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Random Variables
In many engineering applications, the probability distributions of some random variables
are truncated; these truncated distributions are resulted from restricting the domain of
other probability distributions. If the first order reliability method (FORM) is directly
used, the truncated random variables will be transformed into unbounded standard normal
distributions. This treatment may result in large errors in reliability analysis. In this work,
we modify FORM so that the truncated random variables are transformed into truncated
standard normal variables. After the first order approximation and variable transforma-
tion, saddlepoint approximation is then used to estimate the reliability. Without increasing
the computational cost, the proposed method is generally more accurate than the original
FORM for problems with truncated random variables. [DOI: 10.1115/1.4007150]

Keywords: reliability, first order reliability method, truncated random variables, saddle-
point approximations

1 Introduction

Truncated random variables are commonly encountered in en-
gineering applications. Their probability distributions are resulted
from restricting the domain of other probability distributions. For
example, design engineers typically specify tolerances for their
design variables, such as the dimension variables that define the
geometry of a part. Factories always institute quality controls to
meet tolerance specifications [1–3]. If the part dimensions fall
outside the tolerance specifications, the part may be scrapped or
reworked. If a dimension variable follows a normal distribution,
its distribution is then a doubly truncated normal distribution. To
ensure high energy efficiency and safety, engineers also specify
cut-in and cut-out velocities, at which wind/hydrokinetic turbines
will cease power generation and shut down. Hence the wind/river
speed used in designing a turbine is also a truncated random vari-
able [4–8]. Similarly, the material strength may also be bounded
because defective materials may be screened out before they are
put into use [9–12]. The earthquake magnitude is also often mod-
eled as a truncated exponential distribution [13–15]. Truncated
random variables are, therefore, involved in various engineering
problems.

The most commonly used reliability method, the first order
reliability method (FORM) [16–18], can handle any continuous
distributions. But the way it handles truncated distributions
may produce large errors in the reliability analysis. There is a
need to improve the accuracy when truncated random variables
exist.

In this work, we restrict our discussions on those truncated dis-
tributions that are resulted from restricting the domain of their
original probability distributions. The original distributions we
consider here are those that are commonly used in FORM, includ-
ing normal, lognormal, Weibull, Beta, exponential, Gumbel,
extreme value type I and II, uniform, and Gamma distributions.

Suppose a response variable Z can be computationally eval-
uated with a limit-state function given by

Z ¼ gðX; ~YÞ (1)

where X and ~Y are vectors of untruncated random variables and
truncated random variables, respectively.

If a failure occurs when gð�Þ < 0, the probability of failure is
calculated by

pf ¼ PrfgðX; ~YÞ < 0g (2)

where Prf�g stands for the probability. To calculate this probability,
FORM transforms X ¼ ðX1;X2;…;XnÞ and ~Y ¼ ð ~Y1; ~Y2;… ~YmÞ
into independent random variables that follow standard normal
distributions. It then searches for a special point, called the
most probable point (MPP). Once the MPP is found, the limit-state
function is linearized at the MPP, and pf can be easily obtained
[19–24].

When FORM is used, a truncated random variable is trans-
formed into an unbounded random variable because a standard
normal random variable varies from �1 to þ1. This treatment
not only causes numerical difficulties but also a loss of accuracy.
The reason of numerical difficulties has been studied in Ref. [25].
The study shows that for truncated random variables the MPP
search algorithm may completely breakdown, and modifications
to the standard iterative FORM algorithm have been proposed.
The method, however, does not improve the accuracy of the origi-
nal FORM when it is used for truncated distributions.

Other studies on truncated random variables have also been
reported. Millwater and Feng [26] proposed a sensitivity analysis
method with respect to bounds of truncated distributions. Li [2]
developed a method of minimizing the expected quality loss of
products by optimizing the truncated bounds of manufacturing
tolerances. Zhang and Xie [27] investigated the characteristics
and application of the truncated Weibull distribution. Raschke
[28] constructed an estimator for the right truncation point of a
truncated exponential distribution. By using the software package
NESSUS, Griffin and Wieland [29] analyzed the reliability of a
composite fighter wing with truncated normal random variables,
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and their results show that the truncated random variables can
well present the uncertainties in design variables. Butler and
Wood [30] presented two types of representation of moment gen-
erating function for a truncated random variable.

