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Time-Dependent System
Reliability Analysis Using
Random Field Discretization

This paper proposes a novel and efficient methodology for time-dependent system reli-
ability analysis of systems with multiple limit-state functions of random variables, sto-
chastic processes, and time. Since there are correlations and variations between
components and over time, the overall system is formulated as a random field with two
dimensions: component index and time. To overcome the difficulties in modeling the two-
dimensional random field, an equivalent Gaussian random field is constructed based on
the probability equivalency between the two random fields. The first-order reliability
method (FORM) is employed to obtain important features of the equivalent random field.
By generating samples from the equivalent random field, the time-dependent system reli-
ability is estimated from Boolean functions defined according to the system topology.
Using one system reliability analysis, the proposed method can get not only the entire
time-dependent system probability of failure curve up to a time interval of interest but
also two other important outputs, namely, the time-dependent probability of failure of
individual components and dominant failure sequences. Three examples featuring series,
parallel, and combined systems are used to demonstrate the effectiveness of the proposed
method. [DOI: 10.1115/1.4031337]

Keywords: time-dependent reliability, system reliability, stochastic processes, random
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1 Introduction

This paper focused on time-dependent reliability, due to time-
variant loads, degradation of material strength, wear, etc. Time-
dependent reliability is defined as the probability that there is no
failure over a time period of interest. This definition considers
both variations in the operating environment and system charac-
teristics over time.

Significant efforts have been reported regarding methods for
time-dependent component and system reliability analyses. For
time-dependent component reliability analysis, the available reli-
ability analysis methods can be roughly classified into three
groups: upcrossing rate methods, analytical methods without
using the upcrossing rate, and the sampling-based methods.
Examples of the upcrossing rate methods include the PHI2
method developed by Andrieu-Renaud et al. [1], the upcrossing
rate method [2], the joint upcrossing rate method [3], and many
other empirical modifications made to the upcrossing rate method
[4]. Efforts have also been made to remove the limitations of
upcrossing rate methods by analyzing the extreme response.
Examples include the composite limit-state function method [5],
extreme value response surface method [6,7], extreme value dis-
tribution method based on the probability density evolution [8],
stochastic process discretization method [9], and envelope
function method [10]. Methods falling into the third group
are the adaptive importance sampling approach [11], Markov
chain Monte Carlo simulation [12], and first-order sampling
approach [13].

The time-dependent system reliability analysis is much more
complicated than the time-dependent component reliability analy-
sis. Methods have been proposed for time-dependent system reli-
ability analysis based on assumptions and simplifications. For
instance, Hagen and Tvedt proposed an upcrossing rate method
for time-dependent system reliability analysis by bounding the
system response based on combinations of bivariate responses
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[14]. Song and Der Kiureghian developed a joint first-passage
probability method based on the conditional distribution analysis
[15]. Based on the integration of Monte Carlo simulation (MCS)
and asymptotic extreme value theory, Radhika et al. developed a
reliability analysis method for nonlinear vibrating systems [16].
Dey and Mahadevan developed an adaptive importance sampling
approach for system reliability analysis with multiple failure
sequences, considering both ductile and brittle failures of compo-
nents in mechanical systems [17].

In order to efficiently and accurately estimate the time-
dependent system reliability and remove the assumptions and
simplifications (Poisson assumption, simplification of system to-
pology) used in most of the current methods, an efficient method
is developed in this paper based on the concept of random field
discretization. It is an extension of the method developed in
Ref. [13]. The advantages of the developed method are threefold.
First, it is applicable for general problems with random variables,
stochastic processes, and time. The Poisson assumption used in
the upcrossing rate method is completely removed. Second, using
one reliability analysis, the proposed method obtains not only the
time-dependent reliability over a specific time interval but also
the entire time-dependent probability of failure curve up to that
time interval. Third, without requiring extra computational effort,
the time-dependent reliability of the individual components and
the dominant failure sequences are obtained as byproducts of
time-dependent system reliability analysis.

The remainder of this paper is organized as follows. Section 2
reviews the background of system reliability analysis and time-
dependent system reliability analysis. Section 3 develops the pro-
posed new method for time-dependent system reliability analysis.
Following this, algorithmic implementation of the proposed
method is discussed in Sec. 4. Three numerical examples are
given in Sec. 5. Conclusions are drawn in Sec. 6.

2 Background of Time-Dependent System Reliability
Analysis

2.1 System Reliability Analysis. Engineering systems can be
grouped into three categories based on the system topology: series
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systems, parallel systems, and combined systems. Let X be a vec-
tor of random inputs of a system and g,;(X) be the limit-state func-
tion of component i. The time-independent probabilities of failure
for series and parallel systems with n components are given by

Py = Pr{Ugi(X) > 0} 1)
p;arallel _ Pr{rjgl(x) > 0} (2)
in which i =1, 2, - -+, n are indices of the components, g;(X) >

0 defines the failure event, Pr{-} stands for probability, “U” is
union, and “N” is intersection.

For the combined systems, the expression of probability of fail-
ure will vary with the system topology. In problems where the
limit-state function evaluations require expensive computer simu-
lation models, directly solving Egs. (1) and (2) is difficult. Meth-
ods have been proposed to approximate the probabilities given in
the above equations, for example, bounding formulas developed
by Ditlevsen [18], multiple linearization [19], importance sam-
pling [20], the complementary intersection method [21], and the
integrated performance measure approach [22]. All these methods
are developed for time-independent reliability analysis.

2.2 Time-Dependent System Reliability Analysis. Let Y(7)
be a vector of stochastic loads, realizations of which vary with
time and are correlated over time. The limit-state function for
component i becomes

Gi(t) = ¢i(X, Y(1), 1) €)

For a time period of interest [z, z.|, where 7y is the initial time
instant and 7, is the final time instant, the time-dependent proba-
bility of failure of component i is given by

P}(fm [e) = Pr{gi(Xa Y([)v t) > Oa dre [t07 te]} (4)

where “ 3 means “there exists.”

After introducing the time-dependent factors into the limit-state
functions, the system probabilities of failure given in Eqgs. (1) and
(2) are rewritten as follows:

p;-eries(l‘()7 l‘g) = PI'{U g,(X Y(l‘,’)7 l‘,‘) > O, dt; € [to, l‘g]} )

PR (1o, 1) = Pr{ngi(X, Y(1:), 1)) > 0, 3t € [to, ]} (6)

The above equations can also be written in terms of global
extreme values as

pjf-e'ies(to, t,) = Pr{UGM™ = max [gi(X, Y(#:), ;)] >0} (7)

ti€lto, 1]

PR (1o, 1) = Pr{NG™ = max [g(X, Y(1;), ;)] >0} (8)

1;€lto, 1)

Due to the involvement of correlations over time and global
optimizations (if Eqgs. (7) and (8) are used), estimating the time-
dependent system failure probability is much more complicated
than estimating time-independent system failure probability.
Although methods have been proposed based on the assumptions
and simplifications, such as the Poisson process assumption [17]
and bounding formulas [14], accurate and efficient estimation of
the time-dependent system probability of failure is still a challeng-
ing issue. In Sec. 3, we present a new method for time-dependent
system reliability analysis, which is able to approximate the time-
dependent probability of failure accurately and efficiently if the
FORM is applicable for the instantaneous component reliability
analysis.
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3 Time-Dependent System Reliability Analysis Using
Random Field Discretization

Reliability analysis from the random field discretization per-
spective has been investigated by Hu and Du [13] for the time-
dependent component reliability analysis. Here, we further extend
the idea to time-dependent system reliability analysis. In this sec-
tion, we first provide an overview of the proposed method. After
this, detailed implementation procedures are explained.

