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Analysis
Time-dependent reliability analysis requires the use of the extreme value of a response.
The extreme value function is usually highly nonlinear, and traditional reliability meth-
ods, such as the first order reliability method (FORM), may produce large errors. The so-
lution to this problem is using a surrogate model of the extreme response. The objective
of this work is to improve the efficiency of building such a surrogate model. A mixed effi-
cient global optimization (m-EGO) method is proposed. Different from the current EGO
method, which draws samples of random variables and time independently, the m-EGO
method draws samples for the two types of samples simultaneously. The m-EGO method
employs the adaptive Kriging–Monte Carlo simulation (AK–MCS) so that high accuracy
is also achieved. Then, Monte Carlo simulation (MCS) is applied to calculate the time-
dependent reliability based on the surrogate model. Good accuracy and efficiency of the
m-EGO method are demonstrated by three examples. [DOI: 10.1115/1.4029520]
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1 Introduction

Reliability is defined within a period of time when a limit-state
function involves time. For this case, time-independent reliability
analysis methodologies [1,2] are not applicable, and time-
dependent reliability methods should be used. Even though other
methods [3–5] exist for time-dependent reliability problems, the
most widely used methods are first-passage methods and extreme
value methods. The former methods are easier to implement and
are therefore more popular, but may not be as accurate as the latter
methods. The two types of methods are briefly reviewed below.

The first-passage methods calculate the probability that the
response exceeds its failure threshold (limit state) for the first time
in a predefined period of time. The event that the response reaches
its limit state is called an upcrossing, and the upcrossing rate is
the rate of change in the upcrossing probability with respect to
time. If the first-time upcrossing rate is available, the time-
dependent probability of failure can be easily computed. But it is
difficult to obtain the first-time upcrossing rate. For this reason,
approximation methods are widely used. The most commonly
used method is the Rice’s formula [6], which uses upcrossing
rates throughout the entire period of time with the assumption that
all the upcrossings are independent.

Many methods have been developed based on the Rice’s for-
mula. For instance, an asymptotic outcrossing rate for stationary
Gaussian processes was derived by Lindgren [7] and Breitung
[8,9]. The bounds of the upcrossing rate of a nonstationary Gaus-
sian process were given by Ditlevsen [10]. To solve general time-
dependent reliability problems, Hagen and Tvedt [11,12] pro-
posed a parallel system approach. A PHI2 method was developed
by Sudret and coworkers [13]. Hu and Du also developed a time-
dependent reliability analysis method based on the Rice’s formula
[14]. Even if some modifications have been made [15–18], the
upcrossing methods may still produce large errors when upcross-
ings are strongly dependent.

The extreme value methods approximate the time-dependent
reliability from another aspect by using the extreme value of the

response with respect to time. If the distribution of the extreme
value can be accurately estimated, the accuracy of reliability anal-
ysis will be higher than the upcrossing rate methods since the in-
dependent upcrossing assumption is eliminated. Accurately and
efficiently estimating the distribution of the extreme value, how-
ever, is a challenge since global optimization with respect to time
should be performed repeatedly.

In general, the extreme value of the response is much more non-
linear than the response itself with respect to the input random
variables. For some problems, the distribution of the extreme
response is multimodal with different modes (peaks of probability
density) even though the response itself follows a unimodal distri-
bution [19]. For this reason, using design of experiments (DOE)
to obtain a surrogate model of the extreme response becomes
promising and practical. For example, Wang and Wang [20] pro-
posed an extreme response method using the efficient global opti-
mization (EGO) approach [21]; Chen and Li [22] studied how to
evaluate the distribution of the extreme response using the proba-
bility density evolution method [22].

The efficiency of the existing extreme value methods with
DOE, such as the approach reported in Ref. [20], can be
improved. To show the feasibility of the improvement, we first
define the response function as Y ¼ gðX; tÞ, where
X ¼ ½X1;X2;…;Xn� is a vector of random variables, t is the time,
and Y is a response. In many applications, the response function
may be a black box, such a computer-aided engineering model.
To obtain the extreme values of Y, current methods draw samples
of X first. Then at each sample point of X, samples of t are drawn
through EGO [21], which produces the extreme response with
respect to time at each sample point of X. Thus, the values of the
extreme response are available at all the sample points of X, and a
surrogate model of the extreme response is then built. Sampling
on X and t is performed at two nested and independent levels, and
we therefore call the method the independent EGO method. The
interaction effects of X and t are not considered at the two sepa-
rate sampling levels. The efficiency could be improved if X and t
are sampled simultaneously. This motivated us to develop a new
method with higher efficiency.

This work develops a new time-dependent reliability method
based on EGO and the active learning strategy [23]. The new
method is named the mixed-EGO method since X and t are
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sampled simultaneously. The significance of this work consists of
the following elements:

• A mixed EGO method: the new method generates samples of
X and t simultaneously so that the interaction effects of X
and t is considered. This requires fewer training points for
building surrogate models and therefore increases the effi-
ciency of the EGO method.

• The integration of the mixed-EGO method with the
AK–MCS [23]. The integration makes the surrogate model of
the extreme response accurate near or at the limit state and
hence improves both accuracy and efficiency of the time-
dependent reliability analysis.

The remainder of this paper starts from Sec. 2 where EGO and
time-dependent reliability are reviewed. The new method is dis-
cussed in Sec. 3. Three examples are presented in Sec. 4, and con-
clusions are given in Sec. 5.

2 Background

EGO is used in this work. We at first review EGO and discuss
the definition of time-dependent reliability. We then review the
current independent EGO method for time-dependent reliability
analysis [24,25].