The purpose of this work is to improve the accuracy of FORM
when truncated random variables exist. The major strategy we
implement is to transform the truncated random variables into
truncated standard normal variables. Next, we discuss general
equations for truncated random variables in Sec. 2 and then briefly
review FORM in Sec. 3. The modified FORM is presented in
Sec. 4 followed by two numerical examples in Sec. 5. Conclusions
are given in Sec. 6.

2 Truncated Random Variables

Let Yj (j ¼ 1; 2;…;m) be a continuous random variable, and
denote its probability density function (PDF) and cumulative dis-
tribution function (CDF) as fYj

ðyÞ and FYj
ðyÞ, respectively. If

restricting the domain of Yj by aj � Yj � bj, we then have a new

random variable, denoted by ~Yj, and we call it a truncated random

variable. We also call Yj the original variable of ~Yj.
Denote the PDF and CDF of ~Yj by f ~Yj

ðyÞ and F ~Yj
ðyÞ, respec-

tively. f ~Yj
ðyÞ is given by

f ~Yj
ðyÞ ¼ pYj

fYj
ðyÞ where aj � y � bj (3)

where pYj
is a constant. Integrating the above PDF from aj to bj

yields 1.0, and therefore

pYj ¼ 1= FYj
ðbjÞ � FYj

ðajÞ
� �

(4)

where FYj
ðajÞ and FYj

ðbjÞ are the CDFs of Yj at aj and bj,
respectively.

Integrating the PDF, we obtain the CDF of ~Yj

F ~Yj
ðyÞ ¼ pYj½FYj

ðyÞ � FYj
ðajÞ� where aj � y � bj (5)

3 First Order Reliability Method (FORM) With

Truncated Random Variables

In this section, we explain why the direct use of FORM may
produce a large error. We assume that all random variables ðX; ~YÞ
are independent, but the results can be extended to dependent vari-
ables. FORM involves the following three steps:

(1) Transformation of random variables:
Random variables ðX; ~YÞ are transformed into random variables

U ¼ ðUX;UYÞ whose components follow standard normal distri-
butions. The transformation for X is given by

Xi ¼ F�1
Xi ðUðUXiÞÞ ¼ TðUXiÞ ði ¼ 1; 2;…; nÞ (6)

where Uð�Þ and FXið�Þ are the CDFs of Ui and Xi, respectively,
F�1

Xi ð�Þ is the inverse function of FXið�Þ, and Tð�Þ stands for the
transformation.

For a truncated variable ~Yj (j ¼ 1; 2;…;m), using Eqs. (5) and
(6), we have the transformation as follows:

~Yj ¼ F�1
Yj

UðU ~Yj
Þ

pYj
þ FYj

ðajÞ
 !

(7)

(2) MPP search:
The most probable point (MPP) u� is at the limit state

gðTðUÞÞ ¼ 0, and at the MPP the joint probability density of U is
maximal. The MPP is obtained by solving

min
u

uk k
subject to gðTðuÞÞ ¼ 0

�
(8)

where �k k stands for the magnitude of a vector. The MPP is the
shortest distance point from gðTðUÞÞ ¼ 0 to the origin. The dis-
tance b ¼ u�k k is called the reliability index.

(3) Probability calculation:
After the limit-state function is linearized at the MPP, the prob-

ability of failure can be easily computed by

pf ¼ Uð�bÞ (9)

We now use a limit-state function gð~YÞ ¼ 2� ~Y1 � ~Y2, as an
example, to show the effect of the direct use of FORM on the ac-
curacy of the analysis result. The two truncated random variables
~Y1 and ~Y2 are derived from two independent standard normal
variables Y1 � Nð0; 12Þ and Y2 � Nð0; 12Þ, respectively. ~Y1 and
~Y2 are doubly truncated with the same interval ½�2; 2�. Then
according to Eq. (5), the CDFs of ~Y1 and ~Y2 are given by
F ~Yj
ðyÞ¼pYj

½UðyÞ�Uð�2Þ�; j¼1;2 where pYj
¼1=½Uð2Þ�Uð�2Þ�.

