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a b s t r a c t

Reliability is an important element in the performance of hydrokinetic turbines. It is also a driving factor
of the system lifetime cost. In this paper, we perform time-dependent reliability analysis for the blades of
a river-based horizontal-axis hydrokinetic turbine. Based on the stochastic representation of the monthly
river velocity and material strength, a limit-state function is established with the classical blade element
momentum method. In the limit-state function, a failure is defined as the event when the flapwise
bending moment exceeds the allowable moment that corresponds to the ultimate strength of the
material. The upcrossing rate method is employed to calculate the time-dependent reliability of the
hydrokinetic turbine blade over its design life period. The results indicate that setting a proper cut-out
river velocity is important for the reliability of the hydrokinetic turbine blade.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Hydrokinetic energy refers to energy generated from the ocean
wave, current, tidal, and in-stream current energy resources. It has
received increasing attention recently [1e7] because it can provide
supplies of clean, renewable energy for the world’s carbon-free
energy demand [3,5]. Several technologies have been developed
to extract hydrokinetic energy, such as float or buoy systems and
oscillating water column devices. Among these technologies,
hydrokinetic turbines are one of the most commonly used, espe-
cially in inland rivers. The hydrokinetic turbine technology is still
under development and has not been fully commercialized yet. One
factor, which plays a vital role in the commercialization, is the
reliability of hydrokinetic turbines. The reliability is directly asso-
ciated with the availability of the hydrokinetic turbine and its
energy-cost ratio. It is one of the core elements to be considered
during the development phase of the hydrokinetic turbine.

The Failure Modes and Effect Analysis (FMEA) of wind turbines
has shown that the turbine blades have the highest risk priority
number [8,9], and the safety of the turbine blade should be given
a special consideration during the design of the wind turbine. We
expect that it is the same case for a hydrokinetic turbine because it
shares similarities with a wind turbine. In addition, for a hydroki-
netic turbine, there are uncertainties inherent in the river
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environment, the stress of the turbine blades, and the resistance of
materials. Their impact on the reliability of blades should be eval-
uated during the blade design.

The technology of the hydrokinetic turbine is still under
development, and the research on the reliability of hydrokinetic
turbines has rarely been reported. But there are similarities
between hydrokinetic turbines and wind turbines. Because the
technology of wind turbines is relatively mature, we can therefore
use the results of the reliability analysis of wind turbines as
a reference for hydrokinetic turbines. The blades of both types of
turbines have similar failure modes, such as fatigue and fracture
due to ultimate loading. For hydrokinetic turbine blades, however,
the natural climates, which govern the loading on the turbine
blades, are different from those of wind turbine blades. One of the
differences is that the river flow velocity has longer memory than
the wind climate. In the past decades, several methods were
developed to analyze the reliability of wind turbine blades. For
example, Agarwal [10] proposed efficient extrapolation procedures
to predict the long-term extreme loads for offshore wind turbines
based on limited field data. By using inverse reliability, Sar-
anyasoontorn and Manuel [11,12] studied the reliability of wind
turbines against extreme loads. Similarly, Ronold [13] proposed
a nested reliability analysis method for analysis of the safety of
a wind turbine rotor blade against failure in ultimate loading.
However, these reliability analysis methods for wind turbine blades
cannot be directly applied to the reliability of hydrokinetic turbine
blades because as mentioned above, the wind environment is
different from the river environment. Besides, most of the previous
research has not considered the time influence on the loading of
turbine blades.
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The river loading varies over time, and there is some kind of
seasonal characteristic in the monthly river velocity over a long
time period. The monthly river velocity, which governs the loading
of hydrokinetic turbine blades, is an auto-correlated stochastic
process. The reliability of hydrokinetic turbine blades, therefore,
also varies over time. Thus time-dependent reliability analysis is
necessary for river-based hydrokinetic turbine blades.

The nested reliability method proposed by Ronold [13] can
address the time-dependent problem by discretizing the time
period into a series of time intervals. But it may not be feasible for
the hydrokinetic turbine blade reliability analysis because the
monthly river flow velocity has much longer memory than the
wind climates [14]. The Monte Carlo simulation (MCS) can be used,
but it is computationally expensive.

For general time-dependent reliability analysis, many methods
have been proposed in the past decades, including the Gamma
distribution method and the Markov method. The most commonly
used one is the upcrossing rate method [15e18]. This method is
based on the Poisson assumption, and the key of this method is the
calculation of the upcrossing rate. In order to increase the accuracy
of computation, Sudret [19] proposed an analytical derivation of the
upcrossing rate, and this method was used by Zhang and Du [20]
later, for reliability analysis of function generator mechanisms
over a certain time period. The upcrossing method can also be
employed for the time-dependent reliability analysis of hydroki-
netic turbine blades.

The purpose of this paper is to develop a time-dependent reli-
ability analysis model for river-based hydrokinetic turbine blades.
We consider a horizontal-axis hydrokinetic turbine with three
turbine blades. By accounting for the failure due to excessive flap-
wise bending moment, we compute the reliability of turbine blades
over a 20-year design life. The stochastic characteristics of the
monthly river velocity are modeled based on the monthly river
discharge dataset of the Missouri river and the relationship
between the river discharge and river velocity. The flapwise
bendingmoment of the turbine blade is obtained using the classical
blade element momentummodel. And the upcrossing rate method
is employed to carry out the reliability analysis.

In Section 2, we analyze the stochastic characteristics of the
river flow velocity. Based on that, we establish a limit-state function
using the blade element momentum theory. In Section 3, we
explain the time-dependent reliability analysis method for hydro-
kinetic turbine blades, and an example is given in Section 4.
Conclusions are provided in Section 5.