3.1 Overview of the Proposed Method. As indicated in
Fig. 1, a typical time-dependent system reliability analysis prob-
lem can be decomposed into a three-level analysis problem. The
three levels are: level one—component-level analysis with uncer-
tain inputs, level two—system-level response modeling, and level
three—reliability analysis based on the system topology and sys-
tem response modeling. Since the component-level analysis usu-
ally relies on computer simulations, how to reduce the
computational effort spent on the level one analysis has been an
active research topic. Most of the system reliability analysis meth-
ods implement an integrated framework, in which lower level
analyses are affected by the higher level analysis method [15]. In
the integrated framework, the complexity of the system reliability
analysis will increase with the complexity of any of the three lev-
els. For instance, a system with complicated topology (level three)
will make the overall system reliability analysis complicated even
if the component-level analysis (level one) is simple. Since the
level one analysis (time-dependent component reliability analysis)
is already computationally intensive (if finite-element simulation
is employed), solving the three levels together for time-dependent
system reliability analysis is very challenging.

In this paper, we perform the three levels of analyses sepa-
rately. The system response is modeled as a random field based on
the component-level analysis. The component-level analyses
(level one) are performed only at some specific time instants
required by the system-level random field modeling (level two).
Based on the random field modeling, the reliability analysis is
conducted based on the system topology (level three) to estimate
the time-dependent system reliability. Since the component-level
analysis (level one) at specific time instants is a time-
instantaneous reliability analysis problem, it has been intensively
studied during the past decades. In this paper, we mainly focus on
the level two analysis (system-level random field modeling). It is
a critical part of the time-dependent system reliability analysis
since it is a connection between the level one and three analyses.
In Sec. 3.2, we will discuss why the system response can be mod-
eled as a random field and how it can be accomplished.

3.2 System Response as a Random Field. A random field is

defined over a parameter space of dimensionality at least once.

System reliability
I S

Level three System reliability analysis

[ S

Level two System response modeling

[ S

Component-level analysis
Random inputs Xﬁ Y(t)ﬁ tﬁ

Fig. 1 Three-level illustration of time-dependent system reli-
ability analysis

Level one
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The term “field” is used when modeling stochastic variability over
space, and the term “process” is used when modeling stochastic
variability over time. For a random field F(x, 0), where x are
dimensional parameters and 0 denotes the randomness of the field,
F(x, 0) is a random variable for any given point, x). For any
given 0", F(x, 0) is a realization of F(x, 0).

Assume that there are n components in a system with limit-
state functions given by G;(t) = ¢;(X, Y(¢), 1), i=1,2,..., n. It
is clear that G;(¢) is a random variable at a specific time instant z.
The response of the n-component system therefore consists of n
correlated random variables. Considering both time and compo-
nent index as coordinates, the overall system response G is a two-
dimensional random field. That is, the response G is a random
variable for any given values of component index i and time
instant 7. Fixing the time at a specific time instant, the system is a
discrete random field with component index as the dimensional
parameter. Fixing the component index, the system is a continu-
ous random field (i.e., stochastic process) with time as the dimen-
sional parameter. Note that, G is a two-dimensional mixed
discrete and continuous random field (discrete over components
and continuous over time).

In terms of notation, the system response can be modeled as a
two-dimensional random field G(d, 6), where 6 represents the
randomness of the random field and d is the vector of coordinates,
denoted as d = [i, 7], where i is the component index and 7 is time.

3.3 Modeling of System Random Field Response. Since the
limit-state functions G;(r) = g;(X, Y(¢),1), i=1,2,---, n are
usually nonlinear functions of random variables X, stochastic
processes Y(7), and time 7, G(d, 0) is in general a non-Gaussian
nonstationary random field. Directly modeling this two-
dimensional random field is difficult. However, a general non-
Gaussian random field G(d, 0) can be mapped into an equivalent
Gaussian random field, L(d, 0), as below:

L(d, 0) = 7' [F5(G(d, 0))] ©)

where @' [-] is the inverse cumulative density function (CDF) of
a standard normal variable and F;(-) is the CDF of random field
G(d, 0) at point d.

The above equation is for a random field with known statistical
information. In time-dependent system reliability analysis, how-
ever, the statistical information on G(d, 0) is not explicit. It is
governed by G;(t) = ¢:(X, Y(¢), 1), i =1, 2, ---, n. To make the
modeling of G(d, ) possible, we map the non-Gaussian random
field G(d, 0) into an equivalent Gaussian random field L(d, 0)
based on the following probability equivalency:

Pr{G(d, 0) > 0} ~ Pr{L(d, 0) > 0} (10)

In this paper, the mapping from G (d, 6) to L(d, 6) is achieved
through the use of the FORM.

3.3.1 Mapping G(d, 0) to L(d, 0). Recall that for a given
point d; = [i, #;] in the two-dimensional domain of G(d, 0), the
corresponding non-Gaussian random response G(d;, 0) is given
by G(d;, 0) = gi(X, Y(r1), #;). In order to transform G(d,, 0)
into L(d,, 0) as indicated in Eq. (10), the most probable point
(MPP) of Pr{G(dy, 0) = g/(X, Y(t1), ;) > O} is first estimated
by solving the following optimization:

min|ul|
u 1D

&i(T(w), 1) <0
where T(-) stands for an operator that transforms Gaussian ran-
dom variables U = [Uy, Uy(#;)] to original random variables, X
and Y(#;), and w=[uy,uy(#;)] is a realization of
U= [Ux7 Uy(l‘])].

At the obtained MPP, u*(d,) = [uf, uj], we have the following
probability equivalency:
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Pr{G(dy, 0) = g:/(X, Y(t1), 1) > 0} ~ Pr{a(d;)U" — p(d,) > 0}
12)

where a(d;) = —u”(d;)/[[u*(dy)[| and f(d,) = [ju*(d)]]._

Thus for any given point d; in the domain of G(d, 6), G(d;, 6)
can be mapped into a Gaussian response L(d;, 0) = a(d;)UT —
f(d;) using FORM. If the FORM is performed at every point of
G(d, 0), G(d, 0) can be mapped into the equivalent Gaussian ran-
dom field L(d, 0). Performing FORM at every point, however, is
computationally very expensive. To reduce the computational
cost, we model the equivalent Gaussian random field L(d, 0) by
following the approach presented in Ref. [13].