The PDFs of f ~Yj
ðyÞ are pYj

/ðyÞ; j¼1;2, where /ð�Þ is the PDF of
a standard normal distribution.

The probability of failure pf ¼ PrfgðYÞ ¼ 2� ~Y1 � ~Y2 < 0g
can be theoretically obtained by integrating the joint PDF of ~Y1

and ~Y2 over the failure region, which is a closed domain deter-
mined by 2� ð ~Y1 � ~Y2Þ < 0, 0 < ~Y1 < 2, and 0 < ~Y2 < 2, as
shown in Fig. 1. The integral is given by

pf ¼
ðð

gð~YÞ<0

f ~Y1
ðy1Þf ~Y2

ðy2Þdy1dy2

¼
ð2

0

ð2

2�y1

pY1
pY2

/ðy1Þ/ðy2Þdy1dy2

¼ pY1
pY2

ð2

0

½Uð2Þ � Uð2� y1Þ�dy1 ¼ 0:0551 (10)

The contour of the limit-state function at gð~YÞ ¼ 0, the con-
tours of the joint PDF, and the integration (failure) region are also
plotted in Fig. 1.

We now use FORM to calculate pf . We first transform the trun-
cated random variables ~Yj into UYj

by

~Yj ¼ U�1
UðUYj

Þ
pYj

þ Uð�2Þ
 !

where �2 � ~Yj � 2 (11)

Fig. 1 Failure region and limit-state function in original ran-
dom space
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After the transformation, the random variables are
UYj

where j ¼ 1; 2, and the linear limit-state function becomes

nonlinear because the limit-state function in the U-space

is gðTðU ~YÞÞ¼2� U�1½UðUY1
Þ=

�
pY1
þUð�2Þ�þU�1½UðUY2

Þ=pY2
þ

Uð�2Þ�g. The reliability index can be easily found to be

b¼�
ffiffiffi
2
p

U�1½Uð1Þ �Uð�2Þ= ðUð2Þ �Uð�2ÞÞ� ¼ �1:5127, and
the probability of failure is pf ¼ Uð�bÞ ¼ 0:0652. Relative to the
accurate result 0.0551, the error of FORM is 18.3%. Figure 2
shows the nonlinear limit-state function.

This simple example indicates that the transformation from
truncated random variables into unbounded standard normal vari-
ables may increase the nonlinearity of a limit-state function. This
in turn may magnify the error of FORM because it is based on the
first order approximation or linearization.

4 New Method With Truncated Random Variables

To overcome the drawback of the original transformation in
FORM, we propose to transform truncated random variables into
truncated standard normal variables with the same truncation
probabilities. Before deriving equations for the new method, we
use the above simple example again to illustrate the advantage of
the new transformation method. Doing so will make the transfor-
mation less nonlinear. For example, with the new transformation
approach, the two truncated variables, ~Y1 and ~Y2 in the above
example, are transformed into truncated standard normal variables
~UY1

and ~UY2
, which are obtained from two standard normal varia-

bles within the interval ½�2; 2�. This interval corresponds to the
same truncation probabilities of ~Y1 and ~Y2. Since ~Y1 and ~Y2 are
also from two standard normal variables, for this special problem,
they happen to remain unchanged after the new transformation.
Therefore, ~UY1

¼ ~Y1 and ~UY2
¼ ~Y2. As a result, the associated

limit-state function is untouched, and there is no reason to worry
about the increased nonlinearity.

