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Probabilistic Inverse Simulation
and Its Application in Vehicle
Accident Reconstruction
Inverse simulation is an inverse process of direct simulation. It determines unknown
input variables of the direct simulation for a given set of simulation output variables.
Uncertainties usually exist, making it difficult to solve inverse simulation problems. The
objective of this research is to account for uncertainties in inverse simulation in order
to produce high confidence in simulation results. The major approach is the use of the
maximum probability density function (PDF), which determines not only unknown deter-
ministic input variables but also the realizations of random input variables. Both types
of variables are solved on the condition that the joint probability density of all the ran-
dom variables is maximum. The proposed methodology is applied to a traffic accident
reconstruction problem where the simulation output (accident consequences) is known
and the simulation input (velocities of the vehicle at the beginning of crash) is sought.
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1 Introduction

Inverse simulation is an inverse process of direct simulation.
During this process, computer simulations are used in an inverse
way. A set of unknown model input variables are found given a
set of known model output variables.

Inverse simulation has been applied in many engineering areas.
For instance, it is extensively used and becomes a current research
focus in the area of inverse dynamic analysis, such as determining
the forces or torques so as to produce desired motions [1,2], finding
appropriate joint parameters for robots [3], and determining tor-
ques and powers for desired human movements [4–7]. The applica-
tions in aerospace engineering have also been reported, such as
dynamic inversion [8], flight control [9,10], optimization of heli-
copter slalom maneuver [11], and other applications [12–14].

Even though inverse simulations are intensively used for
inverse dynamic analysis, they are not limited to dynamic analy-
sis. Traffic accident reconstruction, which is the focus of this
work, is another area to which inverse simulations are applied. It
is different from the traditional inverse dynamics where the num-
ber of to-be-determined input variables, which enforce a dynami-
cal system to complete the specified output, is generally equal to
the number of dynamic equations. For the accident reconstruction
inverse simulation, the number of unknowns may be different
from that of simulation equations. Some of the input variables,
such as the coefficient of friction, are not known exactly. These
variables together with the totally unknown input variables, such
as the pre-impact velocity, are determined by optimization so that
the direct simulation result is close to observations. Details about
the inverse simulation of traffic accident reconstruction are dis-
cussed in Sec. 2.

Figure 1 shows a general simulation model. The vectors of
input and output variables are x and y, respectively. x and y may
be time independent or time dependent. The simulation model
gðxÞ maps x into y and is given by

y ¼ gðxÞ (1)

or
y1 ¼ g1ðxÞ
y2 ¼ g2ðxÞ
� � �
ym ¼ gmðxÞ

8>>>><
>>>>:

(2)

where y ¼ ðy1;…; ymÞT, and gð�Þ ¼ ðg1ð�Þ;…gmð�ÞÞT. We call
these equations the direct simulation equations.

For inverse simulation, the output variables y are known, and
part of the input variables are to be determined. We use xunkn for
those to-be-determined variables. Some input variables are
precisely known, and we denote them by xkn.

As many uncertainties are presented in the direct process of
simulation [15–17], we also encounter uncertainties in inverse
simulation. The uncertainties may be associated with simulation
parameters that are related to the stochastic physical nature, manu-
facturing imprecision, random operating conditions, and measure-
ment errors. As a result, we may not know some of the input
variables precisely, and we treat them as random variables. Those
random variables are denoted by xrand. Model structure uncer-
tainty also exists due to simplifications, assumptions, ignorance,
and lack of information within the model. When we solve for the
unknown input variables through inverse simulation, the model
structure uncertainty should also be considered.

Then, the input variables x are

x ¼ ðxunkn; xrand; xknÞT (3)

where
xunkn ¼ ðxunkn; 1;…; xunkn;nunkn

ÞT with a size of nunkn,

xrand ¼ ðxrand;1; …; xrand; nrand
ÞT with a size of nrand.

Since the precisely known variables xkn are not important in
our discussions, we omit them in the simulation models. Then, the
models are rewritten as

y ¼ gðxÞ ¼ gðxunkn; xrandÞ (4)
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The general task of inverse simulation is to find unknown input
variables xunkn given output variables y and joint probability
density distribution of random input variables xrand.

