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ABSTRACT 
Hydrokinetic energy is one of the renewable energies that gain 

much global attention recent years. Hydrokinetic turbine is used 

to extract energy from the flowing river water. Reliability is a 

critical issue that needs to be addressed during the development 

process of hydrokinetic turbine systems. In this work, a new 

reliability analysis method is proposed for the hydrokinetic 

turbine blades under random river velocity field. A river 

velocity field is established first. The critical working position 

of turbine blades is then identified by using the blade element 

momentum (BEM) theory. The river velocity is modeled as a 

random field with variations and correlations both in spatial and 

temporal domains. The time-dependent characteristics of river 

flow loading are captured by time series models. The effect of 

time-dependent river velocity field on the reliability of turbine 

blades is investigated. The proposed method is compared with 

the Monte Carlo Simulation (MCS) in the case study. The 

results demonstrate that the developed method can predict the 

time-dependent reliability of turbine blades efficiently and 

accurately.  

1. INTRODUCTION 
With the world’s increasing demand in carbon-free energy, 

renewable energy resources are gaining special attentions 

recent years [1-4]. The commonly used renewable energy 

sources include sunlight, wind, rain, tides, waves, geothermal 

heat, and so on. Amongst these renewable energies, 

hydrokinetic energy extracted from flowing water is one of the 

most sustainable ones. The hydrokinetic energy is different 

from the hydro power energy captured by conventional 

hydraulics turbines [5-9]. Hydrokinetic turbines used to extract 

hydrokinetic energy are zero-headed. They have similar 

working principles as wind turbines, which convert the 

hydrokinetic power into mechanical power in the form of 

rotating blades. Unlike hydraulics turbines, the hydrokinetic 

turbine is portable and has low initial construction cost. 

Hydrokinetic turbines can be classified into two categories 

according to their system configurations. They are the vertical 

axis turbines and the horizontal axis turbines as shown in Fig. 

1. During the developing process of horizontal axis 

hydrokinetic turbines, reliability is a critical issue that needs to 

be addressed because it is directly related to the system lifetime 

cost and the commercialization of the system. Since the 

hydrokinetic turbine blade is the most vital element of the 

turbine system, its safety is always a special focus. 

  

(a). Vertical axis (b). Horizontal axis 

Fig. 1. Two configurations of hydrokinetic turbine system 

In the past decades, many reliability analysis methods have 

been developed for wind and hydrokinetic turbine blades. For 

instance, several reliability analysis methods have been 

developed for the wind turbine blades by Ronold [10], Agarwal 

[11], and Manuel [12, 13]. Even though the wind turbine and 

the hydrokinetic turbine share similar working principles, the 

reliability analysis methods for wind turbine blades cannot be 

applied to the hydrokinetic turbine blades directly as the 

working environments are different. To overcome this, Hu and 

Du [14] proposed a time-dependent reliability analysis method 

for hydrokinetic turbine blades by considering the time-

dependent characteristics of river climate. Val and Chernin [15] 

developed a reliability analysis method to account for the 

uncertainties in the blade resistance and water speed. A 

simulation based reliability analysis method is then developed 

in [16] to investigate the uncertainties in the composite material 

of the turbine blade. Delorm and Zappala, et. al. [17] compared 

the reliability of different hydrokinetic turbine systems and 

shown that the hydrokinetic turbine devices have a much lower 

reliability than wind turbines of comparable size. The above 

reviewed reliability analysis methods are capable to 

approximate the reliability of wind or hydrokinetic turbine 

systems from different aspects under certain assumptions. 

These methods, however, have some drawbacks. One of the 

main drawbacks is that the wind or river velocity is usually 

modeled as a random variable and that the uncertainties in the 

spatial and temporal domains are not considered.  

In practical, it is more reasonable to express the river 

velocity as a random field rather than a random variable. A 

random field is able to consider the dependency as well as 

variation of a variable over time and space simultaneously. 