2. Statement of problem

In this section, we discuss the major factors that affect the
reliability of the hydrokinetic turbine blades and then establish
a limit-state function for the reliability analysis.

2.1. River flow velocity

2.1.1. River flow velocity formulation
The river flow velocity, which governs the loading of hydro-

kinetic turbine blades, varies both in space and time. The spacial
variations of the river flow velocity are presented as the river
velocity profile in the cross section of the river. The river flow
velocity also fluctuates randomly over time. The river flow velocity
should therefore be described by a time-dependent random filed
that varies randomly over space and time. The complicated
properties of the river flow velocity, however, have brought great
challenges to the measurements of river velocity, especially for
large rivers with depths exceeding several meters and with
velocities greater than 1m/s [21]. As a result, the information of
the spatial variations of the river flow velocity is generally
unavailable.

Fortunately, the river discharge data of many rivers are usually
recorded and can be used to derive the statistical property of the
average river flow velocity over the river cross section. For this
reason, in this work, we only account for the average river flow
velocity over the river cross section, and we then model the river
flow velocity as a stochastic process. In other words, the spatial
variation of the river flow velocity over location is neglected, and
only its time variation is considered.

The other reasons of using a stochastic process for the river flow
velocity are as follows: First, the hydrokinetic turbine system in this
study is different from traditional hydropower plants. It is designed
to be portable and is installed on a removable device, such as
a vessel. This enables the turbine system to operate at different
locations (in terms of x-, y-, and z-coordinates). It is difficult to
predetermine at which location the velocity should be used.
Second, for large rivers, where the hydrokinetic turbine is supposed
to operate, the effect of the velocity profile in the cross section is
smaller than that of small rivers. Third, the present work concen-
trates on the general time-dependent reliability analysis. The
average river velocity model can be easily substituted by the
maximal river flow velocity model when the corresponding
statistical data are available.

According to the ManningeStrickler formula [22], given a site,
the cross section average river flow velocity is governed by the
following equation [23,24]:

vðtÞ ¼ n�1HðtÞ2=3S1=2 (1)

where v(t) is the river flow velocity [m/s], n is the river bed
roughness, H(t) is the hydraulic radius [m], and S is the river slope
[m/m].

With the assumption that the shape of river bed is a rectangle,
the hydraulic radius H is presented in terms of the depth (D [m])
and width (W [m]) of the river flow as follows:

HðtÞ ¼ DW=ð2DþWÞ (2)

After carrying out research on a dataset of 674 river cross
sections across the USA and Canada, Allen [25] found a relationship
between the discharge, depth, and width with the following
equations introduced by Leopold and Maddock [26]:

W ¼ 2:71d0:557m (3)

and

D ¼ 0:349d0:341m (4)

where dm is the discharge of the river [m3/s].
From above equations, given the river bed roughness and river

bed slope, the river velocity is associated with the river discharge.
Therefore, the statistical characteristics of the river flow velocity are
governed by those of the river flow discharge.

2.1.2. Statistical characteristics of river flow velocity
Since the fluctuation of river flow discharge is much smaller

than that of the wind speed, we use the monthly river flow
discharge to describe the river flow discharge climate. The monthly
river discharge follows a lognormal distribution [27e33]. Therefore,
the cumulative probability density function (CDF) of the monthly
river discharge is given by

FDm
ðdmÞ ¼ F

��
lnðdmÞ � mDm

ðtÞ��sDm
ðtÞ� (5)
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in which mDm
ðtÞ and sDm

ðtÞ are the mean and standard deviation of
lnðdmÞ, respectively, Fð,Þ is the CDF of a standard normal variable.
Due to the seasonality of the river discharge, mDm

ðtÞ and sDm
ðtÞ are

time-dependent, and they vary in different months during a year.
The river discharge in the time domain is, therefore, a stochastic
process. As illustrated in Fig. 1, the river discharge follows a certain
statistical distribution at each time instant, and the mean, standard
deviation of the distribution vary over time.

Besides, the monthly river discharge dm at each time instant can
be normalized and standardized [14,29,34e36]. The coefficient of
autocorrelation of the normalized and standardized monthly river
discharge is approximated by

rV ðt1; t2Þ ¼ exp
n
� ½ðt2 � t1Þ=x�2

o
(6)

where x is the correlation length. Thus, the normalized and stan-
dardized monthly river discharge is a Gaussian process with auto-
correlation function in Eq. (6). The normalization and
standardization of the monthly river discharge will be discussed
later.

In the above analysis, the cut-out river flow velocity Vc is not
considered. When the river velocity reaches the cut-out river flow
velocity, the hydrokinetic turbine will shut down for a safety
reason.With such a cut-out velocity, the upper tail of the lognormal
distribution of the river discharge is truncated, and Eq. (5) becomes
0.9

1

[0, 4]

FDm
ðdmÞ ¼ FVd

ðdmÞ=FVd
ðdCÞ

¼ F
��
lnðdmÞ � mDm

ðtÞ��sDm
ðtÞ��F��lnðdCÞ � mDm

ðtÞ��sDm
ðtÞ� ð0 < dm < dCÞ (7)
where dC is the river discharge corresponding to the cut-out river
flow velocity Vc, FDm

ðdmÞ is the CDF of the monthly river discharge
dm.

After obtaining the CDF of the monthly river discharge, we can
also find the CDF of the river flow velocity as indicated in Eq. (1).
Thus, the statistical characteristics of the river flow velocity are
available with Eqs. (1) through (7).