We then take traffic accident reconstruction as an example to
further explain inverse simulation and its input variables xunkn and
xrand. From the accident scene, we may obtain useful information,
such as the victim rest position, for which we can run vehicle col-
lision simulation repeatedly until the simulated human rest posi-
tion matches the observed value. The human rest position serves
as one of the output variables in y. On the other hand, the input
variables may include the pre-impact velocity of the vehicle, the
distance between the pedestrian and vehicle, and the coefficient of
friction. If the pre-impact velocity and the distance between the
pedestrian and vehicle are what should be revealed from the
inverse simulation, then they belongs to unknown input variables
xunkn. The coefficient of friction may also be unknown. If we have
sufficient statistical data, we know its probability density before-
hand. It can be treated as a random input variable, and then it
belongs to xrand. If it is difficult or impossible to measure the coef-
ficient of friction at the accident scene, its realization can be
solved during the inverse simulation. Therefore, for an accident
that has occurred, the random variables xrand could be observed or
measured; in other words, their realizations exist. These realiza-
tions of xrand are also to-be-determined unknowns.

Due to the involvement of random variables, the traditional
inverse simulation method may not be effective anymore. In this
work, we develop a new inverse simulation method that can deter-
mine both the unknown deterministic input variables and the real-
izations of unknown random input variables. The requirement of
the method is that we know the direct simulation output variables
and the prior distributions of the random input variables.

Vehicle accident reconstruction is an important application area
of inverse simulation, and we give a brief introduction to vehicle
accident reconstruction in Sec. 2. We then present the proposed
method in Sec. 3 followed by an illustration example in Sec. 4. The
method is applied in the reconstruction of a vehicle–pedestrian
accident in Sec. 5. Conclusions and future work are discussed in
Sec. 6.

2 Vehicle Traffic Accident Reconstruction

The whole process of a vehicle accident can be divided into
three phases:

(1) Postimpact: It is the starting point of the reconstruction.
The model is developed with the information obtained from
the accident scene.

(2) Impact: It identifies the responses of the involved vehicle,
including the impact speed, impact direction, impact loca-
tion, and so on.

(3) Pre-impact. It identifies the speed and trajectory of the vehi-
cle [18].

For traffic accident reconstruction, the key issues are the investi-
gation and analysis of the causes and consequences of vehicle colli-
sion. More specifically, a collision analysis is performed to identify
contributions of major factors to the collision. These factors include
the role of the drivers, vehicles, road conditions, and environment.

Traffic accident reconstruction is an inverse process of direct
simulation because it reconstructs the pre-accident events given
the accident consequences. Several computer programs have been
developed for the reconstruction of vehicle accidents based on the
information of the accident scene. The commonly used accident

scene information include vehicle or human rest position, road
marks, damages and marks of vehicle or other road infrastruc-
tures, and human injuries [19]. The most typical accident recon-
struction software is PC-CRASH. As the software is combined with a
momentum-based collision model, the accidents can be recon-
structed from the point of reaction to the end position for all
involved cars simultaneously.

The major objective of accident reconstruction is to identify the
pre-impact velocity and trajectory at the moment of accident.
Elastic–plastic deformation of the vehicle and the injury of the
human body are the important information in the vehicle crash
accidents. The computer simulation models available for the acci-
dent reconstruction, however, seldom consider the deformation
and the injury. With the development of simulation technology,
the deformation can be fully analyzed based on the finite element
method or the multibody dynamics methods. The deformation
analysis plays a vital role in the reconstruction of vehicle crash
accidents. In this work, the MADYMO (mathematical dynamic
model) is employed to study the vehicle-pedestrian impact acci-
dent. MADYMO employs the multibody dynamics and injury bio-
mechanics for accident simulation. It is applicable to many kinds
of transportations, such as cars, motorcycles and bicycles [20]. It
uses numerical algorithms to predict the motion of systems with
bodies connected by kinematic joints. It is convenient to use the
database of human body models developed by TNO (Netherlands
Organization for Applied Science Research) and EEVC (Euro-
pean Experimental Vehicles Committee), including the Hybrid III
dummy and pedestrian models in this software.

As many uncertainties present in the process of direct simula-
tions [16,17,21], we also face uncertainties in inverse simulations.
The uncertainties may come from simulation parameters, such as
the random road conditions. They can also come from the model
structure uncertainties in the vehicle crash simulation models due
to simplifications, assumptions, ignorance, and lack of informa-
tion. For example, there are many sources of uncertainty in traffic
accident reconstruction as reported in Refs. [22,23]. The major
objective of this work is to develop a probabilistic inverse simula-
tion methodology and then use it to deal with the uncertainties in
the vehicle accident inverse simulation.

3 Inverse Simulation With Maximum Probability

Density

In this section, we present the proposed methodology for
inverse simulation under uncertainty. As discussed previously, the
task is to find the unknown input variables xunkn given the output
variables y and the joint probability density function of random
input variables xrand.