3.3.2 Modeling of the Equivalent Random Field. L(d, 0) is a
Gaussian random field. During the past several decades, many
approaches have been proposed for the modeling of Gaussian ran-
dom fields, such as Karhunen-Loe¢ve (KL) and polynomial chaos
expansions (PCE), the shape function method [23], optimal linear
estimation, expansion optimal linear estimation (EOLE) [23], and
proper orthogonal decomposition [24]. A review about the model-
ing of Gaussian random fields is available in Ref. [23]. Among
these methods, the dominant approach to model the random field
using its important features is as follows:

L, 0) ~ py (@) + (@) S EO@ (%)
i=1

where f; (d) is the mean value function of the random field
L(d, 0), or(d) is the standard deviation of L(d, 0), &, i=
1, 2, ---, r are independent random variables, y;(d) is the ith im-
portant feature, and r is the number of important features used to
model the random field. Each realization of &;(0),i =1, 2, ---, r,
gives a realization of the random field. The number of important
features is determined according to the magnitude of the eigenval-
ues obtained from the covariance matrix as given in Eq. (14).

In order to obtain the important features of the random field
L(d, 0), the EOLE method is employed in this paper since it is
more efficient than the KL expansion method. In the EOLE
method, the domain of the random field is first discretized. Since
the random field G(d, 0) is a mixed discrete and continuous ran-
dom field, L(d, 0) is a mixed random field as well. In order to
implement the EOLE method, we discretize the continuous
dimension (time) into s points. After combining the s points of
time with the discrete component indices, we have n x s points in
the domain of L(d, ), where n is the number of components.
Denoting these points as d;, - - -, d,;, we have the following cor-
relation matrix:

pr(dy, di)
pr(dz, dy)

pr(di, d2)
pr(dz, do)

pr(di; dys)

pr(da; dys)

T = (14)

prdus, di)  pp(ds, d2) PL(dus, dis) /' ns
in which p; (d;, d;) is the correlation between two points d; and d;
in the domain of L(d, 0).

We then perform eigenvalue and eigenvector analysis for the
correlation matrix. Let n =[5, 2, .., 1,,] be the obtained eigen-
values and ¢, ¢,, ..., ¢, be the associated eigenvectors, we then
rank the eigenvalues and eigenvectors according to the magnitude
of eigenvalues [25]. According to the rank of eigenvalues, we
select the first  largest eigenvalues and corresponding eigenvec-
tors to construct important features for L(d, 0). In the EOLE
method, the important feature y,(d) is given as a function of
eigenvalue and eigenvector as follows:

1:(d) = &l p.(d)/ V1;
where pL(d) = [pL(d7 dl)7 pL(d7 d2)7 R pL(da dns)}T'

15)
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The Gaussian random field L(d, 0) is then represented as [13]

Z &i(0)yi(d) = . (d)

¢T p(d

L((jl7 9) ~ +GL

Zc,

inwhichd = [}, 1, € {1, 2, - -,
equation, &, i=1,2,---,
variables.

In the above modeling process of the equivalent random field
L(d, 0), the mean, standard deviation, and the correlation func-
tions are required. From the property of FORM, the mean and
standard deviation of L(d, 6) are given as

trga,0) = —B(d)

+or(d (16)

)/V1i)
n},and t € [y, t,]. In the above
r are independent standard normal

an

or(,0 =1 (18)

where f3(d) is the reliability index obtained from MPP at point d.
The correlation p, (d;, d;) between any two points d; and d; of
the L(d, 0) is given by

pr(di, dj) = ax(d;)a (d)) +ay(di)py (1, f)ay(d) — (19)

where o (di)=—uy (d;)/ u"(d)|], ~ax(d;)=—ux(d;)/[u" (d;)]].
av(d)= —up(d)/|[uw (@), ay(d)=—uj(d,)/u(d)]]. u(d,).
and u*(d;) are MPPs obtained from MPP search at points d and
d;, and py(7;,¢;) is given by

py,(tis ;) 0 - 0
oy (i1 1) = () 0 (20)
0 0 PY,n (tfv tf) m2xm2

in which m2 is the number of stochastic processes in the system
inputs and py, (1, ) is the correlation function of stochastic pro-
cess Y;(t).

During the modeling of L(d, 0), Egs. (17)—(20) repeatedly eval-
uated the limit-state functions. The computational effort is still
very intensive. In order to reduce the number of function evalua-
tions in the limit-state functions, we construct surrogate models

for p; (d) = —B(d) and p, (di, d,).

3.3.3 Surrogate Models of f(d) and p,(d;, d;). There are
many surrogate model methods available, such as PCE method,
support vector machine, and kriging [26]. Since the input varia-
bles d are mixed discrete and continuous variables with compo-
nent index being discrete and time being continuous, the surrogate
model employed must be able to accommodate these two kinds of
variables. Swiler et al. studied the surrogate model approaches for
mixed discrete-continuous variables [27]. Results from their test
problems indicate that the adaptive component selection and
shrinkage operator method and the kriging model with special cor-
relation functions generally performed well and the latter is the
most consistent [27]. In this paper, we therefore use the kriging
model with spatial correlation functions to construct the surrogate
model for f(d) and p; (d;, d;). The developed method, however,
is not limited to the kriging model.

(a) Design of experiments: In order to generate the training
points for surrogate models, we first uniformly discretize
the time interval [y, #,] into nt points. Combining the nt
time points with the component index, we have the follow-
ing training points

dt(l Dnt+j — [l ll} @n
where dfl;l)m ., stands for the (i — 1)nt-+jth training point, where
i=1,2,---,n and ti=1ty+jl(te —to)/nt],j=1,2,---, nt.
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Note that the superscript “¢” indicates training points, not trans-
pose.

For each training point d{;_,
using the following equation:

minu]
gi(T(u), l/) <0

It should be noted that G; = g;(T(u), ;) is the limit-state
function of component i. From the n x nt MPP searches, we
oban § = (), (@), - (0] and f = o), (),

.. s a ;

(b) Surrogate models of f(d) and p, (d;, d;) : With the training
points d’ and the corresponding reliability indices f', a sur-
rogate model can be constructed for ff(d) using the kriging
approach. Details about the kriging model method are
available in Ref. [26]. Constructing the surrogate model for
p.(d;, d;) is different from that for f(d). This is a four-
dimensional surrogate model with symmetric geometry.
From the design of experiments, we have training points of
d’ and o'. These training points, however, cannot be applied
to the surrogate modeling of p; (d;, d;) directly. The train-
ing points of p;(d;, d;) are obtained by combining all
points in d’ ; we therefore have

arij» a0 MPP search is performed

(22)

dd’ = [d}, d}], Yk, [=1,2, -, nxnt (23)

For each element of dd’ = [d}, dj], the corresponding correla-
tion p; (d}, dj) is computed using Eq. (19) by substituting e(d})
and a(d)) into the equation.