Recently, some researchers begin to pay their attentions to the 

modeling of wind climate as a random field. For example, 
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Manuel, et. al [18, 19] performed stochastic simulations for the 

wind field by modeling the inflow turbulence as a random field. 

Choi et.al. [20] used a random field model to describe the time-

varying fluctuating wind speed. Law and Bu [21] employed an 

ergodic multivariate stochastic process to simulate the 

fluctuating wind velocity. In this work, the river velocity, which 

governs the response of turbine blades, is also modeled as a 

random field.  

When both uncertainties and correlations in space and time 

domains are considered, current reliability analysis methods are 

inapplicable anymore. Most of current methods account for the 

uncertainties and correlations either in the time domain or in 

the space domain. For instance, time-dependent reliability 

analysis methods have been investigated intensively by using 

the extreme response method [22-24], the sampling method 

[25-27], and the upcrossing rate method [14, 28-30]. These 

methods consider the correlations in the time domain rather 

than in the space domain. The reliability analysis methods 

developed by Xi [31] and Missoum [32, 33] concentrated on 

the correlations of random field in spatial region while the 

dependencies at time instants were ignored. In this work, a 

recently developed sampling reliability analysis method is 

integrated with the proper orthogonal decomposition (POD) 

method to approximate the reliability of hydrokinetic turbine 

blades under time-dependent random river velocity field.  

The reminder of this work is given as follows. In Section 2, 

the model of river velocity field is discussed. Following that, 

the critical working position of the turbine blade is identified in 

Section 3. Section 4 gives the random field model for the river 

velocity at the critical working position. The reliability analysis 

method for the turbine blade under random velocity field is 

presented in Section 5. A study example is given in Section 6 

and conclusions are made in Section 7.  

2. RIVER VELOCITY FIELD MODEL 
The river velocity field model is vital for the performance 

analysis of hydrokinetic turbine system as it governs the 

response of the system. Define the river velocity field in the 

rotating plane of hydrokinetic turbine blades as ( , )v x y . By 

making reference to the wind field model [34], we can present 

( , )v x y  as:  

( , ) ( , ) ( , )
s t

v x y v x y v x y  (1) 

where ( , )
s
v x y  is vertical river shear velocity and ( , )

t
v x y  is 

the tower shadow.   

Eq. (1) can be modeled by the following three river 

phenomena.  

a) River velocity at the hub 

For the modeling of river velocity field, the turbine hub is 

usually used as the origin of the coordinate system. At the hub, 

we have 0x y . Let the river velocity at the hub be 
h
v , 

( , )
s
v x y  and ( , )

t
v x y  can then be presented as functions of 

h
v , 

x, and y.   

b) Vertical river shear ( , )
s
v x y  

The river velocity profile of the river cross section is very 

complicated. It is related to many factors of the river 

environment, such as the roughness and slope of the river bed, 

the shape of river bank, and so on [35]. Since for wide rivers 

the depth is very small when compared with its wide, the 

velocity profile of the rotation plane can be assumed to be 

uniform in the horizontal direction. We therefore only consider 

the shear velocity of the vertical profile. As indicated in Fig. 2, 

let the distance from the hub center of hydrokinetic turbine to 

the river bed be H, the shear velocity at H+y is then given by 

( , )

a

s h

H y
v x y v

H
  (2) 

where a  is the empirical river shear exponent.  

 
Fig. 2. Illustration of the shear river velocity  

c) Tower shadow 

The effect of hydrokinetic turbine support shaft on the river 

velocity distribution is called the tower shodow. Similar to the 

wind field problem, herein, the tower shadow model developed 

by Dolan and Lehn [36] is employed. For a hydrokinetic 

turbine configuration given in Fig. 3, the tower shadow is given 

by 
2 2 2

2 2 2
( , )

2 ( )t h

D x d
v x y v

x d
  (3) 

2

2

( 1)
1

8

a a R

H
  (4) 

where D , x , and d  are dimensional parameters given in Fig. 

3.   