During the inverse simulation process, we need to solve the
direct simulation equations in Eq. (2), and the equations with the
input variables we defined in Sec. 1 are rewritten below

y1 ¼ g1ðxunkn; xrandÞ
y2 ¼ g2ðxunkn; xrandÞ
� � �
ym ¼ gmðxunkn; xrandÞ

8>><
>>: (5)

For a special case where the dimension of y is equal to that of
xunkn, the number of equations are equal to the number of
unknown variables. Then, there may be a unique solution to xrand

given a specific set of values of y. In this case, xunkn can be
obtained with a reliability approach [24]. In this work, we discuss
general problems where the number of unknowns is greater than
the number of simulation equations.

The distributions of random input variables xrand are usually
obtained from statistical data, engineering judgment, and prior
similar simulation applications. As discussed in Sec. 1, however,
for a specific event under simulation, the random input variables
xrand actually become deterministic, meaning that their values are

Fig. 1 A simulation model
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no longer random. Instead, their values are fixed but maybe
unknown. For example, in a vehicle accident simulation, the coef-
ficient of friction lf between the tires of the vehicle and ground
might be an input random variable. When we build the simulation
model for vehicle collision, we can treat lf as a random variable
because we know there is uncertainty associate with lf whose dis-
tribution may be known in advance. However, for a specific acci-
dent, a unique true value of lf exists even though we may not
know it unless we measure it. For a specific accident event, the
true value of lf is a realization of the random variable lf . For this
reason, the total number of unknowns in the inverse simulation is
the sum of the numbers of xunkn and xrand, or nunkn þ nrand. If the
number of output variables ny < nunkn þ nrand, we will have an
infinite number of solutions.

To solve this problem, we need to use the prior probabilistic in-
formation about the random input variables xrand, which can in
turn impose conditions in addition to the direct simulation equa-
tions. This may allow us to generate a unique solution. Suppose
the solution to the inverse simulation is x�, the strategy we pro-
pose is to produce the highest probability density for the random
input variables xrand at x�. In other words, we select a solution
among the infinite number of solutions so that the probability
density of xrand is maximum.

The new method has a number of advantages. First, it uses all
the information available. It does not simply treat xrand as unre-
lated unknowns; instead, the probabilistic information of xrand is
fully used, and the correlation of the elements in xrand is also con-
sidered through the joint probability density of xrand and the direct
simulation equations. Second, the maximum joint probability den-
sity is achieved, resulting in the highest confidence in the inverse
simulation result. Third, a unique solution may be obtained. As
will be discussed next, the last advantage of the new method is
that the inverse simulation and probabilistic analysis can be inte-
grated by an optimization framework, which results in an easy
numerical implementation.

Let the joint PDF of xrand be f ðxrandÞ. For a special case where
all the random variables in xrand are independent, f ðxrandÞ is given
by

f ðxrandÞ ¼
Ynrand

i¼1

fiðxrand;iÞ (6)

where fið�Þ is the PDF of xrand;i.
Our task now is to find the unknown variables

x ¼ ðxT
unkn; x

T
randÞ

T
that maximize f ðxrandÞ subject to the constraints

given by the direct simulation equations. We therefore establish
the following optimization model:

max
ðxunkn ;xrandÞ

f ðxrandÞ

subject to

y ¼ gðxunkn; xrandÞ

8>><
>>: (7)

This model guarantees that all the direct simulation equations
are satisfied while the joint probability density is maximized. The
optimization model can be solved numerically. During the itera-
tive numerical process, the direct simulation y ¼ gðxunkn; xrandÞ is
called repeatedly.

In many applications, the modeling errors of simulation models
y ¼ gðxunkn; xrandÞ are inevitable. The discrepancy between the
model predictions y and the reality that the model reflects is the
model error or model structure uncertainty. It is a difficult task to
estimate the model error, and quantifying the model error is an
on-going research topic. For instance, Chen et al. [25] proposed a
model validation approach via uncertainty propagation and data
transformation. In their method, the number of physical tests at
each design setting is reduced to one by shifting the evaluation
effort to probabilistic simulations. Liu et al. [26] investigated the
advantages and disadvantages of various model validation metrics

and then provided guidelines for choosing appropriate validation
metrics in engineering applications. To assess and improve the
predictive capability of computational models, Youn et al. [27]
developed a hierarchical framework for statistical model calibra-
tion. An optimization technique is integrated with the eigenvector
dimension reduction method in their approach, which maximizes
the likelihood function in determining the unknown model
variables. Many other efforts for quantifying model error under
uncertainties can be found in Refs. [25,26,28–33].