2.1.3. Maximum velocity of the river
Recall that the river discharge in the time domain is a stochastic

process, the associated river velocity in the time domain is
a stochastic process as well. For a stochastic process, we are inter-
ested in the extreme value of the process as it is directly related to
the reliability of the hydrokinetic turbine blades. If we discretized
Fig. 1. Illustration of river discharge stochastic process.
a time interval [0,t] into n time instants and the simulated river
velocities at these time instants were vðtiÞ; i ¼ 1;2;/;n, the
maximum velocity over the time interval [0,t] would be

vmax ¼ maxfvðtiÞ; i ¼ 1;2;/;ng (8)

Since the river velocity is a random variable at each time instant,
the maximum velocity vmax is also a random variable with an
unknowndistribution. Inadditionto this, the longer is the timeperiod
[0,t], the higher is the vmax. Fig. 2 shows the simulated CDFs of the
maximumvelocities of theMissouri river over different time periods.

We see that the CDF curves of themaximum river velocities shift
from left to right when the time period becomes longer. This
implies that the hydrokinetic turbine blades have a higher proba-
bility of failurewhen the time interval becomes larger. For the time-
dependent reliability analysis over different time intervals,
different CDFs of the maximum river velocity are required. As the
distribution of river velocity is non-Gaussian and the loading of the
turbine blade is a non-linear response of the river velocity, we do
not have explicit expression for the extreme loading on the turbine
blades. If the simulation methods are employed to get the extreme
loading of the turbine blades, the computational cost may not be
affordable. To improve the efficiency, we will introduce an efficient
time-dependent reliability analysis method for the hydrokinetic
turbine blades in Section 3.
In the following sections, we will discuss the relationship
between the river velocity and the turbine blade loading response.

2.1.4. River flow velocity on the hydrokinetic turbine
For a horizontal hydrokinetic turbine, a diffuser, as shown in

Fig. 3, is typically used to increase the flow velocity that enters the
turbine.
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Fig. 3. The diffuser for the horizontal hydrokinetic turbine.
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With the diffuser, the river velocity on the hydrokinetic turbine,
vh, turns out to be

vhðtÞ ¼ CdiffuservðtÞ (9)

where Cdiffuser is the velocity increasing coefficient of the diffuser.
The value of Cdiffuser is dependent on the geometry of the diffuser.

2.1.5. River flow velocity analysis when turbine blades are rotating
In the above analysis, the rotation of hydrokinetic turbine is not

taken into consideration. When the hydrokinetic turbine is under
operation, seen from the section of the turbine blade, the relative
velocity vr acting on the turbine blades should be a combination of
the axial velocity and tangential velocity in the rotor plane [37]. The
combination of velocities is shown in Fig. 4. The relative velocity
acting on the turbine blade is given by

vrðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½vhðtÞð1� aÞ�2þ½urð1þ a0Þ�2

q
(10)

in which

u ¼ lvhðtÞ=R (11)

where a is the axial induction factor, a0 is the tangential induction
factor, u is the angular velocity of the rotor, r is the radial position of
the control volume, l is the tip speed ratio, and R is the radius of
turbine blade. Besides, the optimal values of a and a0 are related to
the chords, twist angles, pitch of the blade, and ur=VhðtÞ. a and a0

can be obtained from the blade element momentum model [37],
and Prandtl’s and Glauert’s corrections have been made for a and a0

[38] in the blade element momentum codes.
R

,N rP
2.2. Loading of hydrokinetic turbine blades

According to the blade element momentum theory, if the lift
coefficient Cl and drag coefficient Cd are known, the lift and drag
forces per length are given by [37]

L ¼ rvrðtÞ2cðrÞCl=2 (12)

and

D ¼ rvrðtÞ2cðrÞCd=2 (13)
( )(1 )hv t a

(1 )r a

( )rv t
Rotor plane 

Fig. 4. River flow velocity in the cross section of the turbine blade.
respectively, where r is the water density, and c(r) is the chord at
radius r; Cl and Cd are associated with the local angle of attack. Then
the force of river flow acting on the blade can be decomposed into
two components PT and PN, which are normal and tangential to the
rotor plane, respectively. These forces are depicted in Fig. 5.

The normal force results in the flapwise bending moment at the
root of a blade, as shown in Fig. 6.

The normal force per length, denoted by PN,r at radius r, is given
by [37]

PN;rðtÞ ¼ Lcos gþDsin g

¼ 0:5r
�
ðvhðtÞð1� aÞÞ2þðurð1þ a0ÞÞ2

	
ðcðrÞClcos g

þcðrÞCdsin gÞ (14)

where g is the flowangle, which is the summation of the local angle
of attack qAOA and the local pitch q. The local pitch q is the combi-
nation of the pitch angle qp and twist angle qt(r) of the blade. The
flow angle is determined by the following equation:

tan g ¼ ½ð1� aÞvhðtÞ�=½ð1þ a0Þur� ¼ ð1� aÞR=½ð1þ a0Þlr� (15)

After obtaining the flow angle, we can calculate the angle of
attack at radius r by

qAOA ¼ g� 

qp þ qtðrÞ

�
(16)
rootr

flapM

Fig. 6. Bending moment on the turbine blade.
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Then with the angle of attack, Cl and Cd at radius r can be
calculated according to the airfoil’s characteristics.