Since p; (d;, d;) = 1 for any point d; in the domain of the surro-
gate model p; (d;, d;), we can add extra training points along the
line d; = d; of the surrogate model without calling the limit-state
functions. Based on the training points dd’ = [d, dj] and

"=p (dj, d)),Vk, I=1,2,---, nxnt, the surrogate model
p.(d;, d;) is constructed using the kriging approach.

(c) Flowchart of constructing the surrogate model: After the
surrogate models of f(d) and p,(d;, d;) are constructed,
the accuracies of the surrogate models are verified by ana-
lyzing the maximum mean square errors (MSE) of the sur-
rogate models. Figure 2 shows a brief flowchart for the
surrogate modeling of f(d) and p, (d;, d;).

Based on the surrogate models of 4(d) and p, (d;, d;), the equiv-
alent random field L(d, 0) is modeled using Egs. (13)-(16). Next,
we discuss how to perform time-dependent system reliability analy-
sis based on logistical analysis on the equivalent random field.

3.4 Reliability Analysis Based on System Topology

34.1 Discretization of Equivalent Random Field L(d, 0).
Even though the equivalent random field L(d, 0) is presented as a
combination of important features as given in Eq. (16), there is no
analytical solution available for the global extreme value distribu-
tions of the nonstationary Gaussian random field. To perform
time-dependent system reliability analysis, we rely on the simula-
tion method by discretizing the equivalent random field. The time

Step 1: Training v v
points of ¢ Step 4: Training Step 6: Training
3y points of d' and B’ points of dd’ and p’ S
T
Step 2: Training 3 ¥ £
points d’ Step 5: Surrogate Step 7: S}lrrogate 5 ;D
1 model of A(d) model of /,(d;.d,) g :g
o
Step 3: MPP - v [
hes at d | Step 8: Maximum mean square error | =
searc
L |

/() and p,(d,.d )

Fig.2 Flowchart for surrogate modeling of (d) and p, (d;, d;)
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interval [f, t,] is discretized into ¢ time instants with
ti=1ty+i(te —1t0)/q, i =1, 2, ..., q. The ¢ time instants are then
combined with the n-component indexes to formulate discrete
points in the domain of L(d, 0). From the combinations, we have
di 1y = =i, 4], where i=1,2,..,n and j=1,2, ..., 4.
Assume that we generate nycs samples for the standard normal
variables &;, i =1, 2, ..., r, nmcs realizations of the random field
are obtained. Based on Eq. (16), #(d) and p;(d;, d;), and the
eigenvalue analysis given in Sec. 3.3.2, we obtain a two-
dimensional sample matrix for L(d, 0) as follows:

L(d17 1) (d27 ) L(dnq7 1)
L((:|17 2) (dz, ) L(dm]7 2)
L'lM(:s xng =
L(dy, nves) L(dy, myvics) -+ L(dyg, nvcs)
nmes Xnq
(24)

in which L(d;, j) is the jth realization of the random field at point
d; and L(d;, j), i =1, 2, ---, ng is the jth realization of the ran-
dom field. Since the discretization will not evaluate the original
limit-state function, an appropriate number of discretization points
can be determined by checking the convergence of reliability
analysis results.

3.4.2 Time-Dependent System Probability of Failure and
Failure Sequence Analyses. To perform time-dependent system
probability of failure analysis, we first define the following logical
(failure) indicator:

.. [ 1,L(d,)) >0
F(l7j) N {O> L(dHJ) <0

Since d;_y),,; = [i, 1j], realizations from L(di—1)g41, k) to
L(d(;—_1)q+¢, k) correspond to the kth realization of component i
over the time interval [fo, z,]. The time-dependent probability of
failure for component i (Eq. (4)) is therefore given by

(25)

nMcs

Pilin, 1) = max (F((i = 1)q+j. k) /mics (26)
k=1
We also define a component failure indicator as follows:
oy 1L Gi(t) = gilx, y(1), 1) >0, 3t € 1o, 1]
w0 ={4 Gl s oz wetn @

where x is a realization of X, y(¢) is a realization of Y(¢), I;(k) =
1 indicates that the realization of the response of component i is
failed over the time period [fo, 7], and /;(k) = O indicates that the
component is safe.

Since the failure event G;(¢) = g;(X, Y(¢), ) > 0 is equivalent
to the failure event L(d, 0) = a(d)UT — f(d) > 0, d = [i, 1], we
have

Ii(k) = max (F((i—=1)g+J, k)

J=1g

(28)

Based on the component safety indicator, Boolean functions are
defined for series and parallel systems. The defined functions are
given by

Ii(k) = {Gi(1:) = gi(x, y(t:),
UG;(1) = &%, y(5), ) >0, 3f €

t) >0, 3t € [t t,]
[to, te]} = Li(k) + 1;(k)
(29)

Li(k) = {
NG;(t4) = gj(x

Gi(ti) = gi(xa y(ti)y
¥(5), 4) >0, F€

) >0, 3 € [t, 1]
[to, 2]} = Li(k)I;(k)
(30)
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where (k) is the system failure indicator for the kth realization of
the system with /,(k) > 0 is failed and /,(k) = 0 is safe.

Applying the defined indicators and Boolean functions to the
time-dependent system probability of failure given in Egs. (5) and
(6), we then have

nmcs

systcm Zl /nMCS (31)
where I.(k) = 1 if I,(k) > 0, otherwise /,(k) = 0. For the series
system, I (k) = Z I;(k). For the parallel system,

I(k) =TT\, I:(k). For the combined and linked network systems,
I5(k) is defined according to the system topology. For example,
for a Wheatstone bridge system as given in Fig. 3, binary decom-
position needs to be performed first. Based on this, the original
linked network system is transformed into combined systems [28].
With the Boolean function defined according to the system topol-
ogy and Eq. (28), the system reliability is estimated using
Eq. (31). Since the computer simulations and system response
modeling are independent from the system topology (Boolean
function) in the developed method (as indicated in Fig. 1), the
application of the developed method is not limited by the topology
of the system.

Based on the sampling matrix given in Eq. (24) and the failure
indicators, the important failure sequences can also be obtained.
Since it is a byproduct of the system reliability analysis and is
quite straightforward based on the sampling matrix, we do not
provide algorithmic details for failure sequence analysis.

3.5 Implementation. This section summarizes the general
procedure for the time-dependent system reliability analysis
method based on the random field discretization. There are mainly
SiX steps:

Step 1: Generate uniformly spaced training points of ¢ over the
time interval of interest. .