The proposed inverse simulation model can also accommodate
model structure uncertainty, which may be treated with a proba-
bilistic or nonprobabilistic method. Model structure uncertainty is
an on-going research topic, and no mature methodologies of
model structure uncertainty are available. In this work, we con-
sider model structure uncertainty in a nonprobabilistic way where
intervals are used to describe model structure uncertainty. Specifi-
cally, we express the model structure uncertainty as an interval;
the discrepancy between simulation result and the reality that is
simulated is assumed within the interval. In fact, many simulation
software vendors also provide simple bounds of the potential
simulation errors.

After accommodating the model structure error in an interval
format, we modify the above inverse simulation model as follows:

max
ðxunkn;xrandÞ

f ðxrandÞ

subject to

ð1� e1Þy1 � g1ðxunkn; xrandÞ � ð1þ e1Þy1

ð1� e2Þy2 � g2ðxunkn; xrandÞ � ð1þ e2Þy2

� � �
ð1� emÞym � gmðxunkn; xrandÞ � ð1þ emÞym

8>>>>>>>>>>><
>>>>>>>>>>>:

(8)

where ei is the relative error of simulation output yi. If the model
structure error is neglected, we set the model error e ¼ 0. The
above model is then reduced to the model in Eq. (7). It should be
noted that the solution to Eq. (8) may not be the true values for a
given accident. We have the highest confident, however, on the
solution because it produces the highest likelihood or probability
density from optimization.

Next we discuss an important special case where all the random
input variables are independently and normally distributed. This
special case is important because the non-Gaussian and dependent
random variables can be transformed into independently standard
normal variables [34–36].

Let the mean and standard deviation of xrand;i be li and ri,
respectively. The PDF of xrand;i is

fiðxrand;iÞ ¼
1

2ri
exp � 1

2

xrand;i � li

ri

� �2
" #

(9)

The joint PDF of xrand is then given by

f ðxrandÞ ¼
Ynrand

i¼1

1

2ri
exp � 1

2

xrand;i � li

ri

� �2
" #

(10)

We transform xrand;i into a standard normal variable ui by

xrand;i ¼ li þ riui (11)

or

xrand ¼ lþ ruT (12)

where l ¼ ðl1;…; lnrand
ÞT and r ¼ ðr1;…; rnrand

ÞT.
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The PDF of ui is

/ðuiÞ ¼
1

2
exp � 1

2
u2

i

� �
(13)

which yields the joint PDF of u as follows:

/ðuÞ ¼ 1

2
exp � 1

2

Xnrand

i¼1

u2
i

 !
(14)

Maximizing the joint PDF /ðuÞ ¼ 1
2

exp � 1
2

Pnrand

i¼1 u2
i

� �
is equiv-

alent to minimizing
Pnrand

i¼1 u2
i or to minimizing

Qnrand

i¼1
xrand;i�li

ri

� �2

.

Then, for this special case, the inverse simulation model becomes

min
ðxunkn;uÞ

Xnrand

i¼1

u2
i

subject to

ð1� e1Þy1 � g1ðxunkn; lþ ruTÞ � ð1þ e1Þy1

ð1� e2Þy2 � g2ðxunkn; lþ ruTÞ � ð1þ e2Þy2

� � �
ð1� emÞym � gmðxunkn;lþ ruTÞ � ð1þ emÞym

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(15)

Let the solution be u�, and the realizations of xrand are then

x�rand ¼ lþ rðu�ÞT (16)

For a general problem involving non-normally and dependently
distributed random variables, the transformation from xrand to u is
also possible. For example, we can use the Rosenblatt Transfor-
mation for this task [37]. After the transformation, the model in
Eq. (17) is still applicable for general inverse simulations.

With the involvement of optimization, the proposed inverse
simulation is more computationally intensive than the direct simu-
lation. The latter is repeatedly called during the optimization. The
number of direct simulations is equal to the number of constraint
function calls required by the inverse simulation optimization.

4 A Simple Example

Now we provide a simple example to illustrate how to imple-
ment the proposed methodology. Suppose the direct simulation
equations are

y1 ¼ g1ðxunkn; xrandÞ ¼ x
unkn
þ xrand;1 þ xrand;2

y2 ¼ g2ðxunkn; xrandÞ ¼ x
unkn
þ 2xrand;1 þ 3xrand;2

�
(17)

As indicated in Eq. (17), there are two output variables, one
unknown deterministic input variable, and two random input vari-
ables. We assume that the two random variables are independent.
The two output variables and distributions of the two random
input variables are given in Table 1.