From Eqs. (9), (14) and (15), we have

PN;rðtÞ ¼ 0:5rv2ðtÞC2
diffuser

�
ð1� aÞ2þr2l2ð1þ a0Þ2=R2

	
�ðcðrÞClcos gþ cðrÞCdsin gÞ (17)

Let

C1ðrÞ ¼ C2
diffuser

�
ð1� aÞ2þr2l2ð1þ a0Þ2=R2

	
(18)

C2ðrÞ ¼ ðcðrÞClcos gþ cðrÞCdsin gÞ (19)
Csum ¼
XN�1

i¼1

�
½C1ðriþ1ÞC2ðriþ1Þ � C1ðriÞC2ðriÞ�=ðriþ1 � riÞÞ

�
r3iþ1 � r3i

	.
3

þ ½C1ðriÞC2ðriÞriþ1 � C1ðriþ1ÞC2ðriþ1Þri�=ðriþ1 � riÞÞ
�
r2iþ1 � r2i

	.
2
	 (24)
With a fixed tip speed ratio l, Eq. (17) is rewritten as

PN;rðtÞ ¼ 0:5rv2ðtÞC1ðrÞC2ðrÞ (20)

Substituting Eqs. (1) through (4) into Eq. (20) yields

PN;rðtÞ ¼ 0:5r
�
2:71d0:557m

.�
2þ 7:765d0:216m

		4=3
SC1ðrÞC2ðrÞ=n2

(21)

In order to calculate the bending moment at the root of the
blade, we divide the blade into N segments as shown in Fig. 7(a).
The blade can be further simplified as shown in Fig. 7(b).

Based on the assumption of a linear variation of the load, the
flapwise bending moment at the root of the blade can be computed
by [37]
(a) Segments of the hydrokinetic turbine blade 

(b) Simplified turbine blade loading model 

1 2
Ni

ri

rN

Fig. 7. Normal forces on the hydrokinetic turbine blade.
MflapðtÞ ¼
XN�1�1�PN;riþ1

ðtÞ � PN;riðtÞ
 �

r3iþ1 � r3i
	

i¼1
3 riþ1 � ri

þ 1
2

�
PN;ri ðtÞriþ1 � PN;riþ1

ðtÞri
riþ1 � ri

�
r2iþ1 � r2i

	
(22)

where Mflap is the flapwise bending moment, riþ1 ¼ rrootþ
ðR� rrootÞi=N, and rroot is the radius of the hub.

Substituting Eq. (21) into Eq. (22), we obtain the flapwise
bending moment at the root of the blade

MflapðtÞ ¼ 0:5r
�
2:71d0:557m

.�
2þ 7:765d0:216m

		4=3
SCsum=n2

(23)

in which
2.3. Material resistance

Due to the variability of bladematerials, their strength should be
characterized by a certain probability distribution. Similar to the
work on the reliability analysis of steel structure [39,40], we
assume that the distribution of the yield strength, ms, of the blade
material, follows a normal distribution with mean ms and standard
deviation ss; namely mswNðms;ssÞ.

In order to compute the maximum bending moment that the
material can resist at the root of the blade, we simplify the cross
section of the turbine blade as shown in Fig. 8. As for a hydrokinetic
turbine blade, a thin skin is glued on a box-like structure (the main
structure) to define the geometry, as shown on the left of Fig. 8.
Since the shape of the main structure is almost rectangular, we can
simplify the cross section as a rectangle, as shown on the right of
Fig. 8. Given the box-like structure, the error from the assumption
of the rectangular cross section is acceptable for the root section.

The allowable bending moment can thus be obtained by

Mallow ¼ msa0b
2
0=4 (25)

where a0 and b0 are the width and height of the blade after
simplification, respectively. They are random variables due to the
tolerance of manufacturing and clearance of assembly.

2.4. Limit-state function for turbine blade reliability analysis

For hydrokinetic turbine blades, the bending moment should
not exceed the allowable bending moment in Eq. (25). Based on
this, applying Eqs. (23) through (25), we define the limit-state
function as follows:

gðX;YðtÞ; tÞ ¼ MflapðtÞ �MallowðtÞ (26)

where X is the vector of random variables, and Y(t) is the vector of
stochastic processes. In this problem, X ¼ fa0; b0;msg and Y(t) has
only one element, which is the monthly discharge dm.Mflap(t) is the
flapwise bending moment given in Eq. (23), and Mallow(t) is the



Fig. 8. Simplified cross section of the hydrokinetic turbine blade.
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allowable bending moment given in Eq. (25). When g(X,Y(t),t) > 0,
a failure occurs.

3. Reliability analysis

For the reliability analysis of hydrokinetic turbine blades, we
assume that the seasonal effects repeat in the same time periods of
any year. This assumption is based on the fact that the Earth
circulates around the Sun annually with the same seasonal effects.
The yearly river climates, therefore, are independent with the same
seasonality. The probability of failure during a T-year operation can
be calculated as

pf ðTÞ ¼ 1�
h
1� pf ðYeÞ

iT
(27)

where pf(T) is the probability of failure during T years; pf(Ye) is the
yearly probability of failure.

Consequently, the yearly probability of failure of the turbine
blade should be calculated first. Calculating pf(Ye) requires time-
dependent reliability analysis.

3.1. Time-dependent reliability analysis

3.1.1. Time-dependent reliability analysis with upcrossing rate
The above mentioned yearly probability of failure pf(Ye) is

defined over a time interval [0,t], where t is equal to one year. pf(Ye)
is a time-dependent probability of failure, and a general form of the
time-dependent probability of failure over time period [t0,te] is
defined as

pf ðt0; teÞ ¼ PrfZðsÞ ¼ gðX;YðsÞ; sÞ>eðsÞ; s˛½t0; te�g (28)

where t0 is the initial time of operation, and te is the end point of the
evaluated time period. eð,Þ is a time-dependent limit state, and
Prf,g stands for a probability.

