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Abstract 

An essential issue in surrogate model-based reliability analysis is the selection of training 

points. Approaches such as efficient global reliability analysis (EGRA) and adaptive Kriging 

Monte Carlo simulation (AK-MCS) methods have been developed to adaptively select training 

points that are close to the limit state. Both the learning functions and convergence criteria of 

selecting training points in EGRA and AK-MCS are defined from the perspective of individual 

responses at Monte Carlo samples. This causes two problems: (1) some extra training points are 

selected after the reliability estimate already satisfies the accuracy target; and (2) the selected 

training points may not be the optimal ones for reliability analysis. This paper proposes a Global 

Sensitivity Analysis enhanced Surrogate (GSAS) modeling method for reliability analysis. Both 

the convergence criterion and strategy of selecting new training points are defined from the 

perspective of reliability estimate instead of individual responses of MCS samples. The new 

training points are identified according to their contribution to the uncertainty in the reliability 

estimate based on global sensitivity analysis. The selection of new training points stops when the 

accuracy of the reliability estimate reaches a specific target. Five examples are used to assess the 

accuracy and efficiency of the proposed method. The results show that the efficiency and 

accuracy of the proposed method are better than those of EGRA and AK-MCS. 
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1. Introduction 

Reliability analysis predicts the reliability of a product based on available knowledge about 

the relationship between system response, inputs, and variations in the inputs [1]. In engineering 

applications, the relationship between system response and inputs is often available through 

computer simulation models, such as finite element analysis (FEA) and computational fluid 

dynamics (CFD) models. Since physics simulation models are computationally intensive, a 

crucial issue in reliability analysis is how to predict reliability with fewer function evaluations, 

i.e., fewer runs of the expensive physics simulations. Two classical and widely used methods are 

the First-Order Reliability Method (FORM) and Second-Order Reliability Method (SORM) [1, 

2]. These two methods approximate the system performance function at a single point called the 

Most-Probable Point (MPP). For response functions with highly nonlinear behaviors or 

multimodal distribution properties, the accuracy of FORM and SORM may not be acceptable. In 

this situation, Monte Carlo sampling based on the surrogate model is a promising way [3, 4], 

where surrogate models are inexpensive substitutes for the original expensive physics simulation 

models.  

 During the past decades, various surrogate model-based reliability analysis methods have 

been developed and may be roughly classified into three groups. The first group consists of 

methods based on the polynomial chaos expansion (PCE) [5, 6]. For example, Paffrath and 

Wever proposed a shifted and windowed Hermite polynomial chaos method to enhance the 

accuracy of small failure probability analysis [7]. Blatman and Sudret developed an adaptive 

algorithm to efficiently build a sparse polynomial chaos expansion of a mechanical model with 

random inputs [8]. To reduce the number of bivariate basis functions in expansion, Hu and Youn 

integrated sparse polynomial chaos expansion with dimension reduction techniques [9]. The 
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second group of methods relies on Kriging or Gaussian process (GP) models. Examples of 

Kriging-based methods include the Efficient Global Reliability Analysis (EGRA) method 

proposed by Bichon et al. [10], the Adaptive Kriging Monte Carlo simulation (AK-MCS) 

method developed by Echard et al. [11], combined importance sampling and adaptive Kriging 

[12, 13], and Kriging-based quasi-optimal importance sampling [14]. The third group is based on 

Support Vector Machines (SVM). In this group, samples are classified into safe or failed using 

SVM. For instance, Basudhar and Missoum applied SVM to construct explicit limit state 

boundaries [15], and also to identify disjoint failure domains and limit state boundaries for 

continuous response [16]. Bourinet et al. combined subset simulation and SVMs to assess small 

failure probabilities [17]. Along with the above three types of surrogate model techniques, other 

types of surrogate models such as quadratic response surfaces [18] and neural networks [18] 

have also been studied in reliability analysis.  

In this paper, we focus on the Kriging-based method. Since being proposed in the area of 

geosciences [19] in the middle of the nineteenth century, Kriging models have been intensively 

studied in many other fields during the past decades. Reliability analysis using Kriging models 

has been investigated in [11-14] as mentioned above. Amongst these methods, EGRA and AK-

MCS methods are two representative approaches that dramatically improve the efficiency of 

reliability analysis. These two methods implement a similar procedure. An initial surrogate 

model is constructed first by using Kriging with a few initial training points. Then new training 

points are identified adaptively based on learning functions. In the EGRA method, an Expected 

Feasibility Function (EFF) is defined as the learning function. In the AK-MCS method, a U 

function is defined. Both the EFF and U functions are used to quantify how close the training 

point is to the limit state. By adding more training points in the region of the limit state, the 
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required number of training points for reliability analysis is reduced. However, in these two 

methods, it is observed that some unnecessary training points (those points that bring no change 

to the results of reliability analysis as shown in the numerical examples (the points labeled as red 

“+” in Figs. 8, 9, 16, and 17)) are identified close to the limit state for two reasons. The first one 

is that the convergence criterion of the learning function (i.e. EFF and U) is defined from single 

system responses of individual MCS samples but not from the aspect of reliability analysis 

accuracy. Even if the response of one single sample cannot satisfy the requirement of learning 

function defined in AK-MCS and EGRA, it does not mean that the reliability analysis accuracy 

cannot satisfy the requirement. As indicated in Figs. 6, after iteration 18, the reliability analysis 

result is already very close to the true value, but EGRA keeps adding new training points. The 

added new training points, however, almost bring no change to the reliability analysis results. 

After removing those unnecessary training points, it can be seen in Figure 8 that the limit state 

learned from EGRA almost does not change. Similar phenomenon is observed for AK-MCS. The 

other reason is the way of selecting new training points. In both AK-MCS and EGRA, a new 

training point is selected independently without considering its correlation with other training 

points (points used to construct surrogate model) and samples (candidate points from which the 

training point is selected) around it. The selected training points without considering this 

correlation may not be the optimal ones. This phenomenon comes from the definition of learning 

functions defined in EGRA and AK-MCS. More detailed discussions about the limitation of AK-

MCS and EGRA are given in Sec. 3.1.1.  

This paper proposes a Global Sensitivity Analysis enhanced Surrogate (GSAS) model 

method for reliability analysis. The method is based on two main ideas: (1) Uncertainty 

quantification of the reliability estimate. The uncertainty in the prediction of the Kriging model 
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is propagated through the failure indicator model to quantify the uncertainty in the failure 

probability estimate. (2) Selection of new training points by analyzing their contributions to the 

uncertainty of the reliability estimate. Correlation between samples from which new training 

points are selected is considered during the uncertainty contribution analysis of each sample 

point. Based on these two ideas, training points are selected such that they have the most 

significant impact on the ultimate objective — estimation of reliability. Based on these two ideas, 

unnecessary training points identified in EGRA and AK-MCS are effectively eliminated. The 

efficiency of reliability analysis is therefore improved.  

The paper is organized as follows. Section 2 provides a brief review of the Kriging surrogate 

model method and reliability analysis approaches based on adaptive Kriging models. Section 3 

introduces the proposed surrogate model method based on global sensitivity analysis. Section 4 

summaries the main procedure and algorithms of the proposed method. Five examples are used 

to demonstrate the effectiveness of the proposed method in Section 5. Following that, 

conclusions remarks are given in Section 6. 

 

2. Kriging-based reliability analysis 

2.1.  A brief review of Kriging models 

In Kriging models, the performance function ( )g x  is assumed to be a realization of a 

Gaussian process (GP), ( )G x , given by [20] 

 ( ) ( ) ( )TG x f x β x    (1) 

where 1 2[ , , , ]T

pβ     is a vector of unknown coefficients, 1 2( ) [ ( ), ( ), , ( )]T

pf f ff x x x x   

is a vector of regression functions, ( )T
f x β  is the trend of prediction or mean of the GP, and ( )x  

is assumed to be a GP with zero mean and covariance ( ) ( )[ ( ), ( )]i jCov x x  .  
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( ) ( )[ ( ), ( )]i jCov x x   is given by 

 ( ) ( ) 2 ( ) ( )[ ( ), ( )] ( , )i j i jCov Rx x x x θ      (2) 

in which 2

  is the constant variance of the GP, θ  is a vector of unknown parameters, and ( , )R    

is the correlation function.  There are a variety of correlation functions available. The most 

commonly used one is the Gaussian correlation function given by [20-25] 

 
2

( ) ( ) ( ) ( )

1

( , ) exp
dn

i j i j

k k k

k

R x x θ x x


 
    

 
   (3) 

where dn  is the dimension of design variables and ( )i

kx  is the k-th element of ( )i
x .  