2.1 EGO. Since being proposed by Jones in 1998 [21], EGO
has been widely used in various areas [26–29]. EGO is based on
the DACE model [30] or the Kriging model. Both of the models
are updated by adding training points gradually, but they use dif-
ferent criteria for model updating. The EGO model is updated
with a new training point that maximizes the expected improve-
ment function (EIF) while the DACE model is updated with a
new training point that minimizes the mean square error. A maxi-
mum EIF helps find a point with the highest probability to pro-
duce a better extreme value of the response. Many studies have
demonstrated that EGO can significantly reduce the number of
training points for global optimization.

EGO at first constructs a Kriging model using initial training
points, and the expected improvement (EI) is calculated using the
mean and covariance of the Kriging model. The model is then
updated by adding a new point with the maximum EI. The proce-
dure continues until convergence is achieved.

The Kriging model ĝðxÞ is given by

ŷ ¼ ĝðxÞ ¼ hðxÞTbþ ZðxÞ (1)

in which hð�Þ is called the trend of the model, b is the vector of
the trend coefficients, and Zð�Þ is a stationary Gaussian process
with a mean of zero and a covariance given by

Cov½ZðaÞ;ZðbÞ� ¼ r2
ZRða;bÞ (2)

where r2
Z is the variance of the process, and Rða; bÞ is the correla-

tion function. The commonly used correlation functions include
the squared-exponential and Gaussian types [30].

At a training point x, ŷ is a Gaussian random variable denoted
by

ŷ ¼ ĝðxÞ � NðlðxÞ;r2ðxÞÞ (3)

in which Nð�; �Þ stands for a normal distribution; lð�Þ and rð�Þ are
the mean and standard deviation of ŷ, respectively. At a training
point x, lðxÞ ¼ gðxÞ and rðxÞ ¼ 0, and ĝðxÞ therefore passes all
the points that have been sampled.

For the global maximum of gðxÞ, the improvement is defined
by I ¼ maxðy� y�; 0Þ, where y� is the current best solution (the
maximum response) obtained from all the sampled training points.
Its expectation or EI is then computed by [21]

EIðxÞ ¼ ðlðxÞ � y�ÞU lðxÞ � y�

rðxÞ

� �
þ rðxÞ/ lðxÞ � y�

rðxÞ

� �
(4)

where U �ð Þ and / �ð Þ are the cumulative distribution function and
probability density function of a standard Gaussian variable,
respectively, and y� is

y� ¼ max
i¼1;2;…;k

fgðxðiÞÞg (5)

in which k is the number of current training points.
By maximizing EI, we find a new training point.

xðkþ1Þ ¼ arg max
x2X

EIðxÞ (6)

Algorithm 1 (Table 1) below describes the procedure of EGO.
More details can be found in Refs. [21] and [30].

In Step 3, eEI (a small positive number) is used as a conver-
gence criterion. The maximum EI is scaled in line 7 as suggested
in Ref. [19].

2.2 Time-Dependent Reliability. For a general limit-state
function Y ¼ gðX; tÞ, a failure occurs if

Y ¼ gðX; tÞ � e (7)

in which e is the failure threshold.
For a time interval ½t0; ts�, the time-dependent reliability is

defined by [5]

Rðt0; tsÞ ¼ Pr Y ¼ gðX; tÞ < e; 8t 2 ½t0; ts�f g (8)

where Pr �f g stands for a probability, and 8t 2 ½t0; ts� means all
time instants on ½t0; ts�.

The time-dependent probability of failure is defined by

pf ðt0; tsÞ ¼ Pr Y ¼ gðX; tÞ � e; 9t 2 ½t0; ts�f g (9)

where 9 stands for “there exists.”
pf ðt0; tsÞ is a nondecreasing function of the length of ½t0; ts�. The

longer is the period of time, the higher is pf ðt0; tsÞ in general.

2.3 Time-Dependent Reliability Analysis With Surrogate
Models. The failure event in Eq. (7) is equivalent to Ymax > e,
where Ymax is the global maximum response on ½t0; ts� and is given
by

Ymax ¼ arg max
t2½t0 ;ts�

fgðX; tÞg (10)

Table 1 Detailed procedure of Algorithm 1

Algorithm 1: Efficient Global Optimization (EGO)

1 Generate initial samples xs ¼ ½xð1Þ; xð2Þ; …; xðkÞ�
2 Compute ys ¼ ½gðxð1ÞÞ; gðxð2ÞÞ;…; gðxðkÞÞ�; set m ¼ 1
3 While {m ¼ 1} or {max

x2X
EIðxÞ < eEI} do

4 Construct a Kriging model ŷ ¼ ĝðXÞ using fxs; ysg
5 Find y� ¼ max

i¼1;2;…;kþm�1
fgðxðiÞÞg

6 Search for xðkþmÞ ¼ arg max
x2X

EIðxÞ, where EIðxÞ is computed by
Eq. (4)

7 Scale max
x2X

EIðxÞ ¼max
x2X

EIðxÞ= bð1Þj j, where bð1Þ is the first element

of the trend coefficients b given in Eq. (1)

8 Compute gðxðkþmÞÞ; update ys ¼ ½ys; gðxðkþmÞÞ� and xs ¼ ½xs; xðkþmÞ�
9 m ¼ mþ 1
10 End While
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Then pf ðt0; tsÞ is rewritten as

pf ðt0; tsÞ ¼ Pr YmaxðXÞ > ef g (11)

For many problems, Ymax is highly nonlinear with respect to X
and may follow a multimodal distribution. Using existing reliabil-
ity methods, such as the FORM and second order reliability meth-
ods (SORM), may result in large errors. MCS becomes a choice if
a surrogate model, Ymax ¼ ĝmaxðXÞ, of Ymax, can be built. As dis-
cussed previously, the direct EGO method is employed to solve
time-dependent reliability problems by Wang and Wang [20]. The
surrogate model of extreme response Ymax ¼ ĝmaxðXÞ was built
with a nested procedure. The outer loop generates samples of X
while the inner loop is executed to find the time tmax when the
response is maximum. Samples of t are generated by EGO in the
inner loop. A more direct and general independent EGO proce-
dure similar to the aforementioned nested procedure [20] is sum-
marized below.