For a given radius r, x= cos( )r , and Eq. (3) is then 

transformed as follows: 
2 2 2 2

2 2 2 2

cos ( )
( , )

2 ( cos ( ) )t h

r dD
v x y v

r d
  (5) 

Converting the coordinate y into r and  and plugging 

Eqs. (2) and (5) into Eq. (1), we have 

h
v  

H 
H

+y 

River bed 

Hydrokinetic 

turbine 

( , )
s
v x y  
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                    22 2 2 2

2 2 2 2 2

sin( )
( , ) ( )

( 1) cos ( )
1

28 ( cos ( ) )

a

h

h

H r
v r v

H
a a R r dD

v
H r d

  (6) 

 
Fig. 3. Illustration of dimensions of hydrokinetic turbine 

Considering that the effect of the tower shadow on the 

velocity distribution below the horizontal line is minor, we have 

( , ) 0
t
v x y  for 180 360 . Eq. (6) is then written as 

2

2

2 2 2
2

2 2 2 2

sin( ) ( 1)
( ) 1

8

cos ( )
( , ) ( ) , 0 180

2 ( cos ( ) )
sin( )

( ) , otherwise

a

h h

o o

a

h

H r a a R
v v

H H

r dD
v r

r d
H r

v
H

  (7) 

Fig. 4 shows a simulated example of the river velocity field 

over the rotational plane of hydrokinetic turbine.  
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Fig. 4. River flow velocity field over the rotation plane of 

hydrokinetic turbine 

It should be noted that the river field model is established 

according to the wind field model. It might be replaced with 

more accurate models in the future. The reliability analysis 

method presented in this work can be still used. In the 

subsequent section, we will discuss how the velocity field is 

used to identify the critial working position of hydrokinetic 

turbine.  

 

3. IDENTIFICATION OF CRITICAL WORKING 
POSITION 

3.1. Local loads analysis 

The local loads of hydrokinetic turbine blades depend on 

the local river velocity, geometry of hydrokinetic turbine 

blades, and many other factors. To accurately analyze the local 

loads at different stations of the turbine blade, the three 

dimensional computational fulid dynamics (CFD) simulations 

should be performed [37]. The CFD simulation, however, is 

very compuationally expensive. In liue of using CFD, the blade 

element momentum (BEM) theory proposed by Glauert in 1935 

has been widely used by many engineers and researchers. Even 

though the accuracy of BEM is not as good as that of CFD, the 

efficiency of BEM is much better. In this work, the BEM theory 

is employed to approximate the local hydrodynamic loads on 

the turbine blade.  

For a turbine blade at the position of angle  as shown in 

Fig. 5, the edgewise force 
T
p  and the  flapwise force 

N
p  on the 

station r of the turbine blade can be approximated using BEM. 

To compute 
T
p  and 

N
p  for station r at angle , the flow 

dynamic loads on the hydrofoil are analyzed first. As shown in 

Fig. 6, the relative velocity ( , )
rel
v r  acting on the hydrofoil is 

given by  

2 ' 2( , ) [ ( , )(1 )] [ (1 )]
rel
v r v r r   (8) 

where  is the angular velocity of the turbine blade,  and '  

are axial induction factor and tangential induction factor, 

respectively. The axial and tangential induction factors can be 

obtained by following an iteration algorithm given in [37]. To 

consider the effect of hub and make BEM more accurate, 

Prandtl and Glauert  made corrections to  and '  [38]. Since 

BEM is not the concentration of this work, we do not discuss 

details. More about BEM can be found in [37].   