With k  training points, ( ) ( )

1, 2, ,
, ( )i i

i k
gx x


   , the coefficients β  is estimated by [26] 

 1 1 1( )T T
β F R F F R g

     (4)  

where R  is a correlation matrix with elements, ( ) ( )( , )i jR x x θ , , 1, 2, ,i j k , 

(1) (2) ( )[ ( ) , ( ) , , ( ) ]T T k T T
F f x f x f x , and (1) (2) ( )[ ( ), ( ), , ( )]k Tg g gg x x x . 

For a new point x , the mean prediction ( ˆ( )g x ) and mean square error (MSE) ( ˆ( ( ))MSE g x ) 

of the prediction of ( )G x  are estimated using the best linear unbiased estimation (BLUE) as 

follows [26]: 

 1ˆ( ) ( ) ( ) ( )T Tg x f x β r x R g Fβ
     (5) 

 2 1 1 1 1 1ˆ( ( )) {1 ( ) ( ) [ ( ) ( )] ( ) [ ( ) ( )]}T T T T TMSE g x r x R r x F R r x f x F R F F R r x f x
           (6) 

where   

 (1) (2) ( )( ) [ ( , ), ( , ), , ( , )]kR R Rr x x x θ x x θ x x θ      (7) 

and 

 
1

2 ( ) ( )T

k

g Fβ R g Fβ


 
   (8) 
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For the sake of illustration, in the following sections, all the hyper-parameters of the GP 

model, which include β , the variance 2

 , and parameters θ  of correlation function, are denoted 

as  . Besides, we define a new random variable ( )pG x  as the prediction at point x  conditioned 

on current training points and 2ˆ( ) ~ ( ( ), ( ))
pp GG N gx x x , where ( , )N    is normal distribution and 

ˆ( ) ( ( ))
pG MSE gx x  . The proposed method developed in this paper is based on an available 

Kriging toolbox called DACE [26]. When the roughness parameters θ  are overestimated, the 

uncertainty of prediction may be overestimated. As a result, the reliability analysis methods will 

increase the number of training points in the surrogate modeling.    

 

2.2. Reliability analysis based on Kriging models 

Once a Kriging model is built, the reliability estimation can simply be based on Monte Carlo 

sampling (MCS) with the Kriging model, since function evaluation of the Kriging model is 

inexpensive. A common way is to estimate the probability of failure based on mean predictions, 

ˆ( )g x , as follows: 

 ( )

1

1
ˆ ˆ( ( ))

N
i

f

i

p I g
N

x


    (9) 

where N  is the number of samples in MCS, and ( )ˆ( ( )) 1iI g x  , if ( )( ) 0i

g x  , otherwise 

( )ˆ( ( )) 0iI g x  .   

The boundary ˆ( ) 0g x   is commonly used to classify the samples into safe and failed 

samples. This implies that the accuracy of the failure probability estimate ˆ
fp  is mainly affected 

by the limit state or boundary ˆ( ) 0g x  . By generating more training points near the limit state or 

in the region of interest, accuracy and efficiency of reliability analysis can be improved. Inspired 
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by this idea, a group of methods have been proposed, such as EGRA [10] and AK-MCS [11], 

which construct the Kriging model ( )G x   adaptively based on learning functions. In EGRA, the 

learning function is called the expected feasibility function (EFF) and is defined as  

 

ˆ ˆ ˆ( ) ( ) ( )
ˆ( ) ( ( ) ) 2

( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
( ) 2

( ) ( ) ( ) ( )

p p p

p

p p p p

L U

G G G

L U L

G

G G G G

e g e g e g
EFF g e

e g e g e g e g

x x x
x x

x x x

x x x x
x

x x x x

  

   
   

        
          

            

          
           

             

ˆ( )

( )
p

U

G

e g x

x

   
   

       

 (10) 

in which Ue e   , Le e   , e  is the failure threshold,   is usually chose as 2 ( )
pG x  , 

and     and     are the cumulative density function (CDF) and probability density function 

(PDF) of a standard normal random variable. The EFF quantifies how well the true value ( ( )g x ) 

of  ( )pG x  at x  is expected to be at the limit state [10] . 

In AK-MCS, a U function is defined as the learning function as below 

 
ˆ( )

( )
( )

pG

g
U

x
x

x
   (11) 

The U value computed from Eq. (11) is associated with the probability (  U  ) of making 

a mistake on the sign of ( )g x  by substituting ( )g x  with ˆ( )g x  [11]. In AK-MCS, the U value of 

each sample is computed using Eq. (11) and a new training point is selected by argmin{ ( )}U x . 

The algorithm stops when min{ ( )} 2U x  .  

 

3.  GSAS method for reliability analysis 

3.1. Basic principles of the GSAS method 
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In this section, we first investigate the drawbacks of EGRA and AK-MCS. Based on that, we 

propose the basic idea of GSAS.  

3.1.1. Limitation analysis of EGRA and AK-MCS 

Recall that in surrogate model-based reliability analysis methods, the probability of failure 

ˆ
fp  is estimated based on Monte Carlo sampling as  

 ( )

1

ˆ ( ( )) /
N

i

f p

i

p I G Nx


   (12) 

where ( )i
x , 1, 2, ,i N  are sampling points from MCS.  

In above equation, ( )( ( )) 1i

pI G x  , if ( )( ) 0i

pG x  , otherwise, ( )( ( )) 0i

pI G x  . For a point ( )i
x , 

from a Kriging surrogate model, we have ( ) ( ) 2 ( )ˆ( ) ~ ( ( ), ( ))
p

i i i

p GG N gx x x , where ( )ˆ( )ig x  and 

2 ( )( )
p

i

G x  are obtained from Eqs. (5) and (6).  

Due to the uncertainty in ( )( )i

pG x , there is also uncertainty in ˆ
fp . Based on Eq. (12), the 

variance of ˆ
fp  is computed by 

( ) ( ) ( )

2
1

1
ˆ( ) ( ( ( ))) ( ( ( )), ( ( )))

N
i i j

f p p p

i i j

Var p Var I G Cov I G I G
N

x x x
 

 
  

 
   (13) 

where ( )Var   stands for variance and ( , )Cov    is the covariance.  

The variance of ˆ
fp  as indicated in Eq. (13) consists of two parts: ( )

1

( ( ( )))
N

i

p

i

Var I G x


  and 

( ) ( )( ( ( )), ( ( )))i j

p p

i j

Cov I G I Gx x


 . The first part comes from responses of individual MCS 

samples while the second part comes from the mutual effects between these individual responses. 

From Eq. (13), it is found that the learning function defined in EGRA and AK-MCS mainly 
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focuses on reducing the individual variances in the first part. There are therefore two limitations 

common to both of them, which are explained as follows. 

(1) The convergence criteria of AK-MCS and EGRA are defined from the aspect of 

individual samples and not from the aspect of reliability analysis. For instance, in the AK-MCS 

method, even though the U values of some samples are less than two, which do not satisfy the 

convergence criterion, min{ ( )} 2U x  , it does not mean that the samples cannot meet the 

accuracy requirement of reliability analysis. Also, as presented in Eq. (13), even if the variance 

of some individual inputs ( )( ( ( )))i

pVar I G x  cannot satisfy the requirement of AK-MCS or EGRA, 

it does not imply that the uncertainty of ˆ
fp  cannot satisfy the requirement. From results 

presented in the numerical examples, it can be seen that adding more training points will not 

change the failure probability estimate too much after certain iterations (Figs. 6, 14, 19, 21). 

(2) The new training point is selected independently without considering its effects on other 

samples and reliability analysis. The sample with the minimum U value is selected as the new 

training point in AK-MCS. This sample, however, may not be the optimal one when it is 

evaluated from the aspect of reliability analysis (as indicated in Eq. (13)). The optimal point 

should be the one which affects the reliability analysis result most significantly. 

 Motivated by overcoming these two limitations, a Global Sensitivity Analysis enhanced 

Surrogate (GSAS) model method is developed in this work, which further improves the 

efficiency of AK-MCS and EGRA for reliability analysis.  