4.1 Transformation of Random Variables. We now discuss
how to transform truncated variables ~Y into normal variables
UY ¼ ð ~UY1; ~UY2;… ~UYmÞ that are truncated from the standard nor-
mal variables U ¼ ðU1;U2;…;UmÞ. For brevity, we use ~Y for a
general truncated variable ~Yj where j ¼ 1; 2;…;m and ~U for its
corresponding truncated standard normal variable, which is a gen-
eral component in ~UY ¼ ð ~UY1

; ~UY2
;… ~UYm

Þ. We also use UY for
the original standard normal variable that corresponds to ~U. Our
task now is to transform ~Y into ~UY . Suppose the left and right trun-
cation points of ~Y are a and b, respectively. Also suppose the left
and right truncation points of ~UY are ua and ub, respectively. The
CDF of ~UY is then given by

~U ~UY
ðuÞ ¼ pU½UðuÞ � UðuaÞ� where ua � u � ub (12)

where

pU ¼ 1=½UðubÞ � UðuaÞ� (13)

And the PDF of ~UY is given by

~/ ~UY
ðuÞ ¼ pU/ðuÞ where ua � u � ub (14)

There are two conditions for the new transformation. The first
condition is that the truncation probabilities before and after the
transformation are the same. Then the left truncation point ua of
~UY is determined by

Ia ¼
ða

�1
fYðyÞdy ¼

ðua

�1
/ðuÞdu (15)

or

FYðaÞ ¼ UðuaÞ (16)

where fYð�Þ and FYð�Þ are the PDF and CDF of Y, respectively,
and Y is the original random variable of ~Y.

Similarly, the right truncated point ub of ~UY is determined by

Ib ¼
ð1

b

fYðyÞdy ¼
ð1

b

/ðuÞdu (17)

or

1� FYðbÞ ¼ 1� UðubÞ (18)

As shown in Fig. 3, the shaded areas of the two PDF curves
truncated out are equal.

The second condition of the transformation is that the CDFs
before and after transformation should be the same. This gives

Fig. 2 Failure region and limit-state function in transformed
random space

Fig. 3 Transformation of truncated random variables
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F ~Yð ~YÞ ¼ ~U ~UY
ð ~UYÞ (19)

or

pY ½FYð ~YÞ � FYðaÞ� ¼ pU½Uð ~UYÞ � UðuaÞ� (20)

where pY ¼ 1= FYðbÞ � FYðaÞ½ � as given in Eq. (4).
With Eqs. (16) and (18),

U
UY
ðubÞ � U

UY
ðuaÞ ¼ FYðbÞ � FYðaÞ (21)

Therefore, we have pY ¼ pU .
Since FYðaÞ ¼ UðuaÞ as shown in Eq. (16), Eq. (20) becomes

FYð ~YÞ ¼ UUY
ð ~UYÞ (22)

or
~Y ¼ F�1

Y ðUUY
ð ~UYÞÞ (23)

This new transformation involves only the CDFs of the original
random variable Y and the untruncated standard normal variable
U. In other words, the transformation for truncated variables from
~Yj (j ¼ 1; 2;…;m) to ~UYj

is equivalent to the transformation for
untruncated variables from Yj to UYj

. We can therefore perform the
transformation as if the random variables were not truncated. There
are two major advantages of this equivalency. As we have already
seen in the above simple example, the first advantage is that the
new transformation will be less nonlinear than the transformation
used in FORM, which is rewritten from Eq. (7) as follows:

~Y ¼ F�1
~Y

Uð ~UYÞ
pY

þ FYðaÞ
� �

(24)

We now show the effects of the two transformations for several
common distributions, including normal, lognormal, and exponen-
tial, in Figs. 4 and 5, and 6, respectively. To quantify the nonli-
nearity of the transformations, we use the nonlinearity measure
proposed in Ref. [31]. We first generated samples for each of the
two transformation curves and then used them to fit a straight
line. Suppose a transformation is expressed by YðUÞ and the
corresponding straight line is LðUÞ. The nonlinearity of YðUÞ is
measured by the square root of the integral of squares of the
differences between YðUÞ and LðUÞ. The sum of squares is nor-
malized within the range ½UL;UU� of U. The equation of this
nonlinearity measure (NL) is given by Ref. [31]

NL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðUU � ULÞ

ðUU

UL

½YðUÞ � LðUÞ�2dU

s
(25)

In the three examples, the truncated variables are restricted
over ½�1; 1� in the U-space. Hence UL ¼ �1 and UU ¼ 1 for the
new transformation. For the original transformation in FORM,
because the range of U is unbounded, we set UL ¼ �3 and
UU ¼ 3.