With the integration of the Poisson assumption based
upcrossing rate method and the First Order Reliability Method
(FORM), pf(t0,ts) is calculated by [20,41]

pf ðt0; tsÞ ¼ 1�
h
1� pf ðt0Þ

i
exp

8<
:�

Zts
t0

vþðtÞdt
9=
; (29)

where vþ(t) is the upcrossing rate at t, pf(t0) is the instantaneous
probability of failure at the initial time point t0. An instantaneous
probability of failure pf(t) is the likelihood of failure at a particular
time instant t and is calculated by

pf ðtÞ ¼ PrfgðX;YðtÞ; tÞ>eðtÞg (30)

The instantaneous probability of failure can be solved with
FORM. The equation for solving the instantaneous probability of
failure will be given in the next section. Once we have the
upcrossing rate vþ(t), the time-dependent probability of failure
pf(t0,ts) can be calculated by integrating vþ(t) over [t0,te].

Apparently, the key for calculating pf(t0,ts) with Eq. (29) is the
computation of the upcrossing rate vþ(t). In the following
subsections, we first review how to obtain the upcrossing rate by
using FORM and the Rice’s formula. We then discuss how to apply
this method to the time-dependent reliability analysis of hydroki-
netic turbine blades.

3.1.2. Upcrossing rate vþ(t)
For a general limit-state function Z(t) ¼ g(X,Y(t),t) given in Eq.

(28), at a time instant t, its random variables and stochastic
processes (X,Y(t)) are transformed into the standard normal
random variables U(t)¼(Ux,UY(t)). After the transformation, the
limit-state function is linearized at the Most Probable Point (MPP)
U*ðtÞ, which is a point at the limit state, and at this point the limit-
state function has the highest probability density. Then at the MPP,
the probability of failure is equivalent to

Pr
n
LðtÞ ¼ aðtÞUðtÞT>bðtÞ; t˛½t0; te�

o
(31)

where

aðtÞ ¼ Vg
�
U*ðtÞ; t

	.���Vg�U*ðtÞ; t
	��� (32)

b(t) is the reliability index, which is the length of U*ðtÞ; and k,k
stands for the length of a vector. Besides, the reliability index is
used to calculate the instantaneous probability of failure at a time
instant ti as follows:

pf ðtiÞ ¼ 1� FðbðtiÞÞ (33)

The above equation can also be used to calculate the initial
instantaneous probability of failure pf(t0) in Eq. (29).

From Eq. (32), we have kaðtÞk ¼ 1, and L(t) is therefore a stan-
dard normal stochastic process. Then the uncrossing rate vþ(t) can
be calculated using the Rice’s formula [42,43] as follows:

vþðtÞ ¼ uðtÞfðbðtÞÞJ
�
_bðtÞ=uðtÞ

	
(34)

where Jð,Þ is a function defined by

JðxÞ ¼ fðxÞ � xFð�xÞ (35)

u2ðtÞ is given in terms of the correlation function r(t1,t2) of L(t)
as follows:

u2ðtÞ ¼ v2rðt; tÞ=vt1vt2 (36)

Since L(t) is a standard normal stochastic process, its coefficient
of correlation is given by

rðt1; t2Þ ¼ aðt1ÞCðt1; t2Þaðt2ÞT (37)

where C(t1,t2) is the covariance matrix of L(t1) and L(t2) and has the
following form:

Cðt1; t2Þ ¼
�
In�n 0
0 CY ðt1; t2Þ

�
(38)

where In�n is an n � n identity matrix, which is the covariance
matrix of the normalized random variables Ux for X, and CY(t1,t2) is
the covariance matrix of the normalized stochastic process UY(t). In
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this problem, the covariance matrix just has one element, which is
the covariance of the normalized river discharge stochastic process.

Given the correlation coefficients of the normalized stochastic
process UY(t), the covariance matrix CY(t1,t2) is presented as

CY ðt1; t2Þ ¼

2
664
CY1ðt1; t2Þ 0 / 0

0 1 / 0
« « 1 «
0 0 / CYmðt1; t2Þ

3
775

¼

2
664
rY1 0 / 0
0 1 / 0
« « 1 «
0 0 / rYm

3
775 (39)

where CYi ðt1; t2Þ is the covariance of the normalized stochastic
process UYi

ðtÞ at time instants t1 and t2. rYi is the corresponding
correlation function and is given by

rYi ¼ rYiðt1; t2Þ (40)

In this problem, the correlation of river discharge at two time
instants can be obtained from Eq. (6).

Then substituting Eq. (37) into Eq. (36), we have

uðtÞ2 ¼ _aðtÞ _aðtÞTþaðtÞ€C12ðt; tÞaðtÞT (41)

in which

€C12ðt; tÞ ¼
�
0 0
0 €C

Y
12ðt; tÞ


(42)

and

CYi
12ðt; tÞ ¼ v2rYi ðt; tÞ=vt1vt2; i ¼ 1;2;/;m (43)
~Udm
¼ F�1
F�lnðdmÞ � mDm



t
���

sDm



t
�
=F

�
lnðdCÞ � mDm



t
���

sDm



t
�� ð0 < dm < dCÞ (49)
where m is the number of stochastic processes. For the turbine
blade problem, m ¼ 1.