Based on the force analysis given in Figs. 5 and 6, 
T
p  and 

N
p  can be computed by [37] 

1 1
( , ) ( , )cos( ) ( , )sin( )
N
p r L r D r   (9) 

1 1
( , ) ( , )sin( ) ( , )cos( )
T
p r L r D r   (10) 

in which 
1
( , )L r  and 

1
( , )D r  are local lift and drag forces on 

station r of the turbine blade and are given by 

2

1

1
( , ) ( , ) ( )

2 rel l
L r v r c r C   (11) 

R 

x 

D 

d 
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2

1

1
( , ) ( , ) ( )

2 rel d
D r v r c r C   (12) 

and 

'

( , )(1 )
tan

(1 )

v r

r
  (13) 

where ( )c r  is the chord length at station r of the turbine blade, 

 is the density of water, and 
l
C  and 

d
C   are the lift and drag 

coefficients of the hydrofoil, respectively. The lift and drag 

coefficients of the hydrofoil can be computed based on the 

angle of attack , which is given by 

  (14) 

in which  is the local pitch. 

 

Fig. 5. Forces on a hydrokinetic turbine blade 

 

Fig. 6. Local loads on the turbine blade 

With expressions about the local loads on the turbine blade, 

we then discuss how the loads are applied to compute the 

moments of the turbine blade. 

3.2. Moments analysis 

According to the forces analysis in the last section, there 

are three kinds of moments on the turbine blade. They are the 

edgewise moment 
1
M  generated from the edgewise force 

T
p , 

the moment comes from the gravity force G , and the flapwise 

bending moment 
2
M  due to the flapwise force 

N
p . To 

approximate the these moments, the turbine blade is divided 

into 
r
n  stations along the radial direction with the radius at 

station i be 
( )

, 1, 2, ,root
i root r

r

i R r
r r i n

n
, where 

root
r  

stands for the root of the turbine blade.  

 Based on the discretion and the assumption of linear 

variation between two stations, the edgewise and flapwise 

moments are computed as below [37]:  

   
3 3 2 3

, , 1 , 1

1 1
( ) ( ),

3 2
1, 2 and 1, 2, , 1

j i j i i i j i i i

r

M A r r B r r

j i n
  (15) 

where  

1

1,

1

( , ) ( , )
T i T i

i

i i

p r p r
A

r r
  (16) 

1 1

1,

1

( , ) ( , )
T i i T i i

i

i i

p r r p r r
B

r r
  (17) 

1

2,

1

( , ) ( , )
N i N i

i

i i

p r p r
A

r r
  (18) 

and 

1 1

2,

1

( , ) ( , )
N i i N i i

i

i i

p r r p r r
B

r r
  (19) 

Once the moments at different stations are available, 
1
M  

and 
2
M  are computed by 

1

,
1

, 1, 2
rn

j j i
i

M M j   (20) 

The total moment on the turbine blade is then given by  

2 2

1 2
( ) ( cos( ))

total c
M M Gr M   (21) 

where 
c
r  is the centroid of the turbine blade.   

It can be seen from Eq. (21) that the total moment of the 

turbine blade is a function of the position angle . There exists 

a critical working position such that the total moment on the 

turbine blade is maximal. At the critical position, it is possible 

that the turbine blade has the highest probability of failure.  

3.3. Identification of critical working position 

With the total moment given in Eq. (21), the critical 

working position of the turbine blade is identified by solving 

the following optimization model: 

2 2

1 2

max ( )

Subject to:

( ) ( cos( ))

0 2

total

total c

M

M M Gr M
  (22) 

Let the solution from Eq. (22) be * , the velocity profile 

on the turbine blade at the critical working postion can then be 

computed by 

x 

z 


 

G 

N
p

 

T
p

 

y 
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*
*

22 2 2 * 2

2 2 2 * 2 2

sin( )
( , )

( 1) cos ( )
1

28 ( cos ( ) )

a

h

h

H r
v r v

H

a a R r dD
v

H r d

  (23) 

Plugging the discretized radii 

( )
, 1, 2, ,root

i root r

r

i R r
r r i n

n
 into Eq. (23) and 

combining Eq. (23) and Eqs. (9), (10), and (15), we have the 

moments at different stations of the critical working position. 