The larger the NL value, the higher is the nonlinearity. If
NL ¼ 0, the transformation is completely linear. The results in
these figures show that the new transformation always produces a
smaller NL than the transformation used in FORM. This indicated
that the new transformation is less nonlinear than the original
transformation.

The other advantage of the new transformation is that the MPP
search will not be modified. The reason is that only the CDFs of
the original random variables are involved. Then the new transfor-
mation is equivalent to transforming the original ransom variables
into unbounded standard normal variables. We can, therefore, per-
form the MPP search with the original random variables and the
unbounded standard normal variables. This allows us to use any
MPP search algorithms for the original FORM.

4.2 MPP Search. As discussed above, we can use an existing
MPP search algorithm for Z ¼ gðX; ~YÞ. After the transformation,
the limit-state function becomes

Z ¼ gðTðUXÞ; Tð~UYÞÞ (26)

where the transformation Tð�Þ for X is given in Eq. (6), and the
transformation Tð�Þ for ~Y is given in Eq. (23). The model of the
MPP search is then

Fig. 5 Transformation of truncated lognormal distribution

Fig. 6 Transformation of truncated exponential distributionFig. 4 Transformation of truncated normal distribution
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min
ðuX ;~uYÞ

ðuX; ~uYÞk k

subject to gðTðuXÞ;Tð~uYÞÞ ¼ 0

(
(27)

The above model is the same as that in Eq. (8). Therefore,
any existing MPP search algorithms can be used to solve for the
MPP.

4.3 Linearization of the Limit-State Function. After the
MPP is found at u� ¼ ðu�X; ~u�YÞ, we linearize the limit-state func-
tion at u�, and this yields

Z � gðu�X; ~u�YÞ þ
Xn

i¼1

@g

@UXi

ðUXi
� u�Xi

Þ þ
Xm

j¼1

@g

@ ~UYj

ð ~UYj
� ~u�Yj

Þ

(28)

where all the derivatives are those at u�.
At the MPP gð�Þ ¼ 0, and the limit-state function becomes

Z �
Xn

i¼1

@g

@UXi

ðUXi
� u�Xi

Þ þ
Xm

j¼1

@g

@ ~UYj

ð ~UYj
� ~u�Yj

Þ (29)

Dividing both sides by

H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

@g

@UXi

� �2

þ
Xm

j¼1

@g

@ ~UYj

 !2
vuut

yields a new limit-state function

ZeðUX; ~UYÞ ¼ c0 þ
Xn

i¼1

cXi
UXi
þ
Xm

j¼1

c ~Yj
~UYj

(30)

where

c0 ¼ �
1

H

Xn

i¼1

@g

@UXi

u�Xi
þ
Xm

j¼1

@g

@ ~UYj

~u�Yj

" #
(31)

cXi
¼ 1

H

@g

@UXi

(32)

c ~Yj
¼ 1

H

@g

@ ~UYj

(33)

The above three equations can be rewritten as

c0 ¼ u�X; ~u
�
Y

		 		 (34)

cXi
¼ �

u�Xi

u�X; ~u
�
Y

		 		 (35)

c ~Yj
¼ �

~u�Yj

u�X; ~u
�
Y

		 		 (36)

The new limit-state function is now a linear combination of
standard normal random variables UX and truncated standard nor-
mal variables ~UY . Due to the truncated variables UY , unlike the
original FORM, the response Ze will no longer be normally dis-
tributed. We need to find a new way to evaluate the probability of
failure. Our approach is to use the Saddlepoint approximation.

4.4 Saddlepoint Approximation Based FORM. Saddle-
point approximation can accurately evaluate a CDF especially in a
tail area of a distribution [32–37]. The basic requirement of using
this approach is to know the cumulative generating function
(CGF) of the equivalent limit-state function Ze in Eq. (30). In this

section, we first derive the CGF of Ze and then apply the saddle-
point approximation.