• Outer loop: sampling on X for building Ymax ¼ ĝmaxðXÞ.
• Inner loop: EGO for ymax ¼ max

t2½t0;ts�
fgðx; tÞg at x, which is a

sample of X.

The associated algorithm or Algorithm 2 is shown as follows
(Table 2).

In step 3, eMSE is a small positive number used as the conver-
gence criterion for the mean square error MSE.

The independent EGO method may not be efficient for two rea-
sons. First, the one-dimensional EGO with respect to t is per-
formed repeatedly at each sample point of X. As mentioned
previously, X and t are treated independently at two separate lev-
els, and the interaction of X and t is therefore ignored. Not consid-
ering the interaction effect of X and t may result in low
computational efficiency. Second, a small MSE is expected for an
accurate surrogate model for reliability analysis. Constructing a
surrogate model with a low MSE, however, is computationally ex-
pensive because Ymax is in general highly nonlinear and possibly
multimodal.

3 A Mixed-EGO Based Method

In this section, we discuss the mixed-EGO based method that
overcomes the drawbacks of the independent EGO method. The
new method builds a surrogate model Ymax ¼ ĝmaxðXÞ for the
global extreme response through another surrogate model
Y ¼ ĝðX; tÞ. It is efficient because of the following reasons:

• Using Y ¼ ĝðX; tÞ can the effectively account for the joint
effects of X and t and will reduce the number of samples of
both X and t.

• The mixed EGO along with the AK–MCS method [23] can
efficiently and accurately approximate the extreme response
at or near the limit state. High accuracy at or near the limit
state will reduce the number of samples of X.

3.1 Overview. As discussed in Ref. [19], the accuracy of reli-
ability analysis is determined by only the accuracy of the surro-
gate model at the limit state or Ymax ¼ gmaxðXÞ ¼ e. For this
reason, we focus on achieving high accuracy of Ymax ¼ ĝmaxðXÞ at
or near the limit state. By doing so, the number of samples can be
reduced. Since the limit-state Ymax ¼ gmaxðXÞ ¼ e is of the great-
est concern, the sample updating criterion needs to be modified. In
this work, we integrate the AK–MCS method [23] with the pro-
posed mixed-EGO method.

The overall procedure of the mixed-EGO based method is pro-
vided in Table 3, and the detailed algorithm will be discussed in
Secs. 3.3 and 3.4 and will be summarized in Sec. 3.5.

The major difference between the independent EGO method
and the mixed-EGO method is that X and t are sampled at two
separate levels in the former method while X and t are sampled
simultaneously in the latter method.

3.2 Initial Sampling. The initial samples xs and t are gener-
ated to create an initial surrogate model for Ymax. The commonly
used sampling approaches include the random sampling, Latin
hypercube sampling, and Hammersley sampling (HS) [31]. In this
work, the HS method is used as it performs better in providing
uniformity properties over a multidimensional space [32]. Sam-
ples are generated by the HS method in the [0, 1] domain. They
are then transformed into samples of X and t according to their
probability distributions using the inverse probability method. t is
treated as if it was uniformly distributed.

Suppose that the dimension of X is n and that k initial samples
are generated. The samples xs are

xs ¼ xð1Þ; xð2Þ; …; xðkÞ
h i

¼

x
ð1Þ
1 x

ð1Þ
2 � � � xð1Þn

x
ð2Þ
1 x

ð2Þ
2 � � � xð2Þn

..

. ..
. . .

. ..
.

x
ðkÞ
1 x

ðkÞ
2 � � � xðkÞn

2
6666664

3
7777775

(12)

in which xðiÞ ¼ ½xðiÞ1 ; x
ðiÞ
2 ;…; xðiÞn � is the ith sample point. k initial

samples of t are also generated along with those of X. We then
have the following combined initial samples:

½xs; ts� ¼

x
ð1Þ
1 x

ð1Þ
2 � � � xð1Þn ; tð1Þ

x
ð2Þ
1 x

ð2Þ
2 � � � xð2Þn ; tð2Þ

..

. ..
. . .

. ..
.

x
ðkÞ
1 x

ðkÞ
2 � � � xðkÞn ; tðkÞ

2
6666664

3
7777775

(13)

We then call the limit-state function to obtain responses at the
above sample points and build a mixed EGO model Y ¼ ĝðX; tÞ
with respect to X and t. Y ¼ ĝðX; tÞ is called a mixed model

Table 2 Detailed procedure of Algorithm 2

Algorithm 2: Independent EGO method

1 Generate initial samples xs ¼ ½xð1Þ; xð2Þ; …; xðkÞ�
2 Solve for ys

max ¼ ½gmaxðxð1ÞÞ; gmaxðxð2ÞÞ;…; gmaxðxðkÞÞ�, where
gmaxðxðiÞÞ ¼ max

t2½t0 ;ts �
fgðxðiÞ; tÞg, using EGO; set m ¼ 1

3 While {m ¼ 1} or {max
x2X

MSEðxÞ < eMSE} do

4 Construct a Kriging model Ymax ¼ ĝmaxðXÞ using fxs; ys
maxg

5 Find xðkþmÞ ¼ arg max
x2X
fMSEðxÞg

6 Search for gmaxðxðkþmÞÞ ¼ max
t2½t0 ;ts �

fgðxðkþmÞ; tÞg using EGO

7 Update xs ¼ ½xs; xðkþmÞ� and ys
max ¼ ½ys

max; gmaxðxðkþmÞÞ�
8 m ¼ mþ 1
9 End While

10 Reliability analysis using Ymax ¼ ĝmaxðXÞ

Table 3 Major procedure of the mixed-EGO based method

Step 1: Initial sampling

1. Generate initial samples xs and ts

Step 2: Build initial extreme response model (Algorithm 3)