4. CONSTRUCTION OF RANDOM RIVER FLOW 
FIELD AT THE CRITICAL POSITION  

The above analyses are in the deterministic form, in which the 

fluctuations of river velocity over time and space have not been 

considered. By introducing the turbulence part to the river 

velocity model, the river velocity profile on the turbine blade at 

the critial position becomes 
*( , ) ( , ) ( , )

c
v r t v r v r t   (24) 

in which *( , )v r  is the mean value of the velocity profile 

obtained from Eq. (23) and ( , )v r t  is a random field used to 

represent the fluctuation of the river velocity.  

As ( , )v r t  is a random field, ( , )
c
v r t  is also a random 

field. In the past decades, many researchers have made their 

contributions to the modeling of random field. Amongst the 

developed methods, the most commonly used method include 

the polynomial chaos expansion method [16, 39], the shape 

function method [40], the optimal linear estimation method 

[41], the Karhunen-Loève expansion [42-45], the midpoint 

method [46], and the expansion optimal linear estimation 

method [41]. A detailed analysis and comparison about these 

modeling methods for the random field can be found in [47]. 

The above mentioned methods assume that the information of a 

random field, such as its mean, standard deviation, and 

covariance functions are known. In practical, the information is 

usually unavailable. The proper orthogonal decomposition 

(POD) method has been recently introduced to the modeling of 

random field based on experimental data by Koizumi [55], 

Kopp [58], Missoum [32, 33], Manuel [48, 49], and Youn [31]. 

The POD method finds the most appropriate sequence of 

orthogonal functions to approximate the random field collected 

from data in time sequence.  

With the POD method, the random filed ( , )
c
v r t  is 

approximated as 

*

1

( , ) ( , ) ( ) ( )
fn

c j j
j

v r t v r q t r   (25) 

in which 
f
n  is the number of important features used to 

approximate the random field, ( )
j
r  is the j-th important 

feature of the random field, and ( )
j
q t  is the coefficient of j-th 

important feature.  

The correlation of the random field over the space domain 

is captured by the important features ( )
j
r  and the correlation 

in time domain is indicated by the time-dependent coefficients 

( )
j
q t . The randomness of the random field is also presented in 

( )
j
q t . To represent the randomness and correlation in time 

domain, ( )
j
q t  are usually given in time series models as below 

1 1 2 2
( ) ( ( ) ) ( ( ) )

( ( ) )
j j j

j

j i q j i q j i q

p j i p q j

q t q t q t

q t
  (26) 

where 
jq
 is the mean value of ( )

j
q t , ,

i
 where 

1, 2, ,i p , is the coefficients of time series model, p  is 

the order of the time series, and 
j
 is a Gaussian white noise 

used to represent the randomness of the model.  

Based on the model of time series given in Eq. (26), the 

mean, standard deviation, auto-correlation, and partial 

correlation functions of the time series models can be computed 

using the Yule-Walker method, the Burg method, or the 

covariance method [50]. Fig. 7 shows a simulated random river 

velocity field on the turbine blade.   

 

Fig. 7. Example of the random river velocity field on the 

turbine blade 

 

The figure indicates that the random field model is able to 

represent the randomness and correlation in time and space 

domains simultaneously. As the random field model given in 

Eq. (25) has considered the correlations in both time and space 

domains, the velocity profile is different at different time 

instants. We call this kind of random field as the time-

dependent random field.  

5. RELIABILITY ANALYSIS UNDER TIME-
DEPENDENT RANDOM FIELD  

In this section, we first analyze the uncertainties existed in the 

working environment of turbine blade. We then give the limit-
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state function of the turbine blade. Based on the uncertainty 

analysis and limit-state function, the reliability analysis method 

is developed.  

5.1. Uncertainty analysis  

There are mainly two kinds of uncertainties that may affect 

the performance of the turbine blade. They are the random 

velocity field as discussed in Section 4 and the uncertainties 

presented in the material properties.  

The difference between these two kinds of uncertainties is 

the random velocity field changes with time while the 

uncertaintis of material properties do not vary with time. 