Suppose the CGF of UXi
is KUXi

ðtÞ and that of ~UYj
is K ~UYj

ðtÞ.
Then the CGF of Ze is

KZðtÞ ¼ c0tþ
Xn

i¼1

KUXi
ðcXi

tÞ þ
Xm

j¼1

K ~UYj
ðc ~Yj

tÞ (37)

For a standard normal random variables UXi
, its CGF and asso-

ciated derivatives are given by

KUXi
ðtÞ ¼ 1

2
t2 (38)

K0UXi
ðtÞ ¼ t (39)

K00UXi
ðtÞ ¼ 1 (40)

Now we derive the CGFs of the truncated variable ~UYj
. In order

to calculate the CGF of ~UYj
, we first derive its moment generating

function (MGF) as follows

M ~UYj
ðtÞ ¼

ð1
�1

expðtuÞ ~/ ~UYj
ðuÞdu ¼ puj

ðubj

uaj

expðtuÞ/ðuÞdu

¼
pujffiffiffiffiffiffi
2p
p

ðubj

uaj

exp � 1

2
ðu2 � 2tuÞ

� 

du

¼
pujffiffiffiffiffiffi
2p
p exp

1

2
t2

� �ðubj
�t

uaj
�t

exp � 1

2
u2

� 

du

¼ puj
exp

1

2
t2

� �
Uðubj

� tÞ � Uðuaj
� tÞ

� �
(41)

The CGF of ~UYj
and its derivatives are then given by

K ~UYj
ðtÞ ¼ log M ~UYj

ðtÞ

¼ log puj
þ 1

2
t2 þ log Uðubj

� tÞ � Uðuaj
� tÞ

� �
(42)

K0~UYj
ðtÞ ¼ t�

/ðubj
� tÞ � /ðuaj

� tÞ
Uðubj

� tÞ � Uðuaj
� tÞ (43)

K00~UYj
ðtÞ ¼ 1�

/ðubj
� tÞ � /ðuaj

� tÞ
� �2
Uðubj

� tÞ � Uðuaj
� tÞ

� �2
�
ðubj
� tÞ/ðubj

� tÞ � ðuaj
� tÞ/ðuaj

� tÞ
Uðubj

� tÞ � Uðuaj
� tÞ (44)

Combining Eqs. (36), (37) and (41), we obtain the CGF of Ze as
follows:

KZðtÞ ¼ c0tþ 1

2

Xn

i¼1

ðcXi
tÞ2 þ

Xm

j¼1

�
log puj

þ 1

2
ðc ~Yj

tÞ2

þ log
n
Uðubj

� c ~Yj
tÞ � Uðuaj

� c ~Yj
tÞ
o


(45)

And the derivatives of KZðtÞ can be obtained using the following
equations

K0ZðtÞ ¼ c0 þ
Xn

i¼1

cXi
K0UXi
ðcXi

tÞ þ
Xm

j¼1

c ~Yj
K0~UYj
ðc ~Yj

tÞ (46)

and

K00ZðtÞ ¼
Xn

i¼1

c2
Xi

K00UXi
ðcXi

tÞ þ
Xm

j¼1

c2
~Yj

K00~UYj
ðc ~Yj

tÞ (47)
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Substituting Eqs. (39), (40), (43) and (44) into Eqs. (46) and
(47), we have

K0ZðtÞ ¼ c0 þ
Xn

i¼1

c2
Xi

t

þ
Xm

j¼1

c ~Yj
c ~Yj

t�
/ðubj

� c ~Yj
tÞ � /ðuaj

� c ~Yj
tÞ

Uðubj
� c ~Yj

tÞ � Uðuaj
� c ~Yj

tÞ

 !
(48)

K00ZðtÞ¼
Xn

i¼1

c2
Xi
þ
Xm

j¼1

c2
~Yj

1�
/ðubj

�c ~Yj
tÞ�/ðuaj

�c ~Yj
tÞ

h i2

Uðubj
�c ~Yj

tÞ�Uðuaj
�c ~Yj

tÞ
h i2

8><
>:

9>=
>;

�
Xm

j¼1

c2
~Yj

ðubj
�c ~Yj

tÞ/ðubj
�c ~Yj
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(49)

Although the theory of saddlepoint approximation is complex,
its use is straightforward [38–41]. The approximation to the CDF
of Ze derived by Lugananni and Rice [42] is

FZe
¼ PfZe � zg ¼ UðwÞ þ /ðwÞ 1

w
� 1

v

� �
(50)

where

w ¼ signðtÞ 2½tsz� KZðtsÞ�f g1=2
(51)

v ¼ ts K00ZðtsÞ
� �1=2

(52)

in which signðtsÞ¼þ1, �1, or 0, depending on where ts is posi-
tive, negative, or zero. ts is the saddlepoint and is obtained by
solving

K0ZðtÞ ¼ z (53)

As a failure occurs when ze < 0, to obtain pf , we set z ¼ 0 in
Eq. (53).