3.1.2. Basic idea of GSAS 

In surrogate model-based reliability analysis methods, a widely used method is to directly use 

the mean prediction ( )ˆ( )ig x  to substitute for ( )( )i

pG x  in Eq. (12). The direct use of mean value 

will inevitably result in error in the reliability estimate if the surrogate model is not well trained. 



11 
 

The basic idea of the proposed GSAS method is treating the probability of failure estimate 

( ˆ
fp ) in a manner similar to the system output or response; and the system inputs are the random 

system responses predicted from Kriging model (as indicated in Fig. 1). By propagating the 

uncertainty in the inputs of Fig. 1 through Eq. (12), the uncertainty in the failure probability 

estimate is quantified. Based on that, a new convergence criterion is defined. In order to select a 

new training point, GSA is used to quantify the contributions of uncertainty in ( )( )i

pG x , 

1, 2, ,i N  on the uncertainty of ˆ
fp . Since ( )( )i

pG x , 1, 2, ,i N  are correlated, correlation 

between ( )( )i

pG x , 1, 2, ,i N  is considered during the GSA. A new training point is selected 

such that the reduction of uncertainty in ˆ
fp  is the most significant.  

 

 

3.2. A new convergence criterion 

In this section, we first present a conservative formula for the error estimation of reliability 

prediction. We then discuss how to estimate the error based on the uncertainty quantification of 

ˆ
fp . 

3.2.1. Formula for error estimation of reliability prediction 

In AK-MCS method, a U function is defined as in Eq. (11). A large value of U indicates a 

low probability of making an error on the sign of ˆ( )g x . The error of reliability prediction based 

on the surrogate model, therefore, mainly comes from those sampling points with small values of 

 

Eq. (12)  ˆ
fp  

(1)( )pG x  

(2)( )pG x  

( )( )N

pG x  

Fig. 1. Probability of failure estimate as a system response 
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U. For ( ) 3.1U x  , the probability of making a mistake in the sign of samples is less than 0.001. 

We therefore assume that the error in the reliability estimate mainly comes from the group of 

samples with ( ) 3.1U x  . This assumption holds since the value of 3.1 is larger than the value of 

2 used in AK-MCS [11]. Based on this assumption, we divide the samples 

(1) (2) ( )[ , , , ]MCS N
x x x x  into two groups  

1

MCS

gx  and 
2

MCS

gx . The group-one samples (
1

MCS

gx ) 

correspond to those samples with U values larger than 3.1 and the group-two samples are the 

remaining samples in MCS
x .  

Based on the group-one and group-two samples, Eq. (12) is rewritten as 

 
1 2ˆ f f

f

N N
p

N


   (14) 

where 1 1( ( ))MCS

f p gN I G x  and 2 2( ( ))MCS

f p gN I G x . 

In surrogate model-based method, the mean predictions 
1

ˆ( )MCS

gg x  and 
2

ˆ( )MCS

gg x  are usually 

used to substitute for 1( )MCS

p gG x  and 2( )MCS

p gG x ; therefore the probability of failure estimate is 

given by 

 
1 2'

ˆ ˆ
ˆ f f

f

N N
p

N


   (15) 

where 1 1
ˆ ˆ( ( ))MCS

f gN I g x  and 2 2
ˆ ˆ( ( ))MCS

f gN I g x .  

Since we assume that the error or uncertainty of ˆ
fp  comes from the group-two samples, we 

can use 1
ˆ( )MCS

gg x  to approximate 1( )MCS

p gG x  in Eq. (14). Based on that, Eq. (14) is rewritten as 

 
1 2

ˆ
ˆ f f

f

N N
p

N


   (16) 
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 Based on Eqs. (15) and (16), the percentage error of the probability of failure estimate given 

in Eq. (15) is computed as 

 

'
2 2

1 2

ˆˆ ˆ
100% 100%

ˆˆ

f ff f

r

f f f

N Np p

p N N



   


  (17) 

Eq. (14) indicates that 2fN  is a random variable bounded in the interval 2[0, ]N , where 2N  

is the number of samples in 2

MCS

gx . The maximum percentage error of failure probability estimate 

given in Eq. (15) is obtained as 

 
2 2

2 2max

[0, ]
1 2

ˆ

max { 100%}
ˆf

f f

r
N N

f f

N N

N N





 


  (18) 

Based on the error estimation of reliability analysis, we can stop the training of the surrogate 

model when the percentage error of reliability estimate satisfies our accuracy requirement.  

 

3.2.2. Error estimation based on uncertainty quantification of ˆ
fp  

The above error estimation is easy to compute but may be too conservative even if it is better 

than just using min{ ( )} 2U x   in AK-MCS. From Eq. (16), we have  

 
1 2 1 2

ˆ ( ( ))
ˆ

MCS

f f f p g

f

N N N I G
p

N N

x 
 


  (19) 

It implies that ˆ
fp  is a system response with random inputs of 

( ) ( ) 2 ( )

2 2 2
ˆ( ) ~ ( ( ), ( ))

p

MCS i MCS i MCS i

p g g G gG N gx x x , 21, 2, ,i N , where 2N  is the number of samples in 

group-two samples 2

MCS

gx   (as indicated in Fig. 2).  
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The uncertainty in r  (Eq. (17)) can be quantified based on the uncertainty quantification of 

ˆ
fp . Since the dimensionality of ( )

2( )MCS i

p gG x , 21, 2, ,i N  may be high, analytically solving 

Eq. (19) may be difficult. In this paper, sampling-based method is used. 

( )

2( )MCS i

p gG x , 21, 2, ,i N  are 2N  correlated normal variables according to the property of 

Kriging model. We therefore analyze the correlation between these random variables first. Let 

the current training points be s
x  and ( )sg x , for given hyper-parameters,  , the covariance 

matrix of 2( )MCS

p gG x  conditioned on the training points, s
x  and ( )sg x , is given by 

 1 T

pp pt tt ptp t

        (20) 

where pp , pt , and tt  are the covariance matrixes between 2( )MCS

p gG x  and 2( )MCS

p gG x , 

2( )MCS

p gG x  and ( )s

pG x , ( )s

pG x  and ( )s

pG x , respectively. 

pp , pt , and tt  are estimated by inputting the elements of the normalized 2

MCS

gx , s
x , and   

into Eqs. (2) and (3). Based on the covariance matrix 
p t

 , the correlation matrix 
p t

ρ  of 

2( )MCS

p gG x  is obtained as 

 

2

2

2 2
2 2

12 1

21 2

1 2

1

1

1

N

N

p t

N N
N N

ρ

 

 

 


 
 
 


 
 
  

  (21) 

 

Eq. (19)  ˆ
fp  

(1)

2( )MCS

p gG x  

2( )

2( )
MCS N

p gG x  

Fig. 2. Failure probability estimate with random inputs of group two samples 

 

1
ˆ

fN  
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where  
ij  is the correlation between ( )

2( )MCS i

p gG x  and ( )

2( )MCS j

p gG x , 2, 1, 2, ,i j N , conditioned 

on current training points. 

In order to generate samples for 2( )MCS

p gG x , 2( )MCS

p gG x  are then represented as independent 

standard normal variables ξ  based on eigenvalue and eigenvector analyses of 
p t

ρ  as below [27]. 

 
2

( ) ( ) ( )

2 2 2 :

1

ˆ( ) ( ) ( )
p

N
jMCS i MCS i MCS i T

p g g G g j i

j j

G gx x x φ ρ





     (22) 

where i  and T

iφ   are the eigenvalues and eigenvectors of 
p t

ρ  and 
2: 1 2[ , , , ]T

i i i iNρ    . 

Based on Eq. (22), samples are generated for 
2( )MCS

p gG x . Denoting the samples of 
2( )MCS

p gG x  

as 
2 rN ng  , we have 

 
2

2
2 2 2

(1,1) (1, 2) (1, )

(2,1) (2, 2) (2, )

( ,1) ( , 2) ( , )

r

r

r

r

N n

r N n

g g g n

g g g n

g N g N g N n

g 



 
 
 
 
 
 

  (23) 

where rn  is the number of samples. 