2. Build time-dependent surrogate model Y ¼ ĝðX; tÞ
3. Solve for the maximum responses Ymax at xs based on Y ¼ ĝðX; tÞ

using the mixed EGO method
4. Build initial extreme response model Ymax ¼ ĝmaxðXÞ
Step 3: Update extreme response model (Algorithm 4)
5. Adding new training points of X by the AK-MCS method [23]
6. Identify extreme values associated with the new training points using

the mixed EGO method
7. Obtain final model Ymax ¼ ĝmaxðXÞ
Step 4: Reliability analysis

8. Monte Carlo simulation based on Ymax ¼ ĝmaxðXÞ
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because it is a function of X and t. Then, the extreme value
responses ys

max at xs are identified based on the mixed EGO model
that will be discussed in Sec. 3.3.

3.3 Construct Initial Ymax ¼ ĝmaxðXÞ With the Mixed
EGO Model. This is step 2 of the mixed-EGO method in Table 3.
With t, the EI in Eq. (4) is rewritten as

EI xðiÞ; t
� �

¼ lðxðiÞ; t
� �

� y�i

� �
U

l xðiÞ; t
� �

� y�i
r xðiÞ; tð Þ

 !

þ r xðiÞ; t
� �

/
l xðiÞ; t
� �

� y�i
r xðiÞ; tð Þ

 !
(14)

where y�i is the current best solution (maximum response), and
lðxðiÞ; tÞ and rðxðiÞ; tÞ are the mean and standard deviation at
½xðiÞ; t�, respectively.

The expressions of EI are the same as those for the independent
EGO method and the mixed EGO model. The difference lies in
the way of computing lðxðiÞ; tÞ and rðxðiÞ; tÞ. For the independent
EGO method, lðxðiÞ; tÞ and rðxðiÞ; tÞ are obtained from the one-
dimensional Kriging model Y ¼ ĝðtÞ, which is constructed in the
inner loop for t when X is fixed. For the mixed EGO model, they
are computed from the Kriging model Y ¼ ĝðX; tÞ, which is con-
structed when X and t vary simultaneously.

Once convergence is reached, the maximum responses with
respect to xs will be available. Then the initial model
Ymax ¼ ĝmaxðXÞ can be built.

The algorithm (Algorithm 3) for the initial Ymax ¼ ĝmaxðXÞ is
given as follows (Table 4):

In line 2, xs contains initial samples used to construct
Ymax ¼ ĝmaxðXÞ, and xs

t contains xs and added samples of X for
model Y ¼ ĝðX; tÞ. In line 3, eEI is used as a convergence criterion
for the maximum EI. In line 5, EIðxðiÞ; tÞ is computed by plugging
ys

maxðiÞ, lYðxðiÞ; tÞ and lYðxðiÞ; tÞ, which are obtained from
Y ¼ ĝðX; tÞ, into Eq. (14). Note that in the mixed EGO model, all
the sampled points of both X and t are used to identify the new
training points of t. But in the independent EGO model, only the
sampled points of t are used to update training points of t.

From the outputs of the mixed EGO model, we obtain the
extreme values ys

max corresponding to the samples xðiÞ,
i ¼ 1; 2;…; k. In Sec. 3.4, we discuss how to identify a new train-
ing point xðkþ1Þ and the associated gmax xðkþ1Þ� �

.

3.4 Update Ymax ¼ ĝmaxðXÞWith AK–MCS and the Mixed
EGO Model. The initial model of the extreme response
Ymax ¼ ĝmaxðXÞ obtained above in general is not accurate. New
training points of X should be added. As discussed in Sec. 3.1, it
is desirable to generate more training points near or at the limit
state. Several approaches are proposed for this purpose. For
instance, the efficient global reliability analysis (EGRA) method
[33] generates more training points adaptively near the limit state.
Based on EGRA, an active learning approach called the AK–MCS
method [23] is developed to further use the joint probability den-
sity of random variables for generating training points without
using global optimization. Using the principle of AK–MCS,
Wang and Wang later proposed a confidence enhanced sequential
sampling approach [34]. Dubourg et al. integrated the importance
sampling approach with the AK–MCS method [35] and further
improved the efficiency. All of the above approaches are based on
the Kriging model. Approaches based on other surrogate model
techniques are also available. For example, support vector
machines are used to generate explicit limit-state boundaries [36],
and the same technique is also applied to identify disjoint failure
domains and limit state boundaries for discontinuous responses
[37]. The two methods are further improved by Basudhar and
Missoum [38].

In this work, the AK–MCS method is employed to identify new
training point xðkþ1Þ near the limit state of the extreme response
Ymax ¼ ĝmaxðXÞ. It has two advantages over the EGRA method:
the joint probability density of random variables is considered
during the sampling process, and it avoids global optimization in
searching for new training points. A brief review of the AK–MCS
method is given in the Appendix. Note that other sampling meth-
ods mentioned above can be used as well.