_aðtÞ and _bðtÞ are required as indicated in Eq. (34) and Eq. (41).
Because we use the finite difference method to calculate the
derivatives, we need to carry out two MPP searches at every time
instants t and t þ Dt, where Dt is a small step size. The derivatives
are given by

_aðtÞ ¼ ½aðt þ DtÞ � aðtÞ�=Dt (44)

and
gðX;YðtÞ; tÞ ¼ gðUðtÞ; tÞ
¼ 0:5r

�
2:71$T

�
~Udm

	0:557.�
2þ 7:765T

�
~Udm

	0:216		4=3
SCsum=n2 � 0:25TðUa0ÞT



Ub0

�2TðUmsÞ
(51)
_bðtÞ ¼ ½bðt þ DtÞ � bðtÞ�=Dt (45)

Now all the equations are available for the upcrossing rate vþ(t)
in Eq. (29). If we know a(t) and b(t) of the limit-state function of
hydrokinetic turbine blades, we can then calculate its yearly
probability of failure pf(Ye) using Eqs. (29) through (45).
3.2. Time-dependent reliability analysis for hydrokinetic turbine
blades

In this section, we use the time-dependent reliability analysis
method presented above to solve for the probability of failure of
hydrokinetic turbine blades. We first discuss the transformation of
the non-Gaussian random variable (X,Y(t)) into standard Gaussian
randomvariableU(t)¼(Ux,UY(t)). Based on this, we then provide the
approach of obtaining a(t) and b(t) required by Eqs. (34) through
(45) for time-dependent reliability analysis.

3.2.1. Transform non-Gaussian random variables
Due to the cut-out river flow velocity, a non-Gaussian random

variable is involved. The non-Gaussian random variable is the
truncated lognormal random variable (the truncated monthly river
discharge). We need to transform it into equivalent normal distri-
bution. The transformation is given by

Udm
¼ �

lnðdmÞ � mDm



t
���

sDm



t
�
wN



0;1

�
(46)

where

sDm
ðtÞ2 ¼ ln

h

sdm



t
��

mdm



t
��2þ1

i
(47)

and

mDm



t
� ¼ ln



mdm



t
��� 0:5sDm

ðtÞ2 (48)

After the truncation, the transformation becomes
3.2.2. Solve for a(t) and b(t)
Recall that the limit-state function of the hydrokinetic turbine

blade is

gðX;YðtÞ; tÞ ¼0:5r
�
2:71d0:557m

.�
2þ 7:765d0:216m

		4=3
SCsum=n2

�msa0b
2
0=4 ð50Þ

where Csum is given in Eq. (24).
After the transformation, the limit-state function in Eq. (50)

becomes
where Tð,Þ is the operator of transforming non-Gaussian random
variables(X,Y(t)) into Gaussian random variables U(t).

Then, the MPP U*(t) at a given time instant t can be obtained by
solving



Z. Hu, X. Du / Renewable Energy 48 (2012) 251e262258
min bðtÞ ¼ kuðtÞk
s:t: gðuðtÞ; tÞ ¼ 0

(52)
Fig. 9. 3-D modeling of a three blade hydrokinetic turbine.

Fig. 10. A horizontal-axis hydrokinetic turbine with three blades under testing.
�

After obtaining the MPP u*(t) at a given time instant t, we get
a(t) and b(t) as follows:

b


t
� ¼

���U*


t
���� (53)

and

a


t
� ¼ �U*
t�.���U*
t���� (54)

Similarly, we can also solve for the a(tþ Dt) and b(tþ Dt), which
are then used to calculate _aðtÞ and _bðtÞ in Eqs. (34) and (41). The
yearly probability of failure pf(Ye) is then solved with Eqs. (29)
through (45). And the probability of failure during T-year opera-
tion, pf(T), is finally obtained with Eq. (27).

3.3. Sensitivity analysis of random variables

The time-dependent reliability analysis not only provides the
likelihood of failure over a time period but also helps us understand
how random variables affect such likelihood. The latter is achieved
by sensitivity analysis. Sensitivity analysis shows the relative
importance of each random variable to the probability of failure
[44]. The sensitivities of random variables are represented by the
sensitivity factors [45]. Since the limit-state function g(X,Y,t) has
been transformed into g(U,t), the sensitivity factor εi(t) with respect
to a random variable Ui (i ¼ 1,2,...,4) can be determined by

εi


t
� ¼ �vbðtÞ=vUi ¼ �v

" P4
i¼1

�
U*
i

	2#0:5,
vU*

i

¼ �U*
i

," P4
i¼1

�
U*
i

	2#0:5 ¼ �U*
i =bðtÞ

(55)

Based on the sensitivity analysis of randomvariables at different
instants of time, we can determine their importance on the failure
of the turbine blade. Besides, the change of the importance of
random variables over time period can also be evaluated. For
important random variables identified by sensitivity analysis, we
should focus on effective ways to quantify their uncertainties and
identify their optimal distribution parameters during the design
stage so that the probability of failure can be maintained at
a desired level with a reduced cost.

4. Example

As mentioned previously, this work focuses on a hydrokinetic
turbine with three 1-m long rotor blades, fixed pitch angle, and tip
speed ratio, developed for the operation in the Missouri River. The
sketch of the turbine is shown in Fig. 9. Its prototype under testing
in a water tunnel is shown in Fig. 10. The reliability of the hydro-
kinetic turbine over a 20-year design period was evaluated.

4.1. Data

The deterministic variables and distributions of the random
variables are given in Tables 1 and 2, respectively. In order to
calculate the parameters related to the geometry of the hydroki-
netic turbine blade, we divided the blade into 30 segments. Assume
that the turbine blade uses the NREL S809 airfoil section, which is
shown in Fig. 11. The corresponding data of lift and drag coefficients
were from [46]. The reason of using the NREL S809 airfoil for this
example is that it has beenwidely studied bymany researchers and
that reliable lift and drag coefficients are available. The turbine
blades are designed to have 1 m radius with non-linear chord
length and twist angle distributions, which use the NREL S809
airfoil from root to tip. The optimized chord and twist angle
distributions at different radii are plotted in Figs. 12 and 13,
respectively. It is noted that the reliability analysis method in this
paper can also handle other kinds of airfoil sections.