Combining Eq. (23) with Eq. (19), samples of ˆ
fp  are obtained as  

 

2

1

1

ˆ ( ( , ))

ˆ ( ) , 1, 2, ,

N

f

j

f r

N I g j i

p i i n
N





 


  (24) 

Similar as Eq. (17), samples are obtained for r  as follows 

 

2

2

2

1

1

1

ˆ( ( , ))

( )
ˆ ( ( , ))

N

f

j

r N

f

j

I g j i N

i

N I g j i















, 1, 2, , ri n  (25) 
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Once samples of ( )r i , 1, 2, , ri n , are available, the error distribution of current 

reliability estimate is approximated. In this paper, the Kernel Smoothing function [28] with a 

bandwidth of 0.005 is employed to fit the distribution. Based on the fitted distribution, the 

maximum error, max

r  is approximated as 

 max 1 1max{ (0.99) , (0.01)}
r rr F F      (26) 

where 1( )
r

F

   is the inverse CDF of r .  

The above approximation corresponds to a probability that the actual estimation error of ˆ
fp  

is larger than max

r  is 0.02. Since a conservative estimation of max

r  is given in Eq. (18), to avoid 

the situation that the estimation given in Eq. (26) is larger than that given in Eq. (18), we can 

rewrite Eq. (26) as 

 
2 2

2 2max 1 1

[0, ]
1 2

ˆ

min max{ (0.99) , (0.01)}, max { }
ˆr r

f

f f

r
N N

f f

N N
F F

N N
   



  
  

  

  (27) 

The percentage error of reliability estimates is checked using Eq. (27) every time the 

surrogate model is updated. When the requirement of accuracy is satisfied, the training process 

stops. In the next sub-section, we will discuss how to select new training points when the 

accuracy requirement cannot be satisfied. In addition, when the number of samples in group-two 

is very large, a sampling-based method to estimate max

r  may be computationally expensive. A 

large number (e.g. larger than 1×10
4
) of group-two samples indicates high uncertainty in ˆ

fp . In 

this situation, Eq. (18) is used directly to estimate max

r . 

 

3.3. Selection of new training points based on GSA 
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3.3.1. Principle of selecting new training points 

Eq. (19) indicates that ˆ
fp  is uncertain due to the uncertainty in 

2( )MCS

p gG x . The uncertainty in 

ˆ
fp  will decrease and will approach its true value when more training points are added. The 

optimal training points should reduce the uncertainty in ˆ
fp  in the most effective way.  

In AK-MCS and EGRA, the sample which has the lowest U value or highest EFF value is 

selected as the new training point. When all sample responses ( 2( )MCS

p gG x ) predicted from the 

surrogate model are completely independent, the point with the lowest U value or the highest 

EFF value is also the point that reduces the uncertainty of ˆ
fp  most effectively (as indicated in 

Eq. (13)). The reason for this is: ˆ
fp  is a function of the sign of responses and the U and EFF 

functions are computed only based on the local mean and variance at each point. In the Kriging 

surrogate model method, however, the sample response ( 2( )MCS

p gG x ) are not completely 

independent. This implies that, the training of one sample point may also affect the signs of 

responses of other sample points around it. As indicated in Fig. 3, for two candidate training 

points (Points A and B) with the same or very close U or EFF values identified from MCS 

samples, it is apparent that Point B has a higher priority than Point A since it may reduce the 

uncertainty of ˆ
fp  more effectively. 

Based on this observation, we propose to select new training points based on their 

contributions to the uncertainty of ˆ
fp . There are several possible ways to analyze contributions 

of uncertainty in 2( )MCS

p gG x  to uncertainty of ˆ
fp , such as global sensitivity analysis and 

analytically derive variance of ˆ
fp  based on Eq. (19). In this paper, the analysis of contributions 

of sample points are achieved through global sensitivity analysis of 2( )MCS

p gG x  with respect to ˆ
fp . 
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Since 
2( )MCS

p gG x  are correlated random variables, GSA methods based on variance 

decomposition (i.e. Sobol indices) are not applicable [29, 30]. In the subsequent sections, GSA 

method with correlated random variables used in this work is introduced first. Following that, 

selection of new training points based on GSA is discussed. 

 

3.3.2. GSA with correlated random variables 

Variance-based global sensitivity analysis of models with independent input variables has 

been intensively studied during the past decades [29, 31, 32]. In terms of GSA with correlated 

random variables, a few studies have been reported. For example, Borgonovo proposed a δ-

sensitivity measure method [33]. Li and Rabitz developed an ANalysis of COVAriance 

(ANCOVA) method for GSA with independent and/or dependent inputs [34]. Jacques, et.al. 

presented a GSA method for models with model uncertainty and correlated inputs using the 

group sensitivity analysis method [35]. Sudret computed the GSA analytically by post-

processing the Polynomial Chaos Expansion (PCE) coefficients [30]. Xu and Gertner extended 

the Fourier Amplitude Sensitivity Test (FAST) to models with correlated parameters [36]. Mara 

and Tarantola proposed a set of variance-based sensitivity indices to perform sensitivity analysis 

of models with dependent inputs [37].  

1U  

2U  

 

Point A 
Point B 

0 

Limit state 

Confidence 

bounds 

Fig. 3. Illustration of candidate new training points 

 

MCS 

samples 
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In this paper, the extended FAST method developed by Xu and Gertner [36] is employed to 

facilitate the selection of new training points. The basic principle of FAST is to assign each 

random variable with a characteristic frequency through a periodic sampling function. The 

variance contribution of a specific variable is then analyzed through a Fourier transform [36, 38]. 

FAST was originally developed for models with independent variables. Xu and Gertner [36] 

extended it to models with correlated variables, by reordering the samples generated from FAST 

to capture the correlation between variables and then shifting the system outputs to compute the 

partial variance of each variable. More details of the extended FAST method are available in Ref. 

[36]. However, the proposed GSAS method is not limited to the extended FAST; any other GSA 

method could also be employed. 

 

3.3.3. Selection of new training points based on GSA 

As discussed in Sec. 3.3.1, the system response is ˆ
fp  and inputs are ( )

2( )MCS i

p gG x , 

21, 2, ,i N , in GSA. For some problems, 2N  will be very large, which results in a very high-

dimensional GSA problem. GSA with high-dimensional correlated random variables is 

computationally expensive. In order to reduce the dimensionality of the problem, we further 

divide the group-two samples 2

MCS

gx  into two groups, namely candidates of new training points 

( Can
x ) and the other set ( Other

x ) of samples in 2

MCS

gx . The first cann  samples with the lowest U 

values in 2

MCS

gx  are selected as Can
x  since samples with low U values have high probabilities of 

having wrong signs or high probability of being the new training point. For the other set of 

samples in 2

MCS

gx (i.e. Other
x ), we use ˆ( ) ( ), ( )Other Can s

pg G gx x x  (i.e. mean predictions, ˆ( )Otherg x , at 

Other
x  conditioned on realizations of ( )Can

pG x  and current training points ( )sg x ) instead of 
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ˆ( )Otherg x  to substitute ( )Other

pG x  in GSA. The purpose of doing so is to preserve the correlation 

between responses of at samples, Can
x  and Other

x , and to account for effects of realizations of 

( )Can

pG x  on ˆ( )Otherg x .  

After the above partition, for given realizations of ( )Can

pG x ,  ˆ ( ( ))Can

f pp G x  is computed as 

 
1

ˆ ˆ( ( ) ( ), ( )) ( ( ))
ˆ ( ( ))

Other Can s Can

f p pCan

f p

N I g G g I G
p G

N

x x x x
x

 


 
  (28) 

Fig. 4 illustrates inputs and output of the failure probability estimate in GSA. 

 

For given realizations of ( )Can

pG x  and values of ( )sg x , ˆ( ) ( ), ( )Other Can s

pg G gx x x  is 

computed based on the conditional probability and current Kriging model as follows 

 1ˆ( ) ( ), ( ) ( ) ( ) ( )Other Can s Other T Other T temp

p new new newg G gx x x f x β r x R g F β
     (29) 

where [ ( ); ( )]temp Can s

pG gg x x , β  are from the hyper-parameters  , ( )T
f x  are the trend 

functions as discussed in Sec. 2.1, ( )Other

newr x  are obtained by inputting Other
x , [ ; ]temp Can s

x x x , 

and   into Eq. (3), newR  is the correlation matrix between temp
x  and temp

x , which is obtained by 

inputting temp
x  and   into Eq. (3), and newF  are obtained by inputting temp

x  into ( )T
f x . The main 

purpose of using Eq. (29) is to investigate how the uncertainty in ( )Can

pG x  may result in the 

variability of mean predictions of ˆ( )Otherg x . In the above equation, the hyper-parameters   need 

to be recalculated for each realization of ( )Can

pG x . Repeatedly recalculating  , however, may 

 

Eq. (28)  ˆ
fp  ˆ( ) ( ), ( )Other Can s

pg G gx x x  

( )Can

pG x  

Fig. 4. Illustrate of failure probability estimate in GSA 

 

1
ˆ

fN  
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increase the computational burden significantly. In this paper, we directly use current hyper-

parameters instead of recalculating them repeatedly. This works well as indicated in the 

numerical examples. Recalculating the hyper-parameters for each realization of ( )Can

pG x  may 

further improve the accuracy of the proposed method, and needs to be investigated in future 

work. Note that all samples points x  and responses ( )g x  may need to be normalized depending 

on the Kriging algorithms used in above computations.  