With the new training point xðkþ1Þ identified from AK–MCS,
we can find the extreme response gmax xðkþ1Þ� �

to update the surro-
gate model for Ymax. Obtaining gmax xðkþ1Þ� �

is equivalent to solv-
ing the following one-dimensional global optimization problem:

tðkþ1Þ
max ¼ arg max

t2½t0 ;ts�
y ¼ g xðkþ1Þ; t

� �n o
(15)

To reduce the number of function calls, we still use the mixed
EGO model presented in Sec. 3.3, and we also use the data set of
½xs

t ; t
s� and ys obtained in Sec. 3.3. Algorithm 4 shows the details

of finding xðkþ1Þ and gmax xðkþ1Þ� �
(Table 5).

In line 13, EIðxnew; tÞ is computed by plugging ynew
max, lY xnew; tð Þ,

and rY xnew; tð Þ, which are obtained from Y ¼ ĝðX; tÞ, into Eq.
(14). When the convergence criterion is satisfied, we obtain the
surrogate model Ymax ¼ ĝmaxðXÞ.

We then use MCS to calculate reliability. As Ymax ¼ ĝmaxðXÞ is
accurate, so is the reliability calculated by MCS with a sufficiently
large sample size. Note that MCS will no longer call the original
limit-state state function.

We now have all the algorithms for the new method. Next, we
put everything together and give the complete algorithm.

3.5 Summary of the Mixed EGO-Based Method.
Combining Algorithms 3 and 4 yields the complete algorithm of

the mixed EGO based method, or Algorithm 5 (Table 6).

4 Numerical Examples

In this section, three numerical examples are used to demon-
strate the effectiveness of the proposed approach. Each of the
examples is solved using the following four methods:

• Rice: the outcrossing rate method based on the Rice’s for-
mula and FORM [14,39].

• Independent EGO: the independent EGO method or the
nested EGO [20]

• Mixed EGO: the proposed mixed EGO-based method
• MCS: the direct MCS method using the original limit-state

function

Table 4 Detailed procedure of Algorithm 3

Algorithm 3: Mixed EGO model for initial Ymax ¼ ĝmaxðXÞ

1 At initial samples points, compute ys ¼ ½yðiÞ�i¼1;…;k ¼ ½gðxðiÞ; tðiÞÞ�i¼1;…;k
2 Set xs

t ¼ xs, m ¼ 1, and the initial current best solution vector ys
max ¼ ys

3 While {m ¼ 1} or {Imax < eEI} do

4 Construct Kriging model Y ¼ ĝðX; tÞ using f½xs
t ; t

s�; ysg
5 Find a point with maximum EI:

½xðiEIÞ; tEI� ¼ arg max
i¼1;2;…;k

fmax
t2½t0 ;ts �

fEIðxðiÞ; tÞgg, where iEI 2 ½1;…; k� and

EIðxðiÞ; tÞ is computed based on Y ¼ ĝðX; tÞ; calculate

Imax ¼ EIðxðiEIÞ; tEIÞ=jbðx;tÞð1Þj.
6 Compute yEI ¼ gðxðiEIÞ; tEIÞ
7 Update current best solution

ys
maxðiEIÞ ¼

yEI if yEI > ys
maxðiEIÞ

ys
maxðiEIÞ otherwise

�
8 Update data points xs

t ¼ ½xs
t ; xðiEIÞ�, ts ¼ ½ts; tEI�, and ys ¼ ½ys; yEI�

9 m ¼ mþ 1
10 End While

11 Record ys
max, ½xs

t ; t
s�, and ys

12 Construct Ymax ¼ ĝmaxðXÞ using fxs; ys
maxg
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The other three methods are used to compare the accuracy and
efficiency of the mixed EGO method.

4.1 A Nonlinear Mathematical Model. A function of X and
t is given in Eq. (16), where X is a random variable following a
normal distribution X � Nð10; 0:52Þ.

yðX; tÞ ¼ 1

X2 þ 4
sin 2:5Xð Þ cos tþ 0:4ð Þ2 (16)

The time-dependent probability of failure is given by

pf ðt0; tsÞ ¼ Pr yðX; sÞ > 0:014; 9s 2 ½1; 2:5�f g (17)

According to Eq. (8), pf ðt0; tsÞ is equivalent to the following
probability:

pf ðt0; tsÞ ¼ Pr Ymax > 0:014f g (18)

Before calculating reliability, we at first evaluate the mixed
EGO model (or Algorithm 3) because it is the core component of
the mixed EGO based method. We generate different numbers of
initial samples of X and t. We then identify ys

max with respect to xs

using the existing independent EGO method and the mixed EGO
method, respectively. The convergence criterion of the two meth-
ods is eEI ¼ 10�5. The numbers of samples of X are set to 10, 15,
18, and 20. The numbers of function evaluations (NOF) required
for identifying ys

max for different numbers of initial samples of X
are given in Table 7. The results show that the independent EGO
calls the limit-state function 127 times to identify the extreme

values when the sample size is 15 while the mixed EGO method
only needs 59 function evaluations. The results for sample sizes
of 10, 18, and 20 are similar. Figure 1 shows the values of Ymax

(i.e., ys
max) obtained from the two methods, as well as the true

Ymax, for the sample size of ten.
The results show that both models are accurate to extract the

extreme responses. The number of function evaluations by the
mixed EGO model is less than that by the independent EGO
method. The former is therefore more efficient. This becomes
more apparent when the number of samples of X becomes larger.

We now examine the performance of the mixed EGO based
method for the time-dependent reliability analysis. We use the
MCS solution as a benchmark for accuracy comparison. The per-
centage of error is computed by

e% ¼
pMCS

f � pf

			 			
pMCS

f

� 100% (19)

where pMCS
f is from MCS that calls the original limit-state func-

tion, and pf is from a non-MCS method. The results of reliability
analysis are shown in Table 8.