Step 2: Construct surrogate models for f(d) and p,(d;, dy)
according to the procedure presented in Sec. 3.3.3.

Step 3: Perform eigenvalue and eigenvector analysis for the
correlation matrix given in Eq. (14).

Step 4: Select the eigenvectors corresponding to the r largest
eigenvalues to model the equivalent random field.

Step 5: Discretize the obtained equivalent random field and
generate samples using MCS for the random field.

Step 6: Perform time-dependent component reliability analysis,
system reliability analysis, and failure sequence analysis based
on the generated samples.

4 Error Analysis

Three main approximations are made in the proposed approach:
(1) linearization of the limit state in FORM, (2) expansion of
Gaussian random field using important features, and (3) surrogate
models for mean and correlation function of the equivalent ran-
dom field. The effects of these approximations on the reliability
analysis results are problem-dependent, affected by the system
behavior (e.g., linear versus nonlinear), available data (for random
field modeling), and computational resources (for surrogate model
training). The error in the reliability analysis result mainly comes
from the FORM approximation and surrogate model error. As

Fig. 3 An example of a network system: (a) Wheatstone bridge
system, (b) b=1,and (c) =0
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mentioned in Sec. 2.2, the developed method is applicable for
problems where the FORM is accurate for time-instantaneous reli-
ability analysis. Here, we therefore mainly focus on quantifying
the uncertainty in time-dependent reliability analysis results due
to the uncertainty of surrogate models of f(d) and p;(d;, dy).
The main idea of the error analysis is to propagate the uncertainty
in f(d) and p,(d;, dp) through the time-dependent reliability
analysis presented in Sec. 3.3. Samples of f(d) and p,(d;, d,)
are generated first. The generated samples are then propagated
through the time-dependent reliability analysis framework (Secs.
3.3 and 3.4) to get the samples of time-dependent reliability analy-
sis results. Based on this, the prediction intervals of the analysis
results are obtained.

Note that the above error analysis will not evaluate the original
limit-state functions. Only the surrogate models of f(d) and
p.(dy, d) will be evaluated.

S Numerical Examples

In this section, three examples: a series system, a parallel sys-
tem, and a combined system are used to demonstrate the effective-
ness of the proposed method.

5.1 Series System: A Function Generator Mechanism. Figure 4
shows a function generator mechanism [29]. This system consists
of two four-bar linkage mechanisms, which are used to generate a
sine and a logarithm function, respectively.

For mechanism 1 (the sine function generator), the motion input
and output are 0 and Kk = k,(B, 0), respectively, where B =
[B1,Bs, ..., B7] are the lengths of linkages of the mechanism. The
required motion output is given by

kq(0) = 60deg + 60 deg sin [0.75(0 — 97 deg)] (32)

For mechanism 2 (the logarithm function generator), the motion
input and output are y and n =n,(B, y), respectively. The
required motion output is

n4(x) = 60deglog,o[(x + 15deg) /60 deg]/log,o(2)  (33)
The motion errors of the two mechanisms are given by

&x(B, 0) = K4(B, 0) — rq(0) (34)

&n(B, %) = 1.(B, 1) = na(x) 35)

Links B, and Bs are welded together, and the two input angles
satisty
0 =62deg+y (36)

From the mechanism analysis, the following equations can be
obtained:

Fig. 4 A function generator mechanism system
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k.(B, 0) = 2arctan((fEKi‘/E£ +D2—F2)/(F. — DK))

(37

where D, = 2B4(By — Bycos(), E,= —2B;Bysin0,
F. =B} + B3 + B — B —2BB;cos .

n,(B, x) = 2arctan<(—E,1i, |E} + D} —F})/(F, _Dn)>

and

(38)
nq(x) = 60deglogo[(x + 15deg)/60deg]/log,y(2)  (39)
where D, =2B7(By —Bscosy), E,= —2BsBjsiny, and

F, =B+ B+ B2 — B2 — 2B Bscos J.

In this problem, there is no stochastic process in the input varia-
bles and the time varying factor is y. Since the statistical proper-
ties of both of the motion errors change with time, the motion
errors responses are still stochastic processes. We would like the
mechanism system to perform its intended functions over
[1os 7s) = [45 deg, 105 deg]. If any motion error is greater than its
allowable value over the angle interval of interest, the system is
considered to be failed. The system is therefore a series system
and the system probability of failure is given by

P;yStem(Xm %s) = Pr{ec(B, ;) —e1 > 0U (B, z;)

—e2 >0, 311, 7 € [0 1]} (40)
where e} = 1.4deg and e, = 1.4deg are the allowable motion
errors. Table 1 gives the parameters of example 1.

We perform time-dependent system reliability analysis using
the proposed method and a basic MCS implementation. In MCS,
the time interval is discretized into 200 time instants and 1 x 10°
samples are generated at each time instant. Since there are two
limit-state functions, the total number of function evaluations in
MCS is 4 x 10%. In the proposed method, the input angle interval
[45deg, 105deg] is divided into 15 time instants. The MPP
searches are performed 30 times to construct the surrogate models
for ff(d) and p, (d;, d;). The total number of function evaluations
for the proposed method is 1,112.

Based on the eigenvalue and eigenvector analysis, the first five
important features are used to model the equivalent random field
L(d, 0). By performing sampling on the constructed equivalent
random field, the time-dependent component probability of fail-
ure, system probability of failure, and the failure sequences are
analyzed using the formulas given in Sec. 3.4. Figures 5(a)-5(c)
show the comparison of time-dependent component probability of
failure and system probability of failure obtained from the pro-
posed method and MCS. The 95% prediction intervals of the pro-
posed method due to the surrogate model uncertainty are also
given in Fig. 5. Table 2 gives the percentage error of reliability
analysis results over the time interval of interest. The results show
that the proposed method is able to accurately approximate both
component and system time-dependent probabilities of failure.
We also perform failure sequence analysis for this example. Since
it is a series system with two components, there are only two fail-
ure sequences: component one fails first (sequence 1) and compo-
nent 2 fails first (sequence 2). Figure 5(d) gives the failure

Table 1 Parameters in example 1

By (mm) B; (mm) B3 (mm) B4 (mm) Bs (mm) Bg (mm) B7 (mm)

Mean 100 55.5 144.1 72.5 79.5 203 150.8
Std. 0.3 0.05 0.05 0.05 0.05 0.05 0.05
Dist. Normal Normal Normal Normal Normal Normal Normal

Note: “Std.” stands for standard deviation and “Dist.” for distribution.
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Fig. 5 Time-dependent system probability of failure and failure sequences: (a) component 1,
(b) component 2, (c) system, and (d) failure sequences