The new method is generally more accurate than FORM. As
discussed previously, when FORM is directly used for truncated
random variables, its variable transformation may increase the
nonlinearity of a limit-state function. The new method can over-
come such a drawback. The other advantage of the new method is
that any existing MPP search algorithms can be used because the
transformation of the new method is equivalent to the variable
transformation on only the original variables of the truncated vari-
ables. As a result, the efficiency can be maintained as the same as
the direct use of FORM. Next we summarize the procedure of the
new method.

4.5 Numerical Procedure. We now summarize the proce-
dure of the proposed method with the following steps:

(1) Variable transformation: Obtain the truncation points using
Eqs. (16) and (18), transform the regular random variables

X and truncated random variables ~Y into standard normal
random variables UX and truncated standard normal varia-

bles ~UY using Eqs. (6) and (23), respectively.
(2) MPP search: Search the MPP using Eq. (27) and obtain the

coefficients c0, cXi
and c ~Yj

by applying Eqs. (34) through
(36).

(3) Saddlepoint approximation: Solving for the probability of
failure with truncated random variables using Eqs. (50)
through (53).

Figure 7 shows the flow chart of the numerical procedure.

5 Example

In this section, we use two examples to demonstrate the pro-
posed methodology. The first one is for the analysis of a hydroki-
netic turbine blade, and the second one is for the analysis of a
cantilever beam. The truncation points are nonsymmetric in the
first example, and those of the second example are symmetric.

5.1 Example: Hydrokinetic Turbine Analysis. A hydroki-
netic turbine blade is shown in Fig. 8. According to the classical

Fig. 8 River flow loading on a hydrokinetic turbine blade

Fig. 7 Flow chart of the numerical procedure
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blade element momentum theory, with a fixed tip speed ratio, the
flapwise bending moment Mflap of the turbine blade is given by

Mflap ¼
1

2
qv2

extCm

where vext is the extreme river flow velocity, q ¼ 1	 103kg=m
3

is the river flow density, and Cm¼ 0.3522 is a geometry related
coefficient.

The moment of inertia at the root of the blade is

I ¼ 1

12
l1 ð2t1Þ3 � ð2t2Þ3
h i

¼ 2

3
l1ðt31 � t32Þ

where l1, t1, and t2 are dimension variables.
Then, the strain e at the root of the turbine blade is

e ¼ Mflapy

EI

where E ¼ 14 GPa is the Young’s modulus. The maximum strain
occurs at y ¼ t1.

The limit-state function is defined by

g ¼ eallow � e

where eallow is the allowable strain of the turbine blade material.
There are five truncated random variables involved in this

problem. The river flow velocity is truncated at the cut-in and
cut-out velocities, the dimensional random variables are trun-
cated at a 3-r level, and the allowable strain is truncated at a
2-r level. The random variables are given in Table 1, where
EVT I stands for an Extreme Value Type I distribution, and the
distribution parameters are those of the original random
variables.

Following the steps in Sec. 4.5, we calculated the probability
of failure using the original FORM, the modified FORM, and
Monte Carlo simulation (MCS). The MCS result is regarded as
an accurate solution because a large sample size of 107 was
used. The error of the other two methods relative to MCS is
computed by

e ¼
pf � pMCS

f

��� ���
pMCS

f

	 100%

where pf is the probability of failure obtained from either the orig-
inal FORM or the modified FORM, and pMCS

f is the probability of
failure from MCS.

As shown in Table 2, the accuracy of the modified FORM
(M-FORM) is much higher than that of the original FORM
(O-FORM) while the computational cost, measured by the number
function calls N, is in the same order of magnitude. The result
indicates that the proposed method effectively improves the accu-
racy of FORM with the same level of efficiency when truncated
random variables exist.