For this simple problem, we do not consider the model structure
uncertainty. Using Eq. (15), we obtain the inverse simulation
model as

min
ðxunkn ;u1 ;u2Þ

u2
1 þ u2

2

subject to

g1ðxunkn;l1 þ r1u1;l2 þ r2u2Þ ¼ y1

g2ðxunkn;l1 þ r1u1;l2 þ r2u2Þ ¼ y2

8>>>>><
>>>>>:

(18)

Since the direct simulation equations or the constraint functions
in this example are linear, we can easily obtain an analytical solu-
tion without using any numerical procedure. The two constraint
functions are

x
unkn
þ ðl1 þ r1u1Þ þ ðl2 þ r2u2Þ ¼ y1

x
unkn
þ 2ðl1 þ r1u1Þ þ 3ðl2 þ r2u2Þ ¼ y2

(
(19)

Plugging the information in Table 1 into the two equations, we
obtain

x
unkn
þ 0:5ðu1 þ u2Þ ¼ �1

x
unkn
þ u1 þ 1:5u2 ¼ 0

(
(20)

Eliminating x
unkn

yields

u1 þ 2u2 ¼ 2 (21)

or

u1 ¼ 2� 2u2 (22)

Then, the inverse simulation model becomes

min u2
1 þ u2

2

� �
¼ min ð2� 2u2Þ2 þ u2

2

h i
(23)

Let W ¼ ð2� 2u2Þ2 þ u2
2, and from

dW

du2

¼ 2ð2� 2u2Þð�2Þ þ 2u2 ¼ 0 (24)

we have u�2 ¼ 0:8, which results in u�1 ¼ 2� 2u�2 ¼ 0:4 and
xunkn ¼ �1:6. Given the simulation output y1 ¼ 1 and y2 ¼ 5,
with the highest probability density, we obtain the unknown input
variable xunkn ¼ �1:6, as well as the realizations of the two ran-
dom input variables in the transformed space u�1 ¼ 0:4 and
u�2 ¼ 0:8. The latter two variables produce the highest probability
density on the condition that all the direct simulation equations
are satisfied. Figure 2 shows that the joint probability density of
u1 and u2 in the transformed space, as well as the two direct simu-
lation equations. The figure clearly indicates that at u�1 ¼ 0:4 and
u�2 ¼ 0:8 the joint probability density reaches its maximum.

The realizations of the random variables in the original space
are

x�rand;1 ¼ l1 þ r1u�1 ¼ 1þ 0:5u�1 ¼ 1:2 (25)

and

x�rand;2 ¼ l2 þ r2u�2 ¼ 1þ 0:5u�2 ¼ 1:4 (26)

Through this simple example, we demonstrated the key concept
of the proposed inverse simulation method and its implementa-
tion. No numerical algorithm was used to solve the optimization
problem. However, in real engineering applications, the direct
simulation equations are much more complicated. As will be
shown in the vehicle accident reconstruction example, a numerical
algorithm is necessary for solving the inverse simulation
optimization.

Table 1 Output variables and distributions of random input
variables

Variable y1 y2 xrand;1 xrand;2

Distribution Type Deterministic Deterministic Normal Normal
Mean 1 5 1 1
Standard Deviation 0 0 0.5 0.5
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5 Application in Vehicle Traffic Accident

Reconstruction

In this section, we apply the proposed inverse simulation
method in vehicle traffic accident reconstruction.

5.1 Problem Statement. The case was documented in the
accident database at the Traffic Police Brigade of Shanghai Mu-
nicipal Public Security Bureau. The case collected contains
detailed information regarding the vehicle, victim and environ-
ment involved in the accident.

The accident occurred on a street in Shanghai, China, in Sep-
tember 2009. A female pedestrian was struck by a car when she
was walking across the street. The pedestrian sustained commin-
uted fracture to both of her tibia and fibula.

According to the vehicle inspection and forensic reports, the
front of the car hit the pedestrian on her left side. The deformation
of the vehicle was found at the bumper and the windscreen, as
shown in Figs. 3 and 4, respectively. The first collision point was
identified with the tire marks on the road. The victim fell on the
road with the pedestrian’s head toward east and feet toward west.
The rest position of the pedestrian was estimated based on the
blood marks on the road.

5.2 Direct Crash Simulation. To reconstruct the car-to-pe-
destrian collision in an accurate and efficient way, we used multi-
body dynamics simulation. The vehicle is simplified as a
multirigid body composed of the bumper, front lights, autobody,

windscreen, and wheels. The body movement and rotation were
modeled as free hinges. The shape and mass of the vehicle model
was built with the information from the aforementioned official
documents.

A MADAYMO dummy model by TNO (Netherlands Organiza-
tion for Applied Science Research) was adopted as the pedestrian
model for simulation. The model was scaled and its mass distribu-
tion was adjusted so that the simulated pedestrian would be as re-
alistic as possible. Figure 5 shows the 3D simulation model of the
accident scene.