The historical river discharge data of the Missouri River from
1897 to 1988 at the Hermann, Missouri station [47] were used.
Based on these data, we fitted the mean and standard deviation of
the monthly river discharge as functions of t as follows:

mDm



t
� ¼ am0 þ

X5
i¼1

�
ami cosðiwmtÞ þ bmi sinðiwmtÞ

�
(56)

sDm



t
� ¼ as0 þ

X5
j¼1

h
asj cosðjwstÞ þ bsj sinðjwstÞ

i
(57)
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where
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Fig. 11. NREL S809 airfoil profile.

am0 ¼ 2335; am1 ¼ �1076; am2 ¼ 241:3; am3 ¼ 61:69; am4 ¼ �30:92; am5 ¼ 32:38;
bm1 ¼ 57:49; bm2 ¼ �174:9; bm3 ¼ �296:2; bm4 ¼ 213:6; bm5 ¼ �133:6; um ¼ 0:5583 (58)

as0 ¼ 1280; as1 ¼ �497:2; as2 ¼ 145:8; as3 ¼ 225:4; as4 ¼ �203:1; as5 ¼ 99:47;
bs1 ¼ �82:58; bs2 ¼ �19:06; bs3 ¼ �178:7; bs4 ¼ 36:15; bs5 ¼ �52:47; us ¼ 0:5887 (59)
These functions were selected as the ones that give the best fits
to measurement data available. Besides, according to the “over
time” autocorrelation function of the Elbe River at Neu Darchau
[29], the autocorrelation coefficient function of the monthly
discharge of Missouri river is assumed to be

rDm
ðt1; t2Þ ¼ exp

n
� ½6ðt2 � t1Þ=5�2

o
(60)

4.2. Reliability analysis

By using the classical blade elementmomentum theory, the axial
induction factor a and the tangential induction factor a’ at different
radii were computed first. Then the geometry related parameter
Csum was obtained from Eqs. (18), (19) and (24). After substituting
the deterministic variables into Eq. (50), we obtained the limit-state
function

gðX;YðtÞ; tÞ ¼275:21
�
2:71d0:557m =

�
2þ 7:765d0:216m

		4=3
� a0b

2
0ms=4 ð61Þ

The reliability analysis for the hydrokinetic turbine blade was
conducted with the following steps: First, the probability of failure
of the hydrokinetic turbine blades without a cut-out velocity in
a one-year time period [t0,te] ¼ [0,1] yr was analyzed by using the
time-dependent reliability analysis method. Since the yearly
probabilities of failure were assumed to be independent, then the
probability of failure over the time life [t0,te] ¼ [0,20] yr was
computed using Eq. (27). Finally, in order to study the effect of cut-
out velocity on reliability, we performed reliability analysis for the
turbine blade with different cut-out river velocities. Meanwhile, as
a byproduct of time-dependent reliability analysis, the sensitivities
of random variables over time were also obtained.
Table 2
Distribution of random variables of the turbine blade problem.

Variable Mean Standard deviation Distribution

dm mdm
ðtÞ sdm

ðtÞ Lognormal
a0 0.21 m 1 � 10�4 m Normal
b0 0.025 m 1 � 10�5 m Normal
ss 3.15 � 105 kPa 1.5 � 104 kPa Normal

Table 1
Deterministic variables of the turbine blade problem.

Variable r l rroot Cdiffuser VC qp R n S

Value 1 � 103 kg/m3 3 0.2 m 2 3.7 m/s 6� 1 m 0.025 4 � 10�4 m/m
4.3. Results and discussions

4.3.1. Time-dependent reliability analysis results
Table 3 shows the results of the probabilities of failure obtained

from the time-dependent reliability analysis method. The solution
from Monte Carlo Simulation (MCS) with a sample size of 1 � 106

are also presented in Table 3 and plotted in Fig. 14.
MCS is a simulation method, which can estimate the probability

of failure accurately when the sample size is large enough. For the
stochastic process (the monthly river flow discharge), we used the
Expansion Optimal Linear Estimation method (EOLE) [48,49] to
generate the samples for the river flow discharge.

The results indicate the good accuracy of the reliability analysis
method for the hydrokinetic turbine blade presented. Fig. 14 and
Table 3 show that the time-dependent probability of failure of
hydrokinetic turbine blades increases with time over a one-year
time period. The probability of failure is 2.546 � 10�4 over a one-
year period after the hydrokinetic turbine is put into operation.
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Fig. 12. Chords distribution along the radius of the turbine blade.
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The probability of failure of the hydrokinetic turbine blades over its
20-year operation, or over [t0,te] ¼ [0,20] yr, is about 5.1 � 10�3,
which is obtained by substituting the yearly probability of failure
2.546 � 10�4 into Eq. (27).

4.3.2. Instantaneous probability of failure
We also calculated the instantaneous probability of failure.

Fig. 15 shows such instantaneous probabilities and time-dependent
probabilities of failure over different time periods in a one-year
time period.

It is seen that the time-dependent probability of failure is much
larger than its instantaneous counterparts after the third month.
The instantaneous probability of failure does not increasewith time
while it fluctuates over time. There are several peaks in the curve of
the instantaneous probability of failure. The reason is the seasonal
characteristics of the Missouri River flow velocity. At these peak
points, the river velocities are large. Besides, it can be found that an
positive slope of the instantaneous probability curve will results in
an increase in the time-dependent probability of failure.