Eq. (28) implies that the response is ˆ ( ( ))Can

f pp G x  and inputs are random variables ( )Can

pG x  

for GSA. Following the procedure of the extended FAST method [36], the main steps of GSA for 

ˆ ( ( ))Can

f pp G x  are summarized as below. 

(1)  Generate Fn  independent samples F
g  for ( )Can

pG x  based on the characteristic 

frequencies 1 cannω   obtained from FAST.  

(2)  Obtain the conditional covariance matrix of ( )Can

pG x  as follows 

 1 T

cc ct tt ctc t

        (30) 

where ct , tt , and cc  stand for covariance matrixes between ( )Can

pG x  and ( )s

pG x , ( )s

pG x  

and ( )s

pG x , and ( )Can

pG x  and ( )Can

pG x . The correlation matrix, 
c t
ρ , of ( )Can

pG x  is then 

obtained from 
c t

 . Fn  correlated samples 
F cann nw   with mean of zero and standard deviation of 

one are generated based on the eigenvalue and eigenvector analysis of 
c t
ρ . 

(3) Samples of 
F cann nw   are then sorted in ascending order. According to the indices of sorted 

F cann nw  , F
g  are reordered so that the reordered F

g  has the same rank correlation as 
F cann nw  . 
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Here, we denote the reordered samples of F
g  as F

g . F
g  is a F Cann n  sampling matrix. Each 

row of the matrix is a realization of ˆ( )Cang x . 

(4) With samples (i.e. F
g ) of ( )Can

pG x , the corresponding samples of response ˆ ( )fp i , 

1, 2, , Fi n  are obtained using Eq. (28).  

Based on samples of ˆ ( )fp i , 1, 2, , Fi n , partial variances, jV , 1, 2, , canj n  of each 

variable in ˆ( )Cang x  are obtained using the extended FAST method.  

Then, the new training point is identified by finding the sample point that corresponds to the 

maximum variance: 

 max arg max( )i V   (31) 

The new training point newx  is thus selected as max( , :)Can ix . After the new training point is 

identified, the surrogate model is updated and percentage error is verified. This process continues 

until the accuracy requirement is satisfied.  

 

4. Algorithms for Implementation 

In this section, algorithms to implement the proposed GSAS method are first summarized. 

Following that, further development of GSAS by incorporating GSAS with importance sampling 

(IS) is discussed.   

4.1. Implementation procedure 

The overall numerical procedure is depicted in Fig. 5. Table 1 gives the overall procedure of 

the GSAS method. Following that, Tables 2 and 3 present algorithms for the error estimation of 

reliability estimate (Algorithm 1) and selection of a new training point based on GSA (Algorithm 

2), respectively.  
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Table 1 Overview of the GSAS method 

Step Description 

1 Generate initial training points s
x . 

2 Obtain ( )sg x  at training points s
x  and set [ ]MCS

x   

3 Generate outn  random samples 
( )(1) (2)[ ; ; ; ]outnMCS

tempx x x x  for X  using the MCS. 

4 Update the sampling pool by adding MCS

tempx  to MCS
x . 

5 Construct surrogate model ˆ ( )y G x  with s
x  and ( )sg x , obtain hyper-parameters 

  of the Kriging model. 

6 Compute ˆ( )MCSg x  using Eq. (5) and ( )MCSU x  using Eq. (11). 

7 Classify MCS
x  into two groups according to their U values. 

8 Compute 1
ˆ

fN  and 1
ˆ

fN  using Eq. (15). 

9 Estimate the maximum potential error max

r  using Algorithm 1 (given in Table 2). 

10 If max 0.03r  , go to Step 11, otherwise, go to Step 7. 

11 Identify a new training point new
x  using Algorithm 2 (given in Table 3). 

12 Add new
x  and ( )newg x  into training points s

x  and ( )sg x . Then, go to Step 4.  

13 Compute ˆ
fp  and evaluate the coefficient of variation (COV) 

fpCOV  by 

ˆ ˆ(1 ) / /
fp f f totalCOV p p n  , where totaln  is the total number of samples in MCS

x .  

14 If 0.05
fpCOV  , obtain ˆ

fp , otherwise, go to Step 2. 
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Table 2 Main procedures of algorithm 1 

Step Description 

1 Let 2N  be the number of samples in 2

MCS

gx . If 2 0N  , break, End. 

2  Compute the conditional 
p t

  and 
p t

ρ  using Eqs. (20) and (21). 

3 Generate rn  samples 
2 rN ng   for correlated random variables 

2( )MCS

p gG x  using Eq. (22) 

based on eigenvalue and eigenvector analyses of 
p t

ρ .   

4 Obtain ( )r i , 1, 2, , ri n  using Eq. (25). 

5 Compute max

r  using Eq. (27). 

 

Table 3 Main procedures of algorithm 2 

Step Description 

1 Select the first cann  samples of 2

MCS

gx  with the lowest 2( )MCS

gU x  values as Can
x  and 

denote the other samples of 2

MCS

gx  as Other
x  

(a)  Generate samples for GSA  

2 Generate Fn  independent samples for ( )Can

pG x  based on the characteristic frequencies 

1 cannω    obtained from FAST [38] and denote the generated samples as F
g .  

3 Compute 
c t

  using Eq. (30) and obtain 
c t
ρ  based on 

c t
 . 

4 Generate Fn  correlated samples based on the eigenvalue and eigenvector analyses of 

c t
ρ . Denote the generated samples as 

F cann nw  . 



25 
 

5 Sort 
F cann nw 

 in ascending order and reorder F
g  so that the reordered F

g  has the same 

rank correlation as 
F cann nw 

. Denote the reordered F
g  as F

g . 

(b)  Obtain system responses at sampling points 

6 Compute the mean value predictions ˆ( ) ( ), ( )Other Can s

pg G gx x x  at Other
x  using Eq. (29). 

7 Obtain samples of ˆ ( )fp i , 1, 2, , Fi n  based on Eq. (28). 

(c) Selection of the new training point based on GSA 

8 Perform the global variance analysis for Can
x  and obtain 1 cannV   using extended FAST 

9 Identify the index with the maximum variance by max 1arg max( )
canni V   

10 Obtain newx   

 

4.2. GSAS based on importance sampling (GSAS-IS) 

The GSAS method is based on MCS. It can be further improved by incorporating importance 

sampling (IS). The main procedure of the resulting method GSAS-IS is the same as that of 

original GSAS. The following changes need to be made to GSAS when it is combined with IS.  

(1) The most probable point (MPP) needs to be identified first. After the MPP point is 

obtained, in Step 3 of Table 1, the sample points are generated from IS instead of MCS. 

(2) Due to the IS, the equation for ˆ
fp  given in Eq. (12) is modified as  

 ( ) ( )

1

ˆ ( ( )) ( ) /
ISN

i i

f p IS

i

p I G w Nx x


   (32) 

where ISN  is the number of samples in IS and  ( )( )iw x  is the weight of sample ( )i
x  given by  

 ( ) ( ) ( )( ) ( ) ( )i i iw f hx x x   (33) 
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in which ( )( )if x  and ( )( )ih x  are the original joint PDF and the instrumental probability density 

function, respectively.  

In Step 9 of Table 1, the way of computing 
1

ˆ
fN  and 2

ˆ
fN  (Eq. (15)) is modified as  

 1 1 1
ˆ ˆ( ( )) ( )MCS MCS

f g gN I g wx x   (34) 

 2 2 2
ˆ ˆ( ( )) ( )MCS MCS

f g gN I g wx x   (35) 

Similarly, the way of computing the error of reliability analysis (Eqs. (16) and (25)) is 

modified by adding the weights of samples into the equations.  