The simulation parameters are indicated in Fig. 6. The position
parameter of the pedestrian is d, which is the distance between the
pedestrian’s mass center and the vehicle midline. v is the pre-
impact velocity of the vehicle. According to the statement of the
driver, the pedestrian was noticed when she was very close to the
car. Due to the high speed, the driver applied the brake gently and
steered to the right side. He jammed the brake immediately after
the pedestrian was hit. The brake was not released until the car
stopped. The laboratory experiment revealed that the braking time
of the car was 0.99 s, meaning that it took 0.99 s for the brake to
be effective.

The known input variables include the mass of the car and that
of the pedestrian, and the movement direction of the car. The
unknown input variables are the pre-impact velocity of the car v.
The lateral distance between the pedestrian’s mass center and the
vehicle midline d is estimated according to the accident scene. To
account for the errors in the estimation, it is assumed to be a ran-
dom input variable. The coefficient of kinetic friction lk is also

Fig. 3 Bumper damage

Fig. 4 Windscreen damage

Fig. 5 3D simulation of the accident

Fig. 2 Joint PDF of u1 and u2
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treated as a random input variable. Then, we have xunkn ¼ v, and
xrand ¼ ðd;lkÞT . The outputs of the simulation include the rest
position coordinates of the pedestrian ðsx; syÞ, and therefore
y ¼ ðsx; syÞT . From the measurements at the accident scene, we
have y ¼ ðsx; syÞT ¼ ð9:59; 17:02ÞT m.

For the multibody simulation, two constraints should be met to
ensure that the results are reasonable for a real collision accident.
The first constraint is that the input variables are restricted in
specified ranges. The other constraint is the simulation results
should be consistent with those from field investigation. For
example, the rest point of the pedestrian, the injury of human, and
the deformation of the autobody. It only took only 3.2 s for the
collision accident to happen. Each simulation of the accident,
however, cost about 40–50 min. Figure 7 shows one example of
the simulated accident in the form of animation.

5.3 Construction of Surrogate Models. As discussed in the
Subsection 5.2, the direct simulation of the vehicle crash accident
is very time consuming. Directly using the crash simulation is
costly for the inverse simulation of the accident reconstruction.
To this end, building surrogate models for the direct simulate
equations is necessary. A surrogate model is an approximation to
the original simulation model. If a surrogate model is carefully
constructed, good accuracy can be maintained with much higher
efficiency. Surrogate models are intensively used in engineering
applications. Since surrogate models are explicit and computa-
tionally cheaper, they make inverse simulation under uncertainty
much more efficient.

The surrogate models of sx and sy (output) are functions of
input variables, including the vehicle speed v, the distance d,
and the coefficient of kinetic friction lk. With our experience in
vehicle accident simulation, we bounded the speed v on the
interval of [40, 100] km/h and treated d and lk as normally dis-
tributed random variables. The input variables are summarized
in Table 2.

As d and lk are presented as random variables and v is bounded
in an interval, we used the polynomial chaos expansion (PCE)
[38,39] method to construct the surrogate models. In the PCE
method, we expanded v using the Legendre polynomial bases and
d and lk using the Hermit polynomial bases. The surrogate mod-
els were constructed by the following procedures:

• Generate samples for v, d, and lk using the Hammersley sam-
pling [40] method.

• Perform vehicle accident simulations at the sampling points
of v, d, and lk and obtain sx and sy.

• Compute the coefficients of the surrogate models using the
point collocation method.

• Construct the surrogate models with coefficient obtained.

Table 3 presents the samples and simulation results for the traf-
fic accident reconstruction problem.

The constructed surrogate models for sx and sy are given by

sx ¼ g1ðv; d; lkÞ ¼
X19

k¼0

vx
kCkðnÞ

¼
X3

i¼0

X3�i

j¼0

X3�i�j

k¼0

vx
ði;j;kÞLiðn1ÞHjðn2ÞHkðn3Þ (27)

sy ¼ g2ðv; d; lkÞ ¼
X19

k¼0

vy
kCkðnÞ

¼
X3

i¼0

X3�i

j¼0

X3�i�j

k¼0

vy
ði;j;kÞLiðn1ÞHjðn2ÞHkðn3Þ (28)

n1 ¼
d � ld

rd
; n2 ¼

lk � ll

rl
(29)

and

n3 ¼
2v� vL � vU

vU � vL
(30)

where

Hið�Þ, where i ¼ 0; 1; 2; 3, is the ith order Hermit polynomial
basis

Lið�Þ, where i ¼ 0; 1; 2; 3, is the ith order Legendre polynomial
basis

vL ¼ 40 km/h and vU ¼ 100 km/h are the lower and upper
bounds of the vehicle speed, respectively