4.3.3. Sensitivity analysis
As described in Sec.3.3, the sensitivity factors show the relative

importance of each random variable to the probability of failure.
Fig. 16 provides the sensitivity factors of the four random variables
when there is no cut-out river flow velocity for the turbine.

The results indicate that the river velocity and the material
strengthmake the highest contributions to the probability of failure
and that the dimension variables of the cross section at the root of
the turbine blade make negligible contributions. Besides, the
Table 3
pf ðt0; tÞ of the hydrokinetic turbine blade over different time period

Time period (months) pf ðt0; tÞ
Time-dependent ð�10�4Þ MCS solution ð�10�4Þ

[0, 1] 0.006 0.010
[0, 2] 0.006 0.010
[0, 3] 0.029 0.060
[0, 4] 0.525 0.560
[0, 5] 0.544 0.560
[0, 6] 1.366 1.320
[0, 7] 2.508 2.510
[0, 8] 2.510 2.510
[0, 9] 2.509 2.510
[0, 10] 2.537 2.520
[0, 11] 2.546 2.520
[0, 12] 2.546 2.520
importance of random variables fluctuates with the time. The
sensitivity factor of thematerial strength is positive, and this means
that the probability of failurewill decrease if the strength increases.
On the contrary, the sensitivity factor of the river velocity is
negative, and this indicates that the increase in the river velocity
will result in the increase in the probability of failure. The river flow
velocity is the most important contributor to the probability of
failure of the hydrokinetic turbine blades. During the design stage,
therefore, we should focus on the reduction of its effect on the
reliability of the hydrokinetic turbine blades.

4.3.4. Influence of cut-out river flow velocity
4.3.4.1. Effect on the probability of failure. To study the effect of the
cut-out river flow velocity, we performed reliability analysis with
different levels of cut-out river flow velocities. Fig. 17 provides the
results over a 20-year time life. By comparing the results without
a cut-out river velocity, we see that a proper cut-out river velocity
Fig. 15. Instantaneous and time-dependent probability of failure.
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can decrease the risk of failure significantly. For example, the
probability of failure over a 20-year operation with a cut-out
velocity of 3.7 m/s is about 8.36 � 10�5 while its counterpart
without a cut-out velocity is 5.1 � 10�3. This indicates that the
upper tail of the river velocity makes a great contribution to the
probability of failure.

The selection of a proper cut-out velocity is therefore important.
From Fig. 17, we see that when the cut-out velocity is high over the
range from 4.15 m/s to 4.5 m/s, the change in the probability of
failure will be slight with a reduced cut-out rive velocity. When the
cut-out velocity is between 3.7 m/s and 4.15 m/s, a reduced cut-out
velocity can affect the probability of failure dramatically. Moreover,
to determine the optimum cut-out river velocity, we should also
consider the influence of the cut-out river velocity on the power
output. If the cut-out river velocity is set to be very low, the reli-
ability of the turbine blade will be high while the power output will
be sacrificed. On the other hand, if the cut-out river velocity is very
high, the reliability of the turbine may not be satisfied. This implies
that the reliability analysis method developed in this paper can be
integrated with the power output model and energy-cost model of
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Fig. 17. Time-dependent probability of failure of hydrokinetic turbine blade.
the hydrokinetic turbine system to identify the optimum cut-out
river velocity for the hydrokinetic turbine system.

4.3.4.2. Effect on the sensitivity of random variables. To examine
how the cut-out river velocity affects the sensitivity, we plot the
sensitivity curves for the important variables with and without
cut-out river velocity as shown in Fig. 18. These variables include
the river flow velocity and material strength. A cut-out river
velocity of 3.7 m/s was used for the analysis in Fig. 18.

As shown in the figure, with the cut-out river velocity, the
sensitivity factor of the river flow velocity decreases while that of
the material strength increases. This indicates that by implement-
ing a cut-out river velocity, we can reduce the sensitivity of the
probability of failure with respect to the river velocity.
5. Conclusions

Reliability is an important factor to be considered during the
hydrokinetic turbine design. The turbine blade reliability plays
a critical role in the overall reliability of the hydrokinetic turbine
system. In this work, we developed a time-dependent reliability
analysis model for the hydrokinetic turbine blades. The blade
element momentum theory was used to establish the limit-state
function. The results show that the model can effectively evaluate
the reliability of the hydrokinetic turbine blade over a certain time
period.

We analyzed both of the time-dependent reliability over a time
period and instantaneous reliability at an instant of time. The
results showed that the time-dependent probability of failure is
much larger than the instantaneous ones. Sensitivity analysis
revealed that the river flow velocity andmaterial strengthmake the
highest contributions to the probability of failure of the hydroki-
netic turbine blade and that the sensitivity of the probability of
failure with respect to the river flow velocity is the highest.

The analysis also showed that a cut-out velocity affects the
reliability of the hydrokinetic turbine in the following two aspects:
First, an appropriately selected cut-out river velocity can decrease
the probability of failure of the blade significantly. Second, with
a cut-out river velocity, the contribution of the river flow velocity to
the probability of failure decreases.

The pitch angle and tip speed ratio are assumed to be constant in
this paper. But these parameters could be random. The cut-out
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velocity may also fluctuate in the real operation of the hydrokinetic
turbine. These uncertainties will be considered in our future
research. Even if the time-dependent reliability analysis model
developed in this paper is based on the simplified models (the
blade element momentum theory), it can be applied to more
advanced models, such as the CFD and FEM simulations. In this
work, we did not consider the spatial variation of the river flow
velocity. We only treated it as a stochastic process. Our future work
will account for the spatial variation of the flow velocity, and we
will then model the velocity as a time-dependent random field.
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