(3) In Step 1 of Table 3, the method of selecting the candidate samples is different for GSAS 

and GSAS-IS. In GSAS, the cann  samples of 
2

MCS

gx  with the lowest 
2( )MCS

gU x  values are selected 

as Can
x . In GSAS-IS, the  cann  samples of 2

MCS

gx  with the largest 2( )MCS

I gVar x  are selected as Can
x , 

where 
2( )MCS

I gVar x  is the variance of indicator function at sample 
2

MCS

gx .  

If  2
ˆ( ) 0MCS

gg x  , we have 

 
   

 
2

2 2 2 2( )

2 2 2 2

ˆPr{ ( ( )) ( ) 0} ( ) / ( )

Pr{ ( ( )) ( ) ( )} ( )

MCS
p g

MCS MCS MCS MCS

p g g g gG

MCS MCS MCS MCS

p g g g g

I G w g U

I G w w U

x
x x x x

x x x x

    

    


  (36) 

2( )MCS

I gVar x  is then computed by 

 
 2 2 2

2 2

2 2 2 2 2 2

( ) ( ( )) ( )

( ( ( )) ( )) ( ( ( )) ( )) ( ( ( )) ( ))

MCS MCS MCS

I g p g g

MCS MCS MCS MCS MCS MCS

p g g p g g p g g

Var Var I G w

E I G w E I G w E I G w

x x x

x x x x x x



 
 (37) 

After simplification, we have 

     2

2 2 2 2( ) ( ) ( ) ( )MCS MCS MCS MCS

I g g g gVar U U wx x x x     (38) 

Same expression is obtained for the case 2
ˆ( ) 0MCS

gg x  . 
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(4) In Step 13 of Table 1, the coefficient of variation of ˆ
fp  is computed in GSAS-IS as 

  ( ) 2 ( ) 2

1

1 1
ˆ( ( )) ( )

1

IS

f

N
i i

p p f

iIS IS

COV I G w p
N N

x x


 
  

  
   (39) 

Note that the function evaluations used to find the MPP points are also used to construct the 

surrogate model. The way of finding the MPP can be FORM-based method or metamodel-based 

method.  

 

Fig. 5. Flowchart of the proposed GSAS method 
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x   

Step 2: Obtain 

responses ( )sg x  at 
s

x  and set [ ]MCS
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5. Numerical examples 

In this section, five numerical examples, which have been employed in other studies to verify 

the effectiveness of surrogate model-based reliability analysis methods, are used to demonstrate 

the effectiveness of the proposed GSAS method. In each example, the GSAS method is 

compared with EGRA and AK-MCS methods and other methods if results are available. The 

result of Monte Carlo simulation (MCS) with a large sample size is used as a benchmark for 

accuracy comparison. The percentage error of each method is analyzed. The percentage error 

(%)  is defined as  

 
ˆ

(%) 100%

MCS

f f

MCS

f

p p

p



    (40) 

where ˆ
fp  stands for the estimation of a method (i.e. GSAS, EGRA, AK-MCS, or others) and 

MCS

fp  is the estimation of MCS.  

The parameters of GSAS, EGRA, and AK-MCS methods are the same for all the five 

examples. A squared exponential correlation function is used. The initial training points are also 

the same for GSAS, EGRA, and AK-MCS. The Hammersley sampling approach is employed to 

generate initial training points in the standard normal space in the interval [-4, 4]. The training 

points are then transformed from the standard normal space to original space to get the initial 

training points. The parameters of the GSAS method are 41 10outn   (population size of MCS, 

step 3 of Table 1), 45 10rn    (step 3 of Table 2), 40Cann   (step 1 of Table 3), and 

42.5 10 1Fn     (step 2 of Table 3, number of samples for GSA in extended FAST). These 

parameters remain consistent for all numerical examples.  
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5.1. Example 1: A multimodal function 

A multimodal function used in [10] is taken as our first example. The limit state function is 

given by 

 
2

1 2 1((1.5 ) 4)((2.5 ) 1) 5(1.5 )
( ) sin 2

20 2

X X X
g X

    
     (41) 

where 1X  and 2X  are two independent standard normal variables. 

The probability of failure of Eq. (41) is analyzed using the GSAS, EGRA, and AK-MCS 

methods. The initial Kriging model is constructed using seven initial training points. The Kriging 

model is then updated in GSAS, EGRA, and AK-MCS when new training points are added. Fig. 

6 shows ˆ
fp  obtained from different methods with respect to the number of added new training 

points. It illustrates that EGRA and AK-MCS keep adding new training points after ˆ
fp  can 

satisfy the accuracy requirement while the proposed GSAS method stops adding training points 

when the estimation of ˆ
fp  is accurate. Figs. 7-9 depict the true limit state, the limit state from the 

surrogate model, the initial training points, and the added training points of the GSAS, EGRA, 

and AK-MCS methods. It illustrates that the GSAS method effectively reduces the number of 

training points used in the EGRA and AK-MCS methods. In Figs. 8(a) and 9(a), we label some 

added training points which may not be necessary from the reliability analysis perspective since 

they will not result in any change in the estimation of ˆ
fp  (as indicated in Fig. 6). These points 

are labeled as red “+” in Figs. 8(a) and 9(a). In Figs. 8(b) and 9(b), we plot the limit states 

obtained from EGRA and AK-MCS after removing the unnecessary training points. The plots 

indicate that removing the unnecessary training points almost bring no change to the shape of the 

limit state. Note that the training points from GSAS, AK-MCS, and EGRA are different due to 
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the differences in the learning functions and the way of selecting new training points. The 

unnecessary training points in Figs. 8-9 are therefore also different for AK-MCS and EGRA.  

Table 4 gives the result comparison between the GSAS, EGRA, and AK-MCS methods [10]. 

The result of the EGRA method is also available in [10]. The results provided in Table 4 include 

the number of function evaluation (NOF) of the limit state function, the estimated probability of 

failure ( ˆ
fp ), percentage error ( (%) ) of each method, and the computational time required in 

addition to the number of function evaluations. The computational times were based on a Dell 

computer with Intel (R) Core (TM) i7-2600 CPU and 8 GB system memory that we used. Fig. 10 

gives the convergence history of ˆ
fp  with respect to the number of samples in MCS.  

Table 4 Results of Example 1 

Method NOF ˆ
fp  (%)  Additional Time (Seconds) 

MCS 2×10
7
 0.0313 N/A N/A 

GSAS 19 0.0317 1.29 1669 

EGRA 36 0.0313 0.01 6 

AK-MCS 31 0.0312 0.31 4 
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Fig. 6 ˆ
fp  vs number of added new training points 
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Fig. 7. Initial and added training points of the GSAS method 
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(a) With unnecessary training points  

(red “+” denotes unnecessary training point) 
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(b)Without unnecessary training points 

Fig. 8. Initial and added training points of the EGRA method  
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(b) Without unnecessary training points 

Fig. 9. Initial and added training points of the AK-MCS method 
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Fig. 10. ˆ
fp  vs number of MCS samples 

The results in Table 4 imply that the GSAS method requires much less NOF than the EGRA 

and AK-MCS methods to achieve the acceptable accuracy level shown in Fig. 5 (i.e., error < 3%). 
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Further analysis showed that GSAS method needs only 24 training points to get a more accurate 

result (pf = 0.03125 and error = 0.16%) than AK-MCS, which produced an error of 0.31% with 

31 training points. The EGRA result is very accurate for this particular problem; however, the 

accuracy of GSAS is better than EGRA in the subsequent examples. Besides, the GSAS method 

improved the additional computational time as indicated in Table 4, which is common to other 

advanced sampling approaches. This increase is acceptable comparing to expensive computer 

simulation models. Some steps of the proposed method (i.e. GSA in algorithm 2) can be further 

parallelized and optimized to reduce the additional computational time.  