The results show that the accuracy and efficiency of the mixed
EGO based method are much better than the outcrossing rate
method (Rice’s formula) and the independent EGO method.

Table 5 Detailed procedure of Algorithm 4

Algorithm 4: Sampling update

1 Set r ¼ 1 and xtotal ¼ ½ �
2 While fr ¼ 1g or fCovpf > 0:05g do

3 Set p ¼ 1
4 Generate nMCS samples of X, xMCS

i ; i ¼ 1; 2;…; nMCS; let
xtotal ¼ ½xtotal; xMCS�

5 While {p ¼ 1} or {Umin < eU}, where eU is the convergence
criterion, do

6 Construct a Kriging model Ymax ¼ ĝmaxðXÞ using fxs; ys
maxg and

predict responses and their variances at xMCS
i using

Ymax ¼ ĝmaxðXÞ
7 Compute UðxMCS

i Þ using Eq. (A1); identify a new training point by
xnew ¼ arg min

x2xMCS
fUðxÞg and Umin ¼ UðxnewÞ

8 Generate a new time instant tr from uniform distribution on ½t0; ts�
9 Compute yMCS ¼ gðxnew; trÞ; update xs

t ¼ ½xs
t ; xnew�, ts ¼ ½ts; tr �,

and ys ¼ ½ys; yMCS�
10 Set ynew

max ¼ yMCS and q ¼ 1
11 While {q ¼ 1} or { max

t2½t0 ;ts �
EIðxnew; tÞ > eEI} do

12 Construct nþ 1 dimensional Kriging model Y ¼ ĝðX; tÞ using
f½xs

t ; t
s�; ysg

13 Find tEI such that tEI ¼ max
t2½t0 ;ts �

fEIðxnew; tÞg, where EIðxnew; tÞ is

computed based on Y ¼ ĝðX; tÞ

14 Scale EIðxnew; tEIÞ ¼ EIðxnew; tEIÞ=jbðx;tÞð1Þj, where bðx;tÞð1Þ is
the first element of the trend coefficients of Y ¼ ĝðX; tÞ model

15 Compute yEI ¼ gðxnew; tEIÞ
16 Update current best solution ynew

max ¼
yEI; if yEI > ynew

max

ynew
max; otherwise

�
17 Update data points xs

t ¼ ½xs
t ; xnew�, ts ¼ ½ts; tEI�, ys ¼ ½ys; yEI�

18 q ¼ qþ 1
19 End While

20 Record ys
max ¼ ½ys

max; ynew
max�, xs ¼ ½xs; xnew�, xs

t , ts, and ys

21 p ¼ pþ 1
22 End While

23 Construct Kriging model of Ymax ¼ ĝmaxðXÞ using fxs; ys
maxg and

compute p̂f by plugging xtotal into Ymax ¼ ĝmaxðXÞ
24 Compute Covpf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� p̂f Þ=ðp̂f rnMCSÞ

p
25 r ¼ r þ 1
26 End While

Table 6 Detailed procedure of Algorithm 5

Algorithm 5: Complete algorithm

1) Step 1: Initialization

Generate initial samples xs ¼ ½xð1Þ; xð2Þ; …; xðkÞ� and
ts ¼ ½tð1Þ; tð2Þ; …; tðkÞ� using the Hammersley sampling method.

2) Step 2: Build initial model Ymax ¼ ĝmaxðXÞ (Algorithm 3)

a) Compute ys ¼ ½yðiÞ�i¼1;…;k ¼ ½gðxðiÞ; tðiÞÞ�i¼1;…;k
b) Set xs

t ¼ xs, m ¼ 1, and the initial current best solution vector
ys

max ¼ ys

c) While {m ¼ 1} or {Imax < eEI} do

i) Construct an nþ 1 dimensional Kriging model Y ¼ ĝðX; tÞ using
f½xs

t ; t
s�; ysg

ii) Find a point with maximum EI:

½xðiEIÞ; tEI� ¼ arg max
i¼1;2;…;k

fmax
t2½t0 ;ts �

fEIðxðiÞ; tÞgg, where iEI 2 ½1;…; k�;

calculate Imax ¼ EIðxðiEIÞ; tEIÞ= bðx;tÞð1Þ
			 			.

iii) Compute yEI ¼ gðxðiEIÞ; tEIÞ
iv) Update current best solution

ys
maxðiEIÞ ¼

yEI; if yEI > ys
maxðiEIÞ

ys
maxðiEIÞ; otherwise

�
v) Update data points xs

t ¼ ½xs
t ; xðimaxÞ�, ts ¼ ½ts; tEI�, ys ¼ ½ys; yEI�

vi) m ¼ mþ 1
End While

d) Record ys
max, ½xs

t ; t
s� and ys; Set p ¼ 1.

3) Step 3: Update Ymax ¼ ĝmaxðXÞ with AK-MCS and mixed EGO

(Algorithm 4)

Algorithm 4
4) Step 4: Reliability Analysis

Reliability analysis using Ymax ¼ ĝmaxðXÞ

Table 7 NOF required for different number of samples of X

NOF

Number of samples of X Independent EGO Mixed EGO

10 85 49
15 127 59
18 153 66
20 170 69
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4.2 A Vibration Problem. A vibration problem as shown
in Fig. 2 is modified from Ref. [40] by treating the stiffness
of spring k2, damping coefficient c2, mass m2, the stiffness of
spring k1, and mass m1 as random variables. There are totally

five random variables. The random variables are given in
Table 9.

