

Combining (46) with (48), we have

pf = Pr
{
Ue −�−1 [pf (X)

] ≤ 0
}

(49)

To approximate the probability given in (49), we define a
new limit-state function

gnew(Ue,X) = Ue −�−1 [pf (X)
]

(50)

If the FORM or SORM is employed, the MPP search is
then given by

{
min

u=[ue,uX]
β = ‖u‖

ue −�−1[pf (x)] ≤ 0
(51)

in which a general component x of x is x = F−1
x [�(uX)],

where uX is a general component of uX.
After the MPP u∗ is found, pf is computed by FORM as

follows

pf = 1 −�(β) = 1 −�
(∥∥u∗∥∥) (52)

If SORM is used to approximate (49), pf is obtained by
plugging u∗ and the main curvatures of gnew(Ue,X) at the
MPP into (26). We called the two methods the improved
FORM and improved SORM, respectively.

m + n random variables exist if FORM or SORM
is directly used as indicated in (20). With the proposed
method, the number of random variables is reduced to n +
1 as shown in (51). The dimension reduction means less
calls of the stress analysis, thereby less computational effort.
As a result, the proposed method is more efficient than the
direct use of FORM or SORM. The accuracy of the pro-
posed method is also better than the direct use of FORM.
The major reason is that the conditional probability obtained
from SPA is accurate.

Since we use MCS as a benchmark for methodology eval-
uation, next, we briefly discuss how to use MCS for the
fatigue reliability analysis.

4.4 Monte Carlo Simulation for fatigue reliability analysis

For MCS, let the number of samples be nMCS . We first gen-
erate samples for the n independent variables X, we then
generate samples for Ni , i = 1, 2, · · · , m. The two steps are
used because Ni , i = 1, 2, · · · , m depend on X. With the

Fig. 12 Stress trend of the
corner on the upper leg over
cycles
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samples of Ni , i = 1, 2, · · · , m, we generate nMCS samples
for LF . The probability of failure is then estimated by

pMCS
f = nf

nMCS

(53)

in which nf is the number of samples that satisfy LF < l.

5 Numerical procedure

Figure 2 shows the numerical procedure for identifying the
MPP. The procedure is explained in details below.

Step 1: Initialization: Set initial point u = [uX, ue] for the
MPP search.

Step 2: Stress analysis: For a given point uX perform
stress analysis using (15).

Step 3: Use the fatigue life model: Obtain the statistical
parameters of the number of stress cycles, Ni |si , i
= 1, 2, · · · , m, with (12) and (13).

Step 4: Conditional reliability analysis: Perform the con-
ditional reliability analysis based on the informa-
tion obtained in Step 3.

Step 5: Limit-state function evaluation: Transform the
conditional probability of failure into the equiv-
alent standard normal variable and evaluate the
limit-state function in (50).

Step 6: Convergence check: If the reliability indexes β in
two subsequent iterations are close enough, the
MPP is identified and convergence is reached;
then compute the probability of failure using
FORM or SORM. Otherwise, generate a new
point for uX and ue, and go to Step 2.

6 Numerical examples

Two numerical examples are presented to evaluate the pro-
posed method.

6.1 A cantilever beam

As shown in Fig. 3, a cantilever beam is subjected to a ran-
dom cyclic load F, which is plotted in Fig. 4. There are
four blocks of load in each cycle of F. The peak values of
the four blocks are F1, F2, F3, and F4, respectively. The
corresponding valley value of each peak is zero.

The maximum stresses So
max of the beam are given by

So
max = [

So
1 , S

o
2 , S

o
3 , S

o
4

] = 6Fl
bh2

(54)

where b, l, and h are the geometrical parameters as shown
in Fig. 3 and F = [F1, F2, F3, F4] is the vector of forces in
one cycle.

Since the corresponding valley of each peak of F = [F1,
F2, F3, F4] is zero, we have

So
min = [0, 0, 0, 0] (55)

Equation (54) implies that the stress response of the beam is
proportional to the load on the beam. With the known trend
of load over time, the trend of stress response is therefore
known. Due to the uncertainties in the geometrical param-
eters, cyclic loading, and material fatigue properties, the
fatigue life of the beam is also uncertain.

Since the material is brittle, the Goodman mean value
correction is applied (Wang and Sun 2005). The corrected
stress amplitude Si , i = 1, 2, 3, 4, are given by

Si = So
i Su

2Su − So
i

(56)

where Su is the ultimate tensile strength of the material.
According to (8), the fatigue life of the beam presented

in cycles is given by

LF = 1
4∑

i=1
1/(Ni |Si )

(57)

in which Ni |Si , i= 1, 2, 3, 4, are numbers of cycles to failure
under the stress level Si .

As discussed in Section 3.2, Ni |Si is a stress-dependent
random variable and follows a Log-normal distribution,
defined by

log(Ni |Si) ∼ N
(
μlog(N), σ

2
log(N)

)
(58)

μlog(N) and σlog(N) are

μlog(N) = log
{

10[c−d log10(Si)]
}

(59)

and

σlog(N) = 0.04μlog(N) (60)

where c = 12.2, and d = 3.68. The required fatigue life is l
= 1.5 × 104 cycles.