Herein, the time-invariant uncertainties are presented as 

1 2
[ , , , ]

itn
X X XX , where 

it
n  indicates the number of 

time-invariant uncertainties or random variables. Assume that 

the random velocity field is approximated using the first 
f
n  

important features, there are totally 
it f
n n  uncertain sources 

involved in the turbine blade working environment.  

5.2. Limit-state function 

A failure of the turbine blade is defined as the event that 

the maximum stress on the turbine blade is larger than the 

strength of the material. Let the maximum stress on the turbine 

blade be 
max
( ( , ), )
c

S v r t X  and the strength of the material be 

1
X , the limit-state function of the turbine blade is then given 

by 

max 1
( ( , ), ) ( ( , ), )
c c

g v r t S v r t XX X   (27) 

The safety state of the turbine blade is then defined as 

safe, if ( ( , ), ) 0
state

fail, otherwise
c

g v r t X
  (28) 

The maximum stress 
max
S  given in Eq. (27) can be 

computed either in analytical way or in the simulation way, 

such as Finite Element Analysis (FEA) method.  In this work, 

the FEA method was employed.  

5.3. Reliability analysis for turbine blade under time-
dependent random velocity field 

Since the random velocity field ( , )
c
v r t  varies with time, 

the reliability of the turbine blade is also time-variant. For the 

time-dependent reliability of the turbine blade, the reliability 

will decrease with the increase of the time interval. The time-

dependent probability of failure of the turbine blade is defined 

as the probability that the turbine blade goes into the failure 

region over a spefic time interval.  

Let the time-dependent probability of failure be 
0
( , )
f s
p t t , 

which is given by  

0 0
( , ) Pr{ ( ( , ), ) 0, [ , ]}
f s c s
p t t g v r t tX   (29) 

where 
0
t  and 

s
t  are the initial and end time instants of the time 

interval.   

For approximating the time-dependent probability of 

failure, many approaches have been proposed in the past 

decades [14, 22-30]. A detailed review about these method is 

available in [51]. Even if the available methods are able to 

approximate the time-dependent probability of failure under 

different kinds of situations, they still have some limitations. In 

this paper, we extend a recently developed sampling approach 

to the reliability analysis under time-dependent random velocity 

field [51]. 

Assume that the time-dependent coefficients ( )
j
q t  of 

random field ( , )
c
v r t  are modeled as stationary time series 

models, to apply the sampling approach, we first transform 

1 2
( ) [ ( ), ( ), , ( )]

fn
t q t q t q tq  and X  into ( )t

q
U  and 

X
U  at 

any time instant t over time interval 
0
[ , ]

s
t t , where ( )t

q
U  and 

X
U  are corresponding standard Gaussian random variables. 

After the transformation, Eq. (31) becomes: 

0 0
( , ) Pr{ ( ( ( )), ( )) 0, [ , ]}
f s s
p t t g T t T t t

q X
U U   (30) 

where  ()T  stands for transforming operator.  

With the transformed limit-state function, at a given time 

instant t, the most probable point (MPP) is then identified by 

solving the following optimization model: 

min ( ) ( )

( ) [ ( ), ]

( ( ( )), ( )) 0

t t

t t

g T t T
q X

q X

u

u u u

u u

  (31) 

Once the MPP *( )tu  is available, the time-dependent 

probability of failure given in Eq. (30) is equivalent to the 

following probability: 

0 0
( , ) Pr{ ( ) ( ) ( ( ), [ ]}) ,T

f s s
p t t L t tU   (32) 

where  
*

*

( )
( )

( )

t
t

t

u

u
  (33) 

and 
*( ) ( )t tu   (34) 

in which  stands for the determinant.  