The amplitude of the vibration of mass m1 subjected to force
f0 sinðXtÞ is given by

q1 max ¼ f0

c2
2X

2 þ k2 � m2X
2

� �2

c2
2X

2 k1 � m1X
2 � m2X

2
� �2þ k2m2X

2 � k1 � m1X
2

� �
k2 � m2X

2
� �� �2

 !1=2

(20)

Fig. 1 Ymax from independent EGO and mixed EGO and the true values

Table 8 Results of Example 1

Method NOF pf ðt0; tsÞ (�10�4) Error (%)

Rice 1017 0 100
Independent EGO 212 1.31 20.18
Mixed-EGO based 69 1.09 0
MCS 5� 108 1.09 N/A

Fig. 2 A vibration problem

Table 9 Variables and parameters of Example 2

Variable Mean Standard deviation Distribution

k1 (N/m) 3� 106 9� 104 Normal
m1 (kg) 1:6� 104 2� 102 Normal
k2 (N/m) 8:5� 104 2� 103 Normal
m2 (kg) 480 5 Normal
c2 (Ns/m) 300 5 Normal
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where X is the excitation frequency, which is considered as time,
or t ¼ X.

Equation (20) can be nondimensionalized using a “static”
deflection of the main system. The nondimensional displacement
of m1 is given by [40]

Y ¼ gðX;XÞ ¼ k1 K1= K2 þ K2
3

� �� �1=2
(21)

where X ¼ ½k1;m1�, and Ki, i ¼ 1; 2; 3, are given by

K1 ¼ c2
2X

2 þ k2 � m2X
2

� �2
� �

(22)

K2 ¼ c2
2X

2 k1 � m1X
2 � m2X

2
� �2

(23)

K3 ¼ k2m2X
2 � k1 � m1X

2
� �

k2 � m2X
2

� �� �
(24)

Y is considered over a wide excitation frequency band,
8 	 X 	 28 (rad/s). Since X is treated as t, the period of time is
½8; 28� rad/s. A failure is defined as the event when Y is larger than
35. The probability of failure on ½8; 28� rad/s is given by

pf ð8; 28Þ ¼ PrfgðX;XÞ > 35; 9X 2 ½8; 28�g (25)

Fig. 3 shows one response of Y at the means of random varia-
bles. It is highly nonlinear.

We use the independent EGO and the mixed EGO based meth-
ods to calculate the time-dependent probability of failure. Table 10
shows the results from different methods. Note that the Rice’s for-
mula based method is not applicable for this example as the
response is highly nonlinear. The results show that the proposed
mixed-EGO method is much more efficient than the independent
EGO method. It should be noted that the vibration problem is
employed as an example to verify the ability of the proposed
method in solving highly nonlinear problem. Since the limit-state
function is treated as a black box, the proposed method can be
applied to other vibratory problems as well.

4.3 A Beam Subjected to Time-Variant Loading. A cor-
roded beam subjected to stochastic load as shown in Fig. 4 is used
as the third example. This example is modified from Ref. [13].

A failure occurs when the stress of the beam is larger than the
ultimate strength of the material. The time-dependent probability
of failure is given by

pf ¼ PrfgðX;YðtÞ; tÞ > 0; 9t 2 ½0; 35�g (26)

in which

gðX;YðtÞ; tÞ ¼ FðtÞL=4þ qsta0b0L2=8
� �
� a0 � 2ktð Þ b0 � 2ktð Þ2ru=4 (27)

where X ¼ ½ru; a0; b0�, YðtÞ ¼ ½FðtÞ�, qst ¼ 7:85� 104 N,
k ¼ 5� 10�5 m=year, and L ¼ 5 m. Here, FðtÞ is a stochastic
loading presented by the spectral representation method [41] as
follows:

FðtÞ ¼ 6500þ
X7

i¼1

ni

X7

j¼1

ðaij sinðbijtþ cijÞÞ
 !

(28)

where

a ¼

0:13 0:36 0:14 3:07 0:17 0:13 0:12

0:02 0:18 0:09 0:13 0:69 0:04 0:27

0:08 0:29 0:14 3:09 0:05 0:37 0:13

0:03 0:06 0:01 0:04 0:63 0:30 0:06

0:03 0:00 0:00 0:00 0:00 0:00 0:00

0:01 0:00 0:00 0:00 0:00 0:00 0:00

0:01 0:00 0:00 0:00 0:00 0:00 0:00

2
666666666666666666664

3
777777777777777777775

Fig. 3 One response Y at the mean value point of random
variables

Fig. 4 Corroded beam subjected to stochastic loading

Table 10 Variables and parameters of Example 2

Method NOF pf ðt0; tsÞ (�10�2) Error (%)

Rice N/A N/A
Independent EGO 3366 4.07 22.22
Mixed-EGO based 1378 3.43 3.00
MCS 2� 108 3.33 N/A
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b ¼

0:06 0:31 0:15 0:28 0:24 0:44 0:48

0:38 0:15 0:40 0:06 0:42 0:09 0:01

0:10 0:33 0:03 0:29 0:11 0:26 0:38

0:28 0:07 0:59 0:55 0:42 0:23 0:29

0:52 0:00 0:00 0:00 0:00 0:00 0:00

0:77 0:00 0:00 0:00 0:00 0:00 0:00

0:91 0:00 0:00 0:00 0:00 0:00 0:00

2
666666666666664

3
777777777777775

c ¼

2:91 �2:34 �2:43 �2:82 �2:15 0:47 2:90

�2:91 2:21 �0:97 0:98 �1:03 �3:81 �0:35

1:25 0:52 2:62 0:23 0:91 �1:39 �2:45

0:73 0:00 �0:45 �0:50 1:93 �3:64 �3:00

0:18 0:00 0:00 0:00 0:00 0:00 0:00

�1:71 0:00 0:00 0:00 0:00 0:00 0:00

�2:46 0:00 0:00 0:00 0:00 0:00 0:00

2
666666666666664

3
777777777777775

There are totally ten random variables, which are defined in Table 11.
The time-dependent probability of failure over [0, 35] years is

calculated by aforementioned four methods, and the results are
given in Table 12.