5.1.1. Parameter study 

In the proposed method, there are some parameters that may affect the accuracy and 

efficiency of the proposed method, such as the number of candidate samples ( cann ), the threshold 

for the error of failure probability estimate ( max

r ), and the coefficient of variation (
fpCOV ). We 

also performed parameter study for the proposed method in this example. Figs. 11-13 give the 

comparison of the number of function evaluations (NOF) and percentage error of failure 

probability estimate under different values of Cann , max

r , and 
fpCOV , respectively. The results 

show that increasing the value of cann  can reduce the number of function evaluations and 

improve the accuracy of overall failure probability estimate. Increasing the value of max

r  will 

improve the efficiency and sacrificing the accuracy (as indicated in Fig. 12). Increasing the value 

of 
fpCOV  has the same effect as max

r . Recommended values for these parameters are given at 

the beginning of Sec. 5. The recommended values remain the same for all the five examples in 

this paper.   
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Fig. 11 Comparison of the number of function (NOF) evaluations and percentage errors 

under different values of  Cann  ( max 0.02r  , 0.01
fpCOV  ) 
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Fig. 12 Comparison of the number of function (NOF) evaluations and percentage errors 

under different values of  max

r  ( 40Cann  , 0.01
fpCOV  ) 
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Fig. 13 Comparison of the number of function (NOF) evaluations and percentage errors 

under different values of  
fpCOV  ( 40Cann  , max 0.02r  ) 

5.1.2. Discussion 

It is observed that some training points are clustered together in methods of GSAS, EGRA, 

and AK-MCS. Theoretically some of the clustered training points are unnecessary since the 

clustered training points will not change the shape of the limit state too much. There are mainly 

two reasons that the GSAS method did not remove all the clustered training points. First, the 

region with clustered training points (as indicated in Fig. 7) is close to the origin, which implies 

that the signs of samples in that region will affect the reliability analysis result more significantly 

than that of the other samples. In order to guarantee the accuracy of reliability analysis, the limit 

state needs to be well-trained. From the true limit state in the clustered region, it can be seen that 

the nonlinearity of the true limit state in the clustered region is high, which requires more 
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training points to get an accurate learning of the true limit state. Second, in all the methods (AK-

MCS, EGRA, and GSAS), the training points are selected adaptively. In the first several 

iterations, the surrogate model is not well-trained and there is large uncertainty in the prediction. 

Since the clustered training points are close to the limit state and in the high probability density 

region, they are selected in the first several iterations. Even if these selected clustered training 

points seem to be unnecessary in the last iteration, they are still “necessary” training points in for 

the iterations that they are selected. For instance, the clustered training points in Fig. 7 are 

selected in iterations 1 to 5. These clustered training points are unnecessary when they are 

assessed from the last iteration (iteration 12). But they are necessary and useful in iterations 1 to 

5 (surrogate model is not well-trained) when they are selected. This implies that when the quality 

of the surrogate model is too bad, EGRA, GSAS, and AK-MCS may have clustered-training 

points issue.  One possible way of solving this issue is considering the distance between the new 

training point and old training points to avoid the clustering. This will be one of our future work.       

 

5.2. Example 2: Series system with four branches 

A series system with four limit state functions as given in Eq. (42) is employed as the second 

example. This example is taken from [11, 39].  
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  (42) 

where 1X  and 2X  are independent standard normal variables. 
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Similar to Example 1, the probability of failure is first analyzed using the GSAS, EGRA, and 

AK-MCS methods. The results are then compared with the other surrogate model methods 

available in the literature. Twelve initial training points are generated for the GSAS, EGRA, and 

AK-MCS methods. Based on the initial Kriging model, new training points are added. Fig. 14 

gives the value of ˆ
fp  with respect to the number of added new training points. Figs. 15-17 show 

the true limit state, the limit-state from surrogate model, the initial training points, and the added 

training points used in the GSAS, EGRA, and AK-MCS, respectively. It is seen that the EGRA 

and AK-MCS methods added many more training points than the GSAS method. Some of these 

added training points are not necessary from the aspect of reliability analysis. Most of the 

unnecessary training points are successfully eliminated in the GSAS method. Similar to Example 

one, we label the unnecessary training points using red “+” in Figs. 16 and 17. In Figs. 16 and 17, 

we also show the limit state obtained from EGRA and AK-MCS after removing the unnecessary 

training points. Table 5 gives the results comparison of Example 2. The GSAS method is 

compared with the EGRA method, the AK-MCS method, the importance sampling + spline 

method (IS + Spline), and the importance sampling + Neural Network (IS + Neural Network). 

The results of IS + Spline and IS + Neural Network are taken from [11, 39].   

The results show that the GSAS, EGRA, and AK-MCS methods can estimate the probability 

of failure very accurately and GSAS has a smaller percentage error than both EGRA and AK-

MCS. The GSAS method is much more efficient than the EGRA and AK-MCS method. In 

addition, the GSAS method is also much more efficient than the IS + Spline method and IS + 

Neural Network method.  
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Fig. 14 ˆ

fp  vs number of added new training points 
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Fig. 15. Initial and added training points of the GSAS method 
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(a) With unnecessary training points 

(red “+” denotes unnecessary training point) 

 X
1

 X
2

 

 

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8
True limit state

Limit state from EGRA

Initial training points

Added training points

 
(b) Without unnecessary training points 

Fig. 16. Initial and added training points of the EGRA method 
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(red “+” denotes unnecessary training point) 
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(b) Without unnecessary training points 

Fig. 17. Initial and added training points of the AK-MCS method 
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Table 5 Results of Example 2 

Method NOF ˆ
fp  (%)  

Additional Time 

(Seconds) 

MCS 2×10
7
 4.46×10

-3
 N/A N/A 

GSAS 36 4.51×10
-3

 1.12 2013 

EGRA 68 4.54×10
-3

 1.79 50 

AK-MCS 65 4.56×10
-3

 2.24 35 

IS + Spline [11, 39] 428 4.5×10
-3

 N/A N/A 

IS + Neural Network [11, 39] 52 5.7×10
-3

 26.7 N/A 

 

Further analysis showed that EGRA and AK-MCS need 99 and 78 training points 

respectively to get the same accuracy as GSAS. 

 

5.3. Example 3: Nonlinear undamped one-degree-of-freedom system 

As shown in Fig. 18, a nonlinear undamped one-degree-of-freedom system is taken from [11, 

39-41] as the third example. The limit state function of the non-linear oscillator is given in Eq. 

(43). Table 6 gives the distributions and parameters of the six random variables in the limit state 

function. 

 

Fig. 18. A non-linear oscillator 

 0 1

2

0

2
( ) 3 sin

2

tF
g r

m
X





 
   

 
  (43) 

where 1 2 1[ , , , , , ]m c c r F tX   and 1 2
0

c c

m



 .  

 

  

c1 

c2 

m 

z(t) 

F(t) 



43 
 

Table 6 Random Variables of Example 3 

Variable Distribution Mean Standard deviation 

m  Normal 1 0.05 

1c  Normal 1 0.1 

2c  Normal 0.1 0.01 

r  Normal 0.5 0.05 

F  Normal 1 0.2 

1t  Normal 1 0.2 

 

Similar to Example 2, the GSAS method is compared with the EGRA, AK-MCS, IS + Spline, 

and IS + Neural Network method. The results of IS + Spline and IS + Neural Network are taken 

from [11, 39]. Table 7 presents the results comparison of these methods. Similar conclusions can 

be obtained as that from Examples 1 and 2. The GSAS method is more efficient than the EGRA, 

AK-MCS, IS + Spline, and IS + Neural Network methods. Fig. 19 gives the value of ˆ
fp  with 

respect to the number of added new training points for different methods. It shows that GSAS 

stops adding new training points effectively when the estimate is close to the true value while 

other methods keep adding new training points. This is due to the fact that the convergence 

criterion in GSAS is defined directly from the reliability estimate perspective while those of AK-

MCS and EGRA are defined from the variance of single sample perspective. In order to 

investigate the fluctuation of the GSAS estimate beyond reaching the stopping criterion, we 

continue to add more training points in GSAS. Fig. 20 gives the value of ˆ
fp  with respect to the 

number of added new training points. It indicates that the estimate does not fluctuate too much 

after the stopping criterion is reached (within the 1.5% error bounds of the true value).           
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Fig. 19 ˆ
fp  vs number of added new training points 
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Fig. 20 ˆ
fp  vs number of added new training points in GSAS 
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Table 7 Results of Example 3 

Method NOF ˆ
fp  (%)  

Additional Time 

(Seconds) 

MCS 2×10
7
 0.0286 N/A N/A 

GSAS 44 0.0286 0.06 1647 

EGRA 80 0.0284 0.75 11 

AK-MCS 83 0.0284 0.68 17 

IS + Spline 67 0.0270 5.65 N/A 

IS + Neural Network 68 0.0310 8.33 N/A 

 