For approximating the probability given in Eq. (32), ( )L t  

is then expanded using the Orthogonal Series Expansion (OSE) 

method as [51] 

0 0

( ) ( ( ))
M M

i

i i j j
i j

L t P h t   (35) 

where M  is the expansion order, ( )
j
h t  is the j-th order 

Legendre polynomials [52], 
i
 are identical independent 
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standard Gaussan random varaibles, 
i
 and i

j
P  are the i-th 

eigenvalue and the j-th element of i-th column of the 

eigenvector associated with the following covariance matrix: 

11 12 1

21 22 2

1 2

M

M

M M

M M MM

C C C

C C C

C C C

  (36) 

in which  

0 0

'( , ) ( ) ( )
s st t

ij LL i jt t
C t t h t h t dtdt   (37) 

Typically there is no explicit solution available for the 

double integral given in Eq. (37). To solve this integral 

equation, numerical integration method should be employed. 

For example, the Gaussian-Legendre Quadrature method, 

which transforms the integral into summation of functions at 

Gaussian points, can be used.   

The ( , )
LL
t t  given in Eq. (37) stands for the correlation 

coefficient of ( )L t  at two time instants t  and 't . It is given by 

( , ) ( , ) ( )T

LL
t t t t t tC    (38) 

where   

'

1

'

1 0 0 0

0 0 0 0

0 1 0
( , )

0 0 ( , ) 0 0

0 0 0

0 0 0 ( , )
fn

t t
t t

t t

C   (39) 

in which '( , )
i
t t  is the auto-correlation function of i-th time 

series model ( )
i
q t .  

With the Yule-Walker method, the auto-correlation 

function of ( )
i
q t  can be obtained by solving the following 

equation iteratively: 

1 1 1 1

2 1 2 2

1 1

1

1

1

p

p

p p p p

  (40) 

Based on the expansion model given in Eq. (35), Ns 

samples are generated for each standard Gaussian random 

variable 
i
 and the time interval 

0
[ , ]

s
t t  is divided into NT time 

instants. Plugging the NT time instants and Ns samples of 
i
 

into Eq. (35), we therefore obtain a Ns× NT sample matrix for 

( )L t  over time interval 
0
[ , ]

s
t t [51]. Let the generated sample 

matrix be 
s TN N

L  with element ,( )jl i  be the i-th sample at j-th 

time instant, we then obtain the extreme value samples of ( )L t  

as follows: 

max
( ) max{ ( , 1), ( , 2), , ( , )}

T
l i l i l i l i N  (41) 

With the extreme value samples of ( )L t , the time-

dependent probability of failure given in Eq. (29) and (32) is 

then approximated as 

max
1

0

( ( ))

( , )

sN

i
f s

s

I l i

p t t
N

 (42) 

where  
max
( ( )) 1I l i  if 

max
( )l i , otherwise, 

max
( ( )) 0I l i .  

It can be found from Eqs. (29) to (42) that only one MPP 

search is needed for reliability analysis under time-dependent 

random velocity field. The efficiency of the proposed method is 

therefore as good as that of time-independent reliabiity analsyis 

method.  

 

6. EXAMPLE 

6.1. Problem statement 

In this section, a one-meter long steel turbine blade as 

shown in Fig. 8 is used to demonstrate the effectiveness of the 

proposed reliability analysis method. The turbine blade is 

twisted and has variable chord length along the radial direction. 

The airfoil used in this study case is the NREL S809 airfoil. 

The lift and drag coefficients of this airfoil are available in [53]. 

 

Fig. 8. Geometry configuration of the turbine blade 

 
The other geometrical parameters, system parameters, and 

determnistic parameters for the velocity field model are given 

in Table 1.  

Table 1. Parameters of the hydrokinetic turbine system 

Variable D (m) d (m) R (m) a H (m) 

Value 0.1 0.15 1 0.85 7.5 

Variable vh (m/s)  r
n   (

0
) 

root
r  (m) 

Value 2.5 6.81 49 5 0.2 

 

6.2.  Reliability analysis 

Following the procedure given in Sec. 2 through Sec. 5, we 

analyzed the time-dependent probability of failure of the 
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turbine blade over [0, 60] months (i.e. 5 years) using the 

proposed method. The results obtained from the proposed 

method are also compared with their counterparts from the 

brutal force Monte Carlo Simulation (MCS). For MCS, the time 

interval was divided into 60 time instants and 300 samples were 

generated at each time instant. There were therefore 18000 

function evaluations of the FEA simulation for the MCS. The 

time-dependent probabilities of failure of the turbine blade over 

different time intervals are given in Table 2 and plotted in Fig. 