The results show that the mixed EGO-based method is much
more efficient and accurate than the independent EGO method
and the Rice’s formula based method.

5 Conclusion

The distribution of the extreme value of a time-dependent
limit-state function is required to evaluate the reliability defined
within a period of time. The extreme value may be highly nonlin-
ear with a multimodal distribution with respect to random input
variables. For this reason, existing approximation methods, such
as FORM, SORM, and the upcrossing method, may produce large
errors. Using MCS based on the surrogate model of the extreme
response becomes more practical.

This work develops a new reliability method that can efficiently
and accurately construct surrogate models of extreme responses.
The EGO is employed, and the sample points of input random

variables and time are simultaneously generated. With this treat-
ment, the new method is much more efficient than the existing
method where the two sets of samples are generated independ-
ently in two nested loops. The surrogate model from the new
method is accurate near or at the limit state, and its accuracy in
other area is not important for the reliability assessment. This is
another reason for the high efficiency. After the surrogate model
is available, the reliability can then be easily estimated by MCS,
which will not call the original limit-state function any more.

As indicated in Sec. 4.2, where t is the frequency, instead of a
time factor, the proposed method can be used for limit-state func-
tions with random input variables X and a general interval vari-
able t. The latter may not necessarily be a time factor. The
reliability produced by the proposed method becomes the worst-
case reliability with respect to the interval variable.

The new method is based on the Kriging model, and during the
sampling and model updating process, the Kriging model is called
repeatedly. The computational cost of calling the Kriging model
is minor or moderate compared to that of calling a limit-state
function whose evaluation may be computationally expensive.
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Appendix: Review of the AK–MCS Method

The AK–MCS method [23] is developed based on the EGRA
method [33]. In the AK–MCS method, the Kriging model is com-
bined with MCS to adaptively update training points near or at the
limit state. A Kriging model G ¼ f̂ ðxÞ is constructed with initial
training points fx;Gg. In order to identify a potential “dangerous”
point (i.e., the new training point), which may cause the change of
the sign of the response variable, one can use a learning function
defined by [23]

U xMCS
� �

¼
lG xMCSð Þ
		 		
rG xMCSð Þ (A1)

where xMCS is a group of samples drawn from the distributions of
random input variables, lG xMCSð Þ is the prediction form the Krig-
ing model G ¼ f̂ ðxÞ, and r2

G xMCSð Þ is the variance of the predic-
tion. Note that the population of MCS samples is used to consider
the joint probability density information of random variables and
avoid the complicated global optimization used in the EGRA method.

Table 11 Random variables of Example 3

Variable Mean Standard deviation Distribution

ru (Pa) 2:4� 108 2:4� 107 Normal
a0 (m) 0.2 0.01 Normal
b0 (m) 0.04 4� 10�3 Normal
n1 0 100 Normal
n2 0 50 Normal
n3 0 98 Normal
n4 0 121 Normal
n5 0 227 Normal
n6 0 98 Normal
n7 0 121 Normal

Table 12 Results of Example 3

Method NOF pf ðt0; tsÞ (�10�2) Error (%)

Rice 6501 2.85 5.94
Independent EGO 496 3.27 7.92
Mixed-EGO based 283 2.99 1.32
MCS 3� 108 3.03 N/A

Table 13 Detailed procedure of Algorithm 6

Algorithm 6: Algorithm of AK-MCS

1 Set q ¼ 1 and xtotal ¼ ½ �
2 While fq ¼ 1g or fCovpf > 0:05gdo

3 Set p ¼ 1
4 Generate nMCS samples of X, xMCS

i ; i ¼ 1; 2;…; nMCS; let
xtotal ¼ ½xtotal; xMCS�

5 While {p ¼ 1} or {Umin < eU} do

6 Construct a Kriging model of G ¼ f̂ ðXÞ using initial training
pointsfx;Gg and obtain the predictions and variances by plugging
xMCS

i into G ¼ f̂ ðXÞ
7 Identify new training point by xnew ¼ arg min

x2xMCS
fUðxÞg and

Umin ¼ UðxnewÞ
8 Compute ynew ¼ f ðxnewÞ; Update x ¼ ½x; xnew� and g ¼ ½g; ynew�
9 End While

10 Compute p̂f by plugging xtotal into G ¼ f̂ ðXÞ
11 Compute Cov pf with Cov pf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pf Þ=ðpf qnMCSÞ

p
12 q ¼ qþ 1
13 End While
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Then, a new training point is identified by minimizing
U xMCSð Þ. A stopping criterion eU is defined as minfUðxÞg � eU

[23]. After the convergence is achieved, the probability of failure
pf is estimated by plugging current available samples xtotal into
the surrogate model, where xtotal ¼ xtotal; xMCS

� �
is used to store

total samples for the current iteration. Then the coefficient of vari-
ation of probability of failure Covpf is checked by

Covpf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pf Þ=ðpf NMCSÞ

q
(A2)

where NMCS is the total number of samples in xtotal.
If Covpf > 0:05, continue above procedure. Otherwise, stop

and obtain the approximated pf . The general algorithm of the
AK–MCS summarized in Table 13.
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