Table 2 Percentage error of the proposed method for the three numerical examples

Percentage error of example 1

TI (deg) [45, 48] [45,51] [45, 54] [45,57] [45, 60] [45,70] [45, 80] [45,90] [45, 100] [45, 105]
&(%) Cl 1.00 4.97 4.50 1.67 0.86 0.86 0.86 0.86 0.86 0.86
Cc2 6.77 1.07 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06
S 4.26 3.92 4.04 1.04 0.66 0.66 0.66 0.66 0.66 0.66
Percentage error of example 2
TI (yr) [0, 1] [0, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0,7] [0, 8] [0, 9] [0, 10]
&(%) Cl 4.16 0.05 0.53 1.27 091 0.99 1.51 1.76 1.28 0.74
C2 2.02 1.35 1.58 1.73 1.54 1.29 1.94 2.07 1.83 1.37
S 2.47 0.74 0.71 1.55 0.22 0.22 0.69 0.26 0.35 1.87
Percentage error of example 3
TI (years) [0, 1] [0, 2] [0, 3] [0, 4] [0, 5] [0, 6] [0, 7] [0, 8] [0, 9] [0, 10]
&(%) Cl 1.06 0.85 1.12 0.66 0.61 1.03 0.97 0.80 0.83 1.00
C2 2.98 1.74 1.60 1.49 1.50 1.66 1.55 1.48 1.67 1.55
C3 7.63 9.26 6.93 7.70 1.75 1.04 0.81 1.54 3.67 3.53
C4 0.87 0.57 1.88 4.36 1.82 2.03 0.42 0.38 0.95 3.11
C5 8.10 6.39 4.85 8.57 9.54 7.96 6.43 4.74 3.41 1.83
Co6 1.75 4.90 1.05 4.93 8.25 9.08 10.05 8.42 6.74 6.14
S 2.86 2.01 2.06 1.43 0.41 1.35 0.69 0.47 0.80 1.03

Note: “TI” indicates time interval, s(%) ” indicates the percentage error, “S” indicates the system, and C1, C2, C3, C4, CS5, and C6 indicate components

1,2,3,4,5, and 6, respectively.

sequence analysis results. It is seen that over part of the time pe-
riod, sequence 2 is more probable than sequence 1. However, for
the overall time period, sequence 1 has a higher probability than
sequence 2.

All these results indicate that the proposed method is much
more efficient than MCS for example 1. The proposed method can
generate multiple outputs from a single analysis.

5.2 Parallel System: A Daniels System. A Daniels system
subjected to a stochastic load P(#) as shown in Fig. 6 is employed
as the second example. The widths and heights of the two

Journal of Mechanical Design

l P()
Fig. 6 A Daniels system with two components
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Table 3 Parameters and variables in example 2

Variable Mean Standard deviation Distribution Autocorrelation
ay 1.3 in. 0.01 in. Normal N/A

by 1.2 in. 0.01 in. Normal N/A

an 1.3 in. 0.05 in. Normal N/A

by 1.2 in. 0.05 in. Normal N/A

Op1, Op2 36 kpsi 0.36 kpsi Normal N/A

P(1) 85 kpsi 8 kpsi Gaussian process Eq. (43)

components decrease over time at rates of k; and k,, respectively.
Each component resists a load of P(r)/2. A failure occurs when
both the components yield. The time-dependent system probabil-
ity of failure of the system is given by

pf‘s(t(% ts) = Pr{gl (X7 Y(X)7 X) > OmgQ(X7 Y(T)7 T) > Oa
Jyand T € [to, 1]} 41)
where

g,‘(X7 Y(l)7 Z) = P(Z)/Z — (a,» — 2/{1‘[)(})[ — 2/{,{)0’},,‘, wherei =1, 2
(42)

in which [f, t;] = [0, 10] years, X = [ay, by, az, b2, Op1, Op2),
Y(7) = [P(¢)], and k; = 5 x 10~*in./yr, ky = 3 x 10~%in. /yr ; and
op1 and oy are the yield strengths of components 1 and 2, respec-
tively. Table 3 illustrates the parameters in Eq. (42).

The autocorrelation function of the stochastic process P(f) is
given by

Pl (1, 1) = exp[~(nn — 1)/ (%] 43)

0.025
Proposed
*  MCS
0.02 95% prediction interval
. 0.015
e
~
001
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0 I I 1 L
0 2 4 6 8 10
Time (years)
0.014
Proposed
0.012 *  MCS
""" 95% prediction interval
0.01
< 0.008
e
" 0.006
0.004
0.002
0 1
2 4 6 8 10
Time (years)

where { = 0.5yr is the correlation length. The longer the time
interval #, — 1, the weaker is the autocorrelation.

We perform the time-dependent system reliability analysis
using the proposed method as well as MCS. In MCS, the time
interval is divided into 100 time instants. A total of 1 x 10° sam-
ples are generated at each time instant. The total number of func-
tion evaluations for MCS is 2 x 10%. In the proposed method, the
time interval is discretized into 23 time instants to satisfy the
requirement of MSE of the surrogate models. The MPP searches
are performed 46 times. The total number of function evaluations
for the proposed method is 970. Based on the eigenvalue and
eigenvector analysis, the first 50 important features are used to
model the equivalent random field. The time-dependent compo-
nent and system probability of failure are analyzed based on the
equivalent random field. Figures 7(a)-7(c) present the results
comparison between the proposed method and the MCS. Similar
as example 1, we also give the 95% prediction interval of the anal-
ysis results in Figs. 7(a)-7(c). Figure 7(d) gives the results of fail-
ure sequence analysis. The percentage errors of reliability analysis
result over the time interval of interest are given in Table 2.

The results show that the proposed method can effectively ap-
proximate the time-dependent component and system probability
of failure. For example 2, the failure sequence (2, 1) has a higher
probability than the failure sequence (1, 2) for time period after
1.1yr.

5.3 A Combined System: Six-Bar Indeterminate Truss. A
six-bar indeterminate truss as presented in Fig. 8 is used as the
third example. This example is modified from Ref. [30]. The fail-
ure of the truss is defined as the failure of any two bars. The sys-
tem is therefore a combined system. Due to corrosion, the radii of
the six bars decrease at the rates of k;=5x 107" in./yr,
ky=3%10"* in/yr, ks=3x10"* infyr, ky=3 x 10~* in./fyr,
ks=3x10"*in./yr, and k¢ =3 x 10™* in./yr, respectively.

x10°
9
Proposed
811« wmcs
i 95% prediction interval

FAUR)
W

Sequence 1
Sequence 2 [1

0.9

Probability

-,
............
.......................