Fig. 7 Vehicle accident simulation

Fig. 6 Simulation parameters
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The coefficients of the surrogate models are given as follows:

vx
ð0;0;0Þ ¼ 10:597; vx

ð0;0;1Þ ¼ �5:699; vx
ð0;0;2Þ ¼ �1:686; vx

ð0;0;3Þ ¼ �1:089; vx
ð0;1;0Þ ¼ �6:870;

vx
ð0;1;1Þ ¼ �2:903; vx

ð0;1;2Þ ¼ �2:465; vx
ð0;2;0Þ ¼ �3:070; vx

ð0;2;1Þ ¼ 1:069; vx
ð0;3;0Þ ¼ �1:969;

vx
ð1;0;0Þ ¼ �12:483; vx

ð1;0;1Þ ¼ 6:029; vx
ð1;0;2Þ ¼ 2:681; vx

ð1;1;0Þ ¼ �0:584; vx
ð1;1;1Þ ¼ 3:805;

vx
ð1;2;0Þ ¼ 3:371; vx

ð2;0;0Þ ¼ 0:402; vx
ð2;0;1Þ ¼ �3:365; vx

ð2;1;0Þ ¼ �1:726; vx
ð3;0;0Þ ¼ 0:130

(31)

and

vy
ð0;0;0Þ ¼ 12:201; vy

ð0;0;1Þ ¼ �0:068; vy
ð0;0;2Þ ¼ 0:357; vy

ð0;0;3Þ ¼ �0:447; vy
ð0;1;0Þ ¼ 2:614;

vy
ð0;1;1Þ ¼ 0:210; vy

ð0;1;2Þ ¼ 2:270; vy
ð0;2;0Þ ¼ 0:075; vy

ð0;2;1Þ ¼ �0:378; vy
ð0;3;0Þ ¼ 0:077;

vy
ð1;0;0Þ ¼ �2:861; vy

ð1;0;1Þ ¼ 1:221; vy
ð1;0;2Þ ¼ 0:511; vy

ð1;1;0Þ ¼ �3:350; vy
ð1;1;1Þ ¼ 3:499;

vy
ð1;2;0Þ ¼ �4:077; vy

ð2;0;0Þ ¼ �1:491; vy
ð2;0;1Þ ¼ 1:153; vy

ð2;1;0Þ ¼ �0:177; vy
ð3;0;0Þ ¼ 0:598

(32)

5.4 Inverse Simulation. Applying the proposed inverse sim-
ulation model in Eq. (15), we obtained the following model for
the traffic accident reconstruction:

Min
v;u1 ;u2

X2

i¼1

u2
i

Subject to

n1 ¼ u1;n2 ¼ u2

n3 ¼
2v� vL� vU

vU � vL

s�xð1� exÞ �
X3

i¼0

X3�i

j¼0

X3�i�j

k¼0

vx
ði;j;kÞLiðn1ÞHjðn2ÞHkðn3Þ � s�xð1þ exÞ

s�yð1� eyÞ �
X3

i¼0

X3�i

j¼0

X3�i�j

k¼0

vy
ði;j;kÞLiðn1ÞHjðn2ÞHkðn3Þ � s�yð1þ eyÞ

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(33)

where u1 and u2 are realizations of standard normal variables
associated with the random input variables d and lk, and ex and ex

represent the relative model errors. With our experience in vehicle
accident simulation, as well as the error of the surrogate models,
we set ex ¼ ey ¼ 5% ¼ 0:05. The direct simulation output varia-
bles were measured from the accident scene, and they were
y ¼ ðsx; syÞT ¼ ð9:59; 17:02ÞT m.

Solving Eq. (33), we obtained the results v� ¼ 68:98 km/h,
d� ¼ 0:59 m, and l�k ¼ 0:8054 with the highest probability den-
sity. The predicted vehicle velocity right before collision was
therefore 68.98 km/h. This prediction is close to the observed ve-
locity from the video record. The observed velocity was estimated
over an interval of [67, 69] km/h. The result indicates the feasibil-
ity of the proposed method in identifying unknown variables in
inverse simulation under uncertainty.

After obtaining the results, v�, d�, and l�, we conducted further
investigations. Inputting v�, d�, and l� into the direct accident
simulation model, we gained better understanding about the

relationship between the injury of the pedestrian and the deforma-
tion of the vehicle body as shown in Fig. 8.