5.2 Example: Cantilever Beam Analysis. A cantilever beam
is shown in Fig. 9 [35]. It is subject to forces F1 and F2, moments
M1 and M2, and distributed loads ðqL1; qR1Þ and ðqL2; qR2Þ.

A failure occurs if the deflection at the tip g exceeds the allow-
able deflection gallow, and the limit-state function is defined by

g ¼ gallow � g

where the deflection at the tip is

g ¼ 1

EI

ML2

2
þ RL3

6
þ
X2

i¼1

MiðL� aiÞ2

2
�
X2

i¼1

FiðL� biÞ3

6

" #

� 1

EI

X2

i¼1

qLiðL� ciÞ4

24
�
X2

i¼1

ðqRi � qLiÞðL� ciÞ5

120

" #

þ 1

EI

X2

i¼1

qRiðL� diÞ4

24
þ
X2

i¼1

ðqRi � qLiÞðL� diÞ5

120

" #

in which the Young’s modulus is E ¼ 200	 109 Pa, and the
moment of inertia is I ¼ 1=12ð Þph3, and the bending moment at
root is given by

M ¼ �
X2

i¼1

Mi �
X2

i¼1

Fibi �
X2

i¼1

qLiðdi � ciÞðdi þ ciÞ=2

�
X2

i¼1

ðqRi � qLiÞðdi � ciÞ=2½ � ðci þ 2ðdi � ciÞ=3Þ½ �

Table 1 Random variables of hydrokinetic turbine blade

Random variable Mean value Standard deviation Distribution type Truncation point

vext (m/s) 2.5 0.3 EVT I [0.7, 4.8]
l1 (m) 0.21 2.1	 10�3 Normal [0.2037, 0.2163]
t1 (m) 0.025 2.5	 10�4 Normal [0.0243, 0.0258]
t2 (m) 0.023 2.3	 10�4 Normal [0.0223, 0.0237]
eallow 0.02 2	 10�4 Normal [0.0196, 0.0204]

Table 2 Results of reliability analysis of hydrokinetic turbine
blades

O-FORM M-FORM MCS

pf (	10�6) 10.352 6.6123 7.10
N 377 373 1	 107

Error 45.8% 6.9% N/A
Fig. 9 Cantilever beam
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Twenty random variables are involved. All of the dimensional
random variables are doubly truncated at 3-r level, and the other
random variables are doubly truncated at k-r level. The distribu-
tions of the random variables are given in Table 3.

The reliability analysis results are given in Table 4. The pro-
posed method is again more accurate than the original FORM.
The result also shows that the higher is the truncation level or the
smaller is the k value, the less accurate is the original FORM.
From the numbers of function calls N, we see that both of the
FORM methods are equally efficient.

6 Conclusions

The first order reliability method (FORM) has been modified in
this work to accommodate truncated random variables. The major
modification is to transform truncated random variables into trun-
cated standard normal variables. The transformation allows the
new method to use any existing MPP search algorithms. As a
result, this treatment can avoid numerical difficulties of the MPP
search for truncated variables. Since the linearized limit-state
function is not normally distributed with the truncated random
variables, using the reliability index to directly calculate the
probability of failure is no longer feasible. The other major
modification is, therefore, the employment of the saddlepoint
approximation.

With the two major modifications, the accuracy of the modified
FORM is in general higher than that of the original FORM. Since
the MPP search is performed in the same manner as the original
FORM, the efficiency of the modified FORM is in the same order
of magnitude as the original FORM. As an accurate reliability
evaluation method is the basis for reliability-based design (RBD),
it is desirable to replace the original FORM with the modified
FORM during RBD with truncated random variables.

As the saddlepoint approximation is very accurate in estimating
the probability of failure for the linearized limit-state function,
the major error of the modified FORM is from the linearization of
the limit-state function. This is the intrinsic drawback of FORM.
Hence the modified FORM may not be accurate if the limit-state
function is highly nonlinear. For this case, one may consider
using the second order reliability method (SORM). How to
modify SORM for truncated random variables needs a further
investigation.
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