Time (years)

Fig. 7 Time-dependent system probability of failure and failure sequences of example 2: (a)
component 1, (b) component 2, (c) system, and (d) failure sequences
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(a)

Fig. 8 (a) A six-bar indeterminate truss and (b) system
configuration

The limit-state functions for the six bars are given as follows by
assuming that the two diagonal members carry equal loads:
(X, Y(2), 1) = 0.707P (1) — n(r; — kit)?o;, fori=1,2 (44)

(X, Y(1), 1) = 0.5P(t) — n(r; — kit)*0;, fori =3, 4,5 and6

(45)
0.04
Proposed ‘
0.035f| * MCS
""" 95% prediction interval

0.03 |
= 0.025
S
T 0.021

in which r; and ry follow N(2.5, 0.052) in., r3 to rs follow

N(2.3,0.05%) in., the yield strength of each bar (¢; to g) is

assumed to follow a normal distribution with mean of 36 kpsi and

standard deviation of 3 kpsi, and P(r) is a Gaussian stochastic pro-

cess with mean of 700 kpsi, standard deviation of 70 kpsi, and
correlation function given by

P 2

p (1, o) = exp[—(22 — 11)7] (46)

The overall limit-state function for time-dependent system reli-

ability analysis is given by

pr(to, t,) = Pr{([gj 86X, Y(1), ;) > 0U g;(X, Y(3;), t;) > 0], Vi,
J=1,2,...,6)3,k=1,2,---,6 € [19, t(.}}

47

Similar to examples 1 and 2, we perform time-dependent sys-

tem reliability analysis with the proposed method as well as MCS.
In the proposed method, the equivalent random field is modeled

0.04
Proposed
0.035 = MCS
_____ i o e s
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Fig. 9 Time-dependent component probability of failure: (a) component 1, (b) component 2, (¢)
component 3, (d) component 4, (e) component 5, and (f) component 6
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Fig. 10 Time-dependent system probability of failure

by the first 55 important features. The numbers of function evalua-
tions for the proposed method and the MCS are 2005 and
1.2 x 10°, respectively. Figure 9 shows the time-dependent com-
ponent probability of failure of the six bars. Figure 10 gives the
comparison of time-dependent system probability of failure.

The results indicate that the proposed method can effectively
estimate the time-dependent system probability of failure even for
a combined system. The failure sequence analysis results show
two important failure sequences of example 3 are (1, 2) and (2, 1).
Note that the stochastic loads used in examples 2 and 3 are all
Gaussian stochastic processes. Since the developed method does
not make any assumptions about distributions of random variables
and stochastic processes, the developed method is still applicable
when non-Gaussian stochastic processes are involved.

6 Conclusion

Previous studies on the time-dependent system reliability have
investigated approximations by bounding the system reliability
with the bivariate responses and by assuming the stochastic load-
ing as a Poisson process. This paper overcomes both these approx-
imations. Since the system responses are correlated over both
components and time, this paper models them as a time-
dependent discrete random field. The FORM is performed at spe-
cific points and components selected by design of experiments.
Based on the FORM analysis, the system response is mapped into
a discrete-continuous Gaussian nonstationary random field based
on only the dominant important features. The time-dependent
component probability of failure, system probability of failure,
and important failure sequences are then obtained from the equiv-
alent random field.

The proposed method does not require global optimization with
respect to time, which is usually required in nested methods for
time-dependent reliability analysis. The outputs of the proposed
method are not just the system reliability for an interested time
interval but also the entire time-dependent reliability curve up to
that time interval. As byproducts of time-dependent system reli-
ability analysis, the proposed method also obtains the time-
dependent component reliability curves and the important failure
sequences.

The proposed method still has two main limitations even if it is
able to effectively perform time-dependent system reliability anal-
ysis for some problems: (1) The method is based on FORM. The
errors of FORM will propagate to the results of time-dependent
system reliability analysis. The proposed method is therefore lim-
ited to problems where the FORM is applicable. (2) The surrogate
models need to be constructed for the mean and correlation

101404-10 / Vol. 137, OCTOBER 2015

functions of the equivalent random field. The accuracy of the sur-
rogate models will affect the accuracy of the reliability analysis.
This second issue relates to the number of training points, whereas
the first issue needs generalization to situations where the FORM
is not accurate.

References

[1] Andrieu-Renaud, C., Sudret, B., and Lemaire, M., 2004, “The PHI2 Method: A Way
to Compute Time-Variant Reliability,” Reliab. Eng. Syst. Saf., 84(1), pp. 75-86.

[2] Hu, Z., and Du, X., 2012, “Reliability Analysis for Hydrokinetic Turbine
Blades,” Renewable Energy, 48, pp. 251-262.

[3] Hu, Z., and Du, X., 2013, “Time-Dependent Reliability Analysis With Joint
Upcrossing Rates,” Struct. Multidiscip. Optim., 48(5), pp. 893-907.

[4] Preumont, A., 1985, “On the Peak Factor of Stationary Gaussian Processes,”
J. Sound Vib., 100(1), pp. 15-34.

[5] Singh, A., and Mourelatos, Z. P., 2010, “On the Time-Dependent Reliability of
Non-Monotonic, Non-Repairable Systems,” SAE Int. J. Mater. Manuf., 3(1),
pp. 425-444.

[6] Wang, Z., and Wang, P., 2012, “A Nested Extreme Response Surface Approach
for Time-Dependent Reliability-Based Design Optimization,” ASME J. Mech.
Des., 134(12), p. 121007.

[7] Hu, Z., and Du, X., 2015, “Mixed Efficient Global Optimization for Time-
Dependent Reliability Analysis,” ASME J. Mech. Des., 137(5), p. 051401.

[8] Li, J., Chen, J.-b., and Fan, W.-1., 2007, “The Equivalent Extreme-Value Event
and Evaluation of the Structural System Reliability,” Struct. Saf., 29(2), pp.
112-131.

[9] Jiang, C., Huang, X., Han, X., and Zhang, D., 2014, “A Time-Variant Reliabil-
ity Analysis Method Based on Stochastic Process Discretization,” ASME J.
Mech. Des., 136(9), p. 091009.

[10] Du, X., 2014, “Time-Dependent Mechanism Reliability Analysis With Enve-
lope Functions and First-Order Approximation,” ASME J. Mech. Des., 136(8),
p. 081010.

[11] Singh, A., Mourelatos, Z., and Nikolaidis, E., 2011, “Time-Dependent Reliabil-
ity of Random Dynamic Systems Using Time-Series Modeling and Importance
Sampling,” SAE Int. J. Mater. Manuf., 4(1), pp. 929-946.

[12] Wang, Z., Mourelatos, Z. P., Li, J., Baseski, I., and Singh, A., 2014, “Time-
Dependent Reliability of Dynamic Systems Using Subset Simulation With
Splitting Over a Series of Correlated Time Intervals,” ASME J. Mech. Des.,
136(6), p. 061008.

[13] Hu, Z., and Du, X., 2015, “First Order Reliability Method for Time-Variant
Problems Using Series Expansions,” Struct. Multidiscip. Optim., 51(1),
pp. 1-21.