9. 

Table 2 Probabilities of failure over different time intervals 

Time interval 

(months) 

Proposed  MCS 

fp    (%) fp  95% CI 

[0, 6] 0.25 15.60 0.21 [0.167, 0.260] 

[0, 12] 0.35 1.42 0.35 [0.293, 0.401] 

[0, 18] 0.43 7.57 0.46 [0.404, 0.516] 

[0, 24] 0.48 1.89 0.49 [0.433, 0.547] 

[0, 30] 0.52 3.43 0.54 [0.487, 0.600] 

[0, 36] 0.56 1.12 0.57 [0.511, 0.623] 

[0, 42] 0.59 0.21 0.59 [0.534, 0.646] 

[0, 48] 0.61 0.87 0.62 [0.565, 0.675] 

[0, 54] 0.64 0.66 0.64 [0.586, 0.694] 

[0, 60] 0.66 0.67 0.66 [0.606, 0.714] 
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Fig. 9. Probabilities of failure over different time intervals 

The results show that the accuracy of the proposed method 

is very good when compared with the benchmark of MCS. 

Even if there are some errors, the percentages of error are at 

acceptable levels. Table 3 gives the number of function calls 

and computational time needed by the proposed method and 

MCS for the time-dependent reliability analysis over [0, 60] 

months.  

Table 3 Number of function calls for the proposed method and 

MCS over [0, 60] months 

Method Proposed MCS 

Function calls 28 18000 

 

It indicates that the proposed method is much more 

efficient that MCS. It can save the computational time for time-

dependent reliability analysis significantly. Fig. 10 presents the 

Cumulative Density Function (CDF) of the turbine blade under 

different limit states over the [0, 60] months. It illustrates that 

the proposed method is capable to accurately approximate the 

probability of failure of the turbine blade under different limit 

states. This has demonstrated the effectiveness of the proposed 

method in reliability analysis of the turbine blade.  
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Fig. 18. Cumulative Density Function (CDF) of the limit state 

over [0, 60] months 

From results of reliability analyses, it can be concluded 

that the proposed method is able to estimate the probability of 

failure of the turbine blade under time-dependent random 

velocity field efficiently and accurately. The proposed method 

therefore can be used to replace the computationally expensive 

MCS method during the design process of the turbine blade.   

7. CONCLUSIONS  
Reliability of the turbine blade is a vital issue that needs to 

be address during the development of hydrokinetic turbine 

system. The river velocity, which governs the load of 

hydrokinetic turbine blades, usually is expressed as a random 

variable without considering the correlations in space and time. 

In practical, it is more reasonable to describe the river velocity 

as a random field rather than a random variable. A reliability 

analysis method is developed in this work for the hydrokinetic 

turbine blade under random velocity field. The critical working 

position of the turbine blade is identified first based on the 

modeling of the velocity field and the blade element 

momentum (BEM) theory. The random velocity field is then 

constructed by introducing fluctuation part into the field model.  

To estimate the probability of failure of the turbine blade under 

different time intervals, a recently developed sampling 

approach for time-dependent reliability analysis method is 

integrated with the proper orthogonal decomposition (POD) 

method. The results of reliability analysis of a study case 

demonstrated that the accuracy and efficiency of the proposed 

method are good when compared with the benchmark of MCS. 

Considering that the proposed method is much more efficient 

than MCS, the method therefore can be employed to substitute 

MCS for the probabilistic design of the turbine blade in future.  
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In this work, the BEM theory is employed to analyze forces on 

the turbine blade given different velocity climates. In future, we 

will use the three dimensional computational fluid dynamics 

(CFD) simulations to more accurately capture the load 

environment of the turbine blade. 
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