The data of the pedestrian’s injury can be obtained by the nu-
merical method. The acceleration curve of the pedestrian’s head is
plotted in Fig. 9. It indicates that the head has been struck at least

Table 3 Samples and simulation results

d (m) v(km/h) lk (sx, sy) (m)

1 0.3900 100.000 0.6569 (43.80, 7.68)
2 0.2651 98.000 0.7431 (27.96, 10.96)
3 0.5049 96.000 0.5779 (37.46, 15.31)
4 0.1599 94.000 0.6860 (21.85, 11.32)
5 0.4637 92.000 0.7765 (15.56, 12.46)
6 0.3363 90.000 0.6235 (25.39, 9.13)
7 0.6601 88.000 0.7140 (15.50, 19.47)
8 0.1132 86.000 0.8221 (19.91, 10.99)
9 0.4315 84.000 0.5214 (33.42, 16.29)
10 0.3022 82.000 0.6669 (23.29, 11.54)
11 0.5274 80.000 0.7535 (13.03, 12.99)
12 0.2226 78.000 0.5956 (17.51, 10.95)
13 0.4878 76.000 0.6954 (21.63, 14.68)
14 0.4185 74.000 0.7986 (13.65, 12.94)
15 0.7168 72.000 0.6354 (5.75, 15.96)
16 0.0275 70.000 0.7234 (16.17, 11.17)
17 0.4257 68.000 0.8446 (7.90, 14.63)
18 0.2842 66.000 0.5554 (11.00, 9.97)
19 0.5553 64.000 0.6766 (10.92, 11.90)
20 0.1980 62.000 0.7646 (8.05, 11.55)
21 0.4905 60.000 0.6104 (7.74, 11.55)
22 0.4026 58.000 0.7046 (9.24, 11.89)
23 0.6636 56.000 0.8044 (�3.18, 14.59)
24 0.1364 54.000 0.6465 (3.22, 11.46)
25 0.4874 52.000 0.7331 (1.25, 12.68)
26 0.3195 50.000 0.8786 (0.45, 11.67)
27 0.6020 48.000 0.4754 (�1.81, 15.07)
28 0.2847 46.000 0.6603 (2.24, 10.49)
29 0.5158 44.000 0.7465 (0.10, 11.34)
30 0.3843 42.000 0.5842 (2.94, 9.96)

Table 2 Parameters and variables of the traffic accident reconstruction problem

Variable Sx (m) Sy (m) v (km/h) d (m) lk

Distribution Type Deterministic Deterministic Deterministic Normal Normal
Mean 9.59 17.02 [40, 100] 0.4 0.7
Standard Deviation 0 0 0 0.2 0.1
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Fig. 8 Pedestrian’s injury and deformation of vehicle body

Fig. 10 Lateral Torque of the pedestrian’s lower limbs

Fig. 9 Acceleration of the pedestrian’s head
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4 times, the first two strikes being the most severe. The head hit
the windscreen and then the ground at two specific moments. In
addition to the two fatal injuries on the head, we also investigated
the other two injuries, which were not severe. Simulation results
suggested that the tibia and fibula fractures were caused by the
strike at the very beginning when the pedestrian was hit by the
bumper. The lateral torque curve of the pedestrian’s lower limbs
is plotted in Fig. 10. This is also compatible with the forensic
examination.

6 Conclusions

Uncertainties exist in both parameters and model structures in
almost all the inverse simulations. Considering uncertainties in
inverse simulation will increase the confidence of the inverse sim-
ulation results. This work employs the maximum probability den-
sity function to predict unknown model input variables, as well as
the realizations of random input variables whose prior joint proba-
bility density functions are known, given that the simulation out-
put variables are observed. The proposed probabilistic inverse
simulation method is implemented by an optimization process
where the joint probability density of the random input variables
is maximized while the constraints of the direct simulation equa-
tions are maintained. The application of the proposed method in a
vehicle accident reconstruction indicates the effectiveness of the
method.

Using optimization to maximize the probability density, the
proposed method can produce a unique solution to an inverse sim-
ulation problem. The solution may not contain the true values for
a given vehicle accident, and there might be multiple solutions
that realize the given vehicle accident (or a given set of simulation
output variables). But we have the highest confidence on the solu-
tion from the proposed method because it produces the highest
probability density. To obtain multiple solutions, we may resort to
an alternative method that uses conditional probabilities. For
example, for the coefficient of friction in the application of this
work, we could identify its probability density on conditional of
the observed accident consequences, and we could also obtain its
conditional mean, variance, and other characteristics. This way
we will be able to obtain a family of solutions to a given set of
simulation results. Our future work will test this alternative
method and compare it with the present method.
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