 

5.4. Example 4: Roof truss 

A roof truss structure given in Fig. 21 is used as the fourth example. This example is 

modified from [42, 43]. In the truss structure, the top chords and compression bars are made of 

steel reinforced concrete and the bottom chords and tension bars are made of steel. A failure 

event is defined as the vertical deflection of the roof top being larger than 0.03 m. The limit state 

function is given in Eq. (44). Table 8 presents the distributions and parameters of the six random 

variables in the limit state function. The original distributions of random variables were assumed 

to be normal in [42, 43]. In this paper, the distributions are modified to be non-normal to 

examine the effectiveness of GSAS in solving problems with non-normal inputs.  
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Table 8 Random Variables of Example 4 

Variable Distribution Parameter 1 Parameter 2 
q (N/m) Weibull 20000 500 

l  (m) Lognormal 12.5 0.125 

SA (m
2
) Lognormal 9.82×10

-4
 6×10

-5
 

CA ( m
2
) Lognormal 0.04 0.0035 

SE (Pa) Lognormal 1×10
11

 1×10
9
 

CE (Pa) Lognormal 2×10
10

 1×10
9
 

- For Weibull distribution, parameters 1 and 2 are the scale and shape parameters of Weibull 

distribution. For Lognormal distribution, parameters 1 and 2 are the mean (mu) and standard 

deviation (sigma), respectively.  

 

Fig. 21. A roof truss structure 

The probability of failure is estimated using GSAS, EGRA, and AK-MCS. Table 9 shows the 

results comparison between different methods. Fig. 22 gives the value of ˆ
fp  with respect to the 

number of added new training points for different methods. It indicates that the GSAS method is 
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more efficient than the EGRA and AK-MCS methods.  The accuracy of GSAS is the same as 

AK-MCS and better than EGRA for this problem. Similar to Example 3, Fig. 23 gives the value 

of ˆ
fp  with respect to the number of added new training points from GSAS by continue adding 

new training points after stopping criterion is satisfied.  
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Fig. 22 ˆ
fp  vs number of added new training points 
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Fig. 23 ˆ
fp  vs number of added new training points in GSAS 
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Table 9 Results of Example 4 

Method NOF ˆ
fp  (%)  

Additional Time 

(Seconds) 

MCS 5×10
6
 2.027×10

-3
 N/A N/A 

GSAS 56 2.025×10
-3

 0.11 436 

EGRA 81 2.020×10
-3

 0.35 80 

AK-MCS 87 2.025×10
-3

 0.11 162 

 

5.5.  Example 5: Two-degree-of-freedom primary/secondary damped oscillator 

A two-degree-of-freedom primary/secondary damped oscillator example originally proposed 

by Der Kiureghian [44] is used as the fifth example. This example has also been studied by 

Dubourg et al. [13] and Bourinet et al. [17]. There are eight independent random variables in this 

example. The limit state function is given by 
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  (37) 

where 0[ , , , , , , , ]p s p s p s sk k m m F SX   , /p p pk m  , /s s sk m  , ( ) / 2a p s    , 

( ) / 2a p s    , /s pm m  , and ( ) /p s a     . 

Table 10 gives the distributions and parameters of the eight random variables.  

 

Table 10 Random Variables in Example 5 

Variable Distribution Mean Standard deviation 

pk  Lognormal 1 0.2 

sk  Lognormal 0.01 2×10
-3

 

pm  Lognormal 1.5 0.15 

sm  Lognormal 0.01 1×10
-3

 

p  Lognormal 0.05 0.02 



49 
 

s  Lognormal 0.02 0.01 

sF  Lognormal 15 1.5 

0S  Lognormal 100 10 

 

The results of the GSAS method are compared with the EGRA, AK-MCS method, the Meta-

IS method [13], and the Support Vector Machine + Subset simulation (SVM + Subset) method 

[17]. The results comparison is given in Table 11. Fig. 24 gives the value of ˆ
fp  with respect to 

the number of added new training points for different methods. The results illustrate that the 

GSAS method is more efficient and accurate than the EGRA and AK-MCS methods. The 

computational time required by GSAS in addition to the NOF is less than that required by EGRA 

and higher than its counterpart needed by AK-MCS. The NOF of the GSAS method is higher 

than that of the Meta-IS method. One possible reason for this phenomenon is that the training 

points are selected from the MCS sampling pool in the GSAS method whereas the training points 

of Meta-IS method are selected from the sampling pool of importance sampling. Combining the 

proposed method with importance sampling (IS) approach will further improve the efficiency of 

the proposed method. The integration of GSAS with IS however will change the equations given 

in Sec. 3 and algorithms presented in Sec. 4. The main steps of the combination of GSAS and IS 

have been briefly discussed in Sec.4.2. Since it belongs to another kind of method, here, we only 

give the results of GSAS-IS. Table 12 shows the comparison of GSAS-IS with Meta-IS. The 

results given in Table 12 are based on FORM-based IS. The NOF of GSAS-IS includes both the 

NOFs required by FORM and GSAS. Combining Meta-IS with GSAS may further improve the 

efficiency. Integration of GSAS with Meta-IS is another direction that may be pursued in future 

research.     
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Table 11 Results of Example 5 

Method NOF ˆ
fp  (%)  

Additional Time 

(Seconds) 

MCS 2×10
7
 4.77×10

-3
 N/A N/A 

GSAS 867 4.81×10
-3

 0.84 84401 

EGRA 1694 5.10×10
-3

 6.92 111057 

AK-MCS 1106 4.83×10
-3

 1.26 25413 

Meta-IS 664 4.80×10
-3

 0.63 N/A 

SVM+Subset 1719 4.78×10
-3

 0.21 N/A 

 

Table 12 Comparison of GSAS-IS and Meta-IS 

Method NOF ˆ
fp  (%)  

MCS 5×10
6
 4.77×10

-3
 N/A 

GSAS-IS 546 4.83×10
-3

 1.25 

Meta-IS 664 4.80×10
-3

 0.63 
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Fig. 24 ˆ
fp  vs number of added new training points 
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6. Conclusion  

Monte Carlo sampling based on a surrogate model is a widely used approach of reliability 

analysis when the physics model evaluation is expensive. Adaptive Kriging-based methods have 

been studied in recent years to select training points for the surrogate model, by focusing on the 

region of interest using learning functions. In previous methods, the stopping criterion and 

learning function are defined from the aspect of individual training points. The effects of training 

points on the overall accuracy of reliability estimate are not considered. As a result, some un-

important sampling points, which have weak contributions to the failure probability estimate, are 

selected as training points.  

A Global Sensitivity Analysis enhanced Surrogate (GSAS) modeling method is developed in 

this work to improve the efficiency of adaptive Kriging, by considering a new stopping criterion 

and a new way of selecting new training points. The main idea is to treat the probability of 

failure estimated from the surrogate model similar to system response and prediction variance as 

the random input in GSA. The sampling pool, from which the training points are selected, is first 

divided into two groups. The error distribution of current failure probability estimate is then 

analyzed by propagating the uncertainty of prediction through a failure indicator function. The 

training points are selected to reduce the uncertainty in the failure probability estimate in the 

most effective way.  

An overall implementation framework and two algorithms are provided for implementation 

of the proposed GSAS method. Five numerical examples, which include two mathematical 

examples and three engineering-related examples, demonstrate that the GSAS method can 

effectively improve the efficiency of surrogate model-based reliability analysis. Another way of 
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improving the efficiency of surrogate modeling might be to maximize distance of the candidate 

point with the training points, which is a popular strategy used in SVM-based reliability analysis 

methods [15]. This method, however, has not yet been integrated with the learning functions 

widely used in Kriging-based reliability analysis methods. Integration of the distance criterion 

with the learning functions needs to be studied in future work. The developed method presented 

in this paper increases the computational overhead required by the algorithm selecting the 

training points (even though it reduces the number of training points), which is common to all 

kinds of advanced sampling approaches. Optimizing the computer implementation of the 

proposed method needs to be investigated in future work. As indicated in the results of Example 

5, the computational efficiency of the proposed method can be further improved by integrating 

the proposed method with importance sampling. This is another direction that needs to be 

investigated to improve the effectiveness of the developed method.      
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