Table 1 gives the distributions of the random variables.
There are eight random variables (i.e. l, b, h, Su, F1, F2,

F3, and F4) in the stress response function, and four ran-
dom responses, Si , i= 1, 2, 3, 4, in the fatigue life function.
The problem was solved by the direct FORM and SORM,
the improved FORM and SORM, and MCS. For MCS, the
numbers of samples was 3 × 106. The percentage error with
respect to MCS is defined by

ε =
∣∣∣pf − pMCS

f

∣∣∣

pMCS
f

× 100 % (61)

where pMCS
f is obtained from MCS while pf is obtained

from other methods.
Table 2 shows the results, including the MCS solution

and the associated 95 % confidence interval in brackets, and
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Fig. 13 One snapshot of stress distribution under engagement motion

the number of function calls (NOF) of the stress response
function, which is used as the measure of efficiency.

The results show that the proposed method is more
accurate and efficient than the direct FORM and SORM.

To study the robustness of the proposed method, we
also performed reliability analyses at different failure levels
using the direct FORM and SORM, the improved FORM

and SORM, and MCS. The number of simulations of MCS
is 3 × 106. The failure thresholds vary from 0.9 × 104 to 3.0
× 104. The results are given in Table 3 and plotted in Fig. 5.
Table 4 presents the percentage errors of the four methods
with respect to MCS. The percentage errors are also plotted
in Fig. 6. The numbers of function calls are listed in Table 5
and plotted in Fig. 7.

Fig. 14 One snapshot of stress distribution under disengagement motion
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Table 6 Random variables of example 2

Variable Mean value Standard deviation Distribution type

dgap (in) 0.107 0.009 Normal

Su (ksi) 221.7 5 Lognormal

6.2 A door cam

A door cam, as shown in Figs. 8 and 9, is used to hold the
door open while stocking. The fatigue reliability of the cam
is to be evaluated during the product development process.

For each cycle of the door opening and closing, the cam
experiences two kinds of motion, which are the engage-
ment and disengagement of the shoulder. During the motion
cycle, the upper and lower legs of the cam deflect until the
shoulder passes the gap between the two legs. Figures 10
and 11 show the working positions and force analysis for the
engagement and disengagement of the cam, respectively.

Figure 12 shows the simplified stress history of the cor-
ner of the upper leg during cycles of engagement and
disengagement. Since the motion trend of the cam is known,
the stress response of the cam is also known. For every cycle
of motion, we have So

max = [
So

1 , S
o
2

]
and So

min = [0, 0].
Figure 12 indicates that the stress history of the cam is

characterized by the maximal stresses of engagement and
disengagement

(
i.e. So

1 and So
2

)
. The force and stress anal-

yses found that the stress response is dependent upon the
open distance dopen between the upper and lower legs. The
stress responses therefore can be expressed as functions of
dopen.

dopen is a parameter related to the initial gap between two
legs and the diameter of the shoulder and is given by

dopen = dsh − dgap (62)

in which dsh is the diameter of the shoulder, and dgap is the
initial gap between the two legs.

To explore the relationship between the stress responses
and dopen, we performed finite element analyses (FEA)
based on the force analyses given in Figs. 10 and 11, which
result in the following stress responses:

So
1 (dopen) = 1.437 × 103(dsh − dgap)− 0.1021 (63)

So
2 (dopen) = 1.2 × 103(dsh − dgap)− 0.5 (64)

Two snapshots of the stress distribution under engagement
and disengagement of the cam obtained from FEA are given
in Figs. 13 and 14.

The robustness study indicates that the improved FORM
and SORM significantly increase the accuracy and effi-
ciency of the direct FORM and SORM, respectively.

The cam is made of brittle material, and the Goodman
correction was made as well. The corrected stress responses,
Si , i = 1, 2 are given by

Si = So
i (dopen)Su

2Su − So
i (dopen)

(65)

Due to manufacturing imprecision, the initial gap dgap and
the diameter of the shoulder dsh are random. But we treat
dsh as deterministic because its randomness is negligible
compared with that of dgap. Also considering variations in
the ultimate tensile strength of the material, we have two
random variables dgap and Su in the stress response func-
tion. According to the stress response analysis given in
Fig. 12, there are also two random variables in the fatigue
life analysis model.

The number of cycles to failure follows a Lognormal
distributions with mean value of

μlog(N) = log
{

10[12.2−3.68 log10(Si)]
}

(66)

and standard deviation of

σlog(N) = 0.03μlog(N) (67)

In this example, dsh = 0.187 in, and the target fatigue life is
l= 2× 104 cycles. Table 6 provides all the random variables
needed for the analysis.

The probability of fatigue failure of the cam was com-
puted by the direct FORM, SORM, the improved FORM,
the improved SORM, and MCS. The numbers of samples of
MCS was 1 × 106. Results are given in Table 7.

The results also confirm that the proposed method is
more accurate and efficient than the direct use of FORM and
SORM.

Table 7 Results of reliability
analysis Method FORM Improved FORM SORM Improved SORM MCS

pf (×10−4) 6.53 7.70 7.55 7.82 8.16 [7.84, 8.48]

Error (%) 19.96 5.61 7.53 4.15 –

NOF 142 32 157 42 1 × 106
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7 Conclusion

It is important to account for the stress-dependent charac-
teristics of material fatigue properties for fatigue reliability
analysis. Directly using the First Order Reliability Method
(FORM) or Second Order Reliability Method (SORM)
for the analysis may not be efficient and may produce
large errors in the predicted fatigue reliability as shown
in the examples. The accuracy, as well as the efficiency,
can be improved with the proposed method that integrates
the saddlepoint approximation and the conditional fatigue
reliability analysis.

The new method can predict the fatigue reliability or
the probability distribution of the fatigue life for structures
under cyclic loadings with known trend. This assumption
holds for many applications. The method accommodates
not only random variables with different distributions in
the input variables to stress response functions, as well as
uncertain parameters in the S-N curve.
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