[14] Hagen, @., and Tvedt, L., 1991, “Vector Process Out-Crossing as Parallel Sys-
tem Sensitivity Measure,” J. Eng. Mech., 117(10), pp. 2201-2220.

[15] Song, J., and Der Kiureghian, A., 2006, “Joint First-Passage Probability and
Reliability of Systems Under Stochastic Excitation,” J. Eng. Mech., 132(1),
pp. 65-77.

[16] Radhika, B., Panda, S., and Manohar, C., 2008, “Time Variant Reliability Anal-
ysis of Nonlinear Structural Dynamical Systems Using Combined Monte Carlo
Simulations and Asymptotic Extreme Value Theory,” Comput. Model. Eng.
Sci., 27(1-2), pp. 79-110.

[17] Dey, A., and Mahadevan, S., 2000, “Reliability Estimation With Time-Variant
Loads and Resistances,” J. Struct. Eng., 126(5), pp. 612-620.

[18] Ditlevsen, O., 1979, “Narrow Reliability Bounds for Structural Systems,”
J. Struct. Mech., 7(4), pp. 453-472.

[19] Hohenbichler, M., and Rackwitz, R., 1983, “First-Order Concepts in System
Reliability,” Struct. Saf., 1(3), pp. 177-188.

[20] Dey, A., and Mahadevan, S., 1998, “Ductile Structural System Reliability Anal-
ysis Using Adaptive Importance Sampling,” Struct. Saf., 20(2), pp. 137-154.

[21] Youn, B. D., and Wang, P., 2009, “Complementary Intersection Method for
System Reliability Analysis,” ASME J. Mech. Des., 131(4), p. 041004.

[22] Wang, Z., and Wang, P., 2015, “An Integrated Performance Measure Approach
for System Reliability Analysis,” ASME J. Mech. Des., 137(2), p. 021406.

[23] Sudret, B., and Der Kiureghian, A., 2000, “Stochastic Finite Element Methods
and Reliability: A State-of-the-Art Report,” Department of Civil and Environ-
mental Engineering, University of California, Berkeley, CA, Technical Report
No. UCB/SEMM-2000/08.

[24] Amsallem, D., and Farhat, C., 2012, “Stabilization of Projection-Based
Reduced-Order Models,” Int. J. Numer. Methods Eng., 91(4), pp. 358-377.

[25] Xi, Z., Youn, B. D., and Hu, C., 2010, “Random Field Characterization Consid-
ering Statistical Dependence for Probability Analysis and Design,” ASME J.
Mech. Des., 132(10), p. 101008.

[26] Santner, T. J., Williams, B. J., and Notz, W., 2003, The Design and Analysis of
Computer Experiments, Springer, New York.

[27] Swiler, L. P., Hough, P. D., Qian, P., Xu, X., Storlie, C., and Lee, H., 2014,
“Surrogate Models for Mixed Discrete-Continuous Variables,” Constraint Pro-
gramming and Decision Making, Springer, Cham, Switzerland, pp. 181-202.

[28] Wang, P., Hu, C., and Youn, B. D., 2011, “A Generalized Complementary
Intersection Method (GCIM) for System Reliability Analysis,” ASME J. Mech.
Des., 133(7), p. 071003.

[29] Zhang, J., and Du, X., 2011, “Time-Dependent Reliability Analysis for Func-
tion Generator Mechanisms,” ASME J. Mech. Des., 133(3), p. 031005.

[30] McDonald, M., and Mahadevan, S., 2008, “Design Optimization With System-
Level Reliability Constraints,” ASME J. Mech. Des., 130(2), p. 021403.

Transactions of the ASME

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 09/13/2015 Terms of Use: http://www.asme.or g/labout-asme/ter ms-of-use


http://dx.doi.org/10.1016/j.ress.2003.10.005
http://dx.doi.org/10.1016/j.renene.2012.05.002
http://dx.doi.org/10.1007/s00158-013-0937-2
http://dx.doi.org/10.1016/0022-460X(85)90339-6
http://dx.doi.org/10.4271/2010-01-0696
http://dx.doi.org/10.1115/1.4007931
http://dx.doi.org/10.1115/1.4007931
http://dx.doi.org/10.1115/1.4029520
http://dx.doi.org/10.1016/j.strusafe.2006.03.002
http://dx.doi.org/10.1115/1.4027865
http://dx.doi.org/10.1115/1.4027865
http://dx.doi.org/10.1115/1.4027636
http://dx.doi.org/10.4271/2011-01-0728
http://dx.doi.org/10.1115/1.4027162
http://dx.doi.org/10.1007/s00158-014-1132-9
http://dx.doi.org/10.1061/(ASCE)0733-9399(1991)117:10(2201)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2006)132:1(65)
http://dx.doi.org/10.3970/cmes.2008.027.079
http://dx.doi.org/10.3970/cmes.2008.027.079
http://dx.doi.org/10.1061/(ASCE)0733-9445(2000)126:5(612)
http://dx.doi.org/10.1080/03601217908905329
http://dx.doi.org/10.1016/0167-4730(82)90024-8
http://dx.doi.org/10.1016/S0167-4730(97)00033-7
http://dx.doi.org/10.1115/1.3086794
http://dx.doi.org/10.1115/1.4029222
http://dx.doi.org/10.1002/nme.4274
http://dx.doi.org/10.1115/1.4002293
http://dx.doi.org/10.1115/1.4002293
http://dx.doi.org/10.1007/978-1-4757-3799-8
http://dx.doi.org/10.1007/978-1-4757-3799-8
http://dx.doi.org/10.1007/978-3-319-04280-0_21
http://dx.doi.org/10.1007/978-3-319-04280-0_21
http://dx.doi.org/10.1115/1.4004198
http://dx.doi.org/10.1115/1.4004198
http://dx.doi.org/10.1115/1.4003539
http://dx.doi.org/10.1115/1.2813782

	s1
	s2
	s2A
	l
	FD1
	FD2
	s2B
	FD3
	FD4
	FD5
	FD6
	FD7
	FD8
	s3
	s3A
	s3B
	1
	s3C
	FD9
	FD10
	s3C1
	FD11
	FD12
	s3C2
	FD13
	FD14
	FD15
	FD16
	FD17
	FD18
	FD19
	FD20
	s3C3
	FD21
	FD22
	FD23
	s3D
	s3D1
	2
	FD24
	s3D2
	FD25
	FD26
	FD27
	FD28
	FD29
	FD30
	FD31
	s3E
	s4
	3
	s5
	s5A
	FD32
	FD33
	FD34
	FD35
	FD36
	FD37
	FD38
	FD39
	FD40
	4
	1
	T1n1
	s5B
	5
	2
	T2n2
	6
	FD41
	FD42
	FD43
	s5C
	3
	7
	FD44
	FD45
	FD46
	FD47
	8
	9
	s6
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	10

