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A Random Field Approach to
Reliability Analysis With Random
and Interval Variables
Interval variables are commonly encountered in design, especially in the early design
stages when data are limited. Thus, reliability analysis (RA) should deal with both interval
and random variables and then predict the lower and upper bounds of reliability. The
analysis is computationally intensive, because the global extreme values of a limit-state
function with respect to interval variables must be obtained during the RA. In this work,
a random field approach is proposed to reduce the computational cost with two major
developments. The first development is the treatment of a response variable as a random
field, which is spatially correlated at different locations of the interval variables. Equivalent
reliability bounds are defined from a random field perspective. The definitions can avoid
the direct use of the extreme values of the response. The second development is the employ-
ment of the first-order reliability method (FORM) to verify the feasibility of the random field
modeling. This development results in a new random field method based on FORM. The
new method converts a general response variable into a Gaussian field at its limit state and
then builds surrogate models for the autocorrelation function and reliability index function
with respect to interval variables. Then, Monte Carlo simulation is employed to estimate
the reliability bounds without calling the original limit-state function. Good efficiency and
accuracy are demonstrated through three examples. [DOI: 10.1115/1.4030437]
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1 Introduction
The major task of RA is to predict reliability in the design stage.

Because of this advantage, RA has been used in many applications,
such as those of automobile vehicles [1], wind/hydrokinetic turbines
[2], and airplanes [3]. The RA requires a known limit-state function,
which specifies the functional relationship between input variables
and output variables (responses), and the joint probability distribu-
tion of the input variables.

In many applications, especially in the early design stages, the
data of some input variables are too limited to fit probability dis-
tributions. For this situation, the fuzzy set [4], evidence theory [5],
random matrix theory [6–8], and intervals [9,10] are employed to
model the uncertainty of the input variables. Interval variables are
used for the highest degree of uncertainty—only the lower and
upper bonds of an input variable are available. For instance, the con-
tact resistance in the vehicle crash [11] and the tolerances of the
dimension of a new product [12] are examples of interval variables.
As a result, the input variables of a limit-state function may contain
both random and interval variables, and the reliability is therefore
also bounded within its minimum and maximum values.

Many methods are available for RAwith the mixture of random
and interval variables. For example, Jiang et al. [13] developed a RA
method based on a hybrid uncertain model. In their model, param-
eters such as means and standard deviations of some random var-
iables are described as interval variables. Adduri and Penmetsa [14]
investigated the method of approximating the bounds of structural
system reliability in the presence of interval variables. Luo et al.
[15,16] developed an iterative procedure to obtain the worst-case
points of interval variables and the most probable point (MPP) using
a probability and convex set model. Penmetsa and Grandhi [17]
used function approximation methods to improve the efficiency
of RAwith random and interval variables. By combining simulation
process with interval analysis (IA), Zhang et al. [18] proposed an

interval Monte Carlo method to estimate the interval probability of
failure. In order to perform reliability-based design optimization for
problems with interval variables, Du et al. developed a sequential
single-loop (SSL) procedure [19,20]. To improve the stability of
SSL, Jiang et al. designed a new algorithm [12].

Although many reliability methods can accommodate interval
variables as reviewed earlier, there are still some challenges that
need to be resolved. First, the RA requires global extreme values
of a response with respect to interval variables. As a result, the
RA usually involves two loops. In the inner loop, global optimiza-
tion is used to find the extreme values of the response with respect to
interval variables, whereas the outer loop is responsible for RAwith
respect to random variables. Even though single-loop procedures
have been proposed [12,19,20], efficient global optimization is still
indispensable. Second, the extreme values of the response may be
highly nonlinear with respect to interval variables and may have
multiple MPPs, which may lead to large errors if the first-order
and second-order reliability methods (FORM and SORM) are used
based on the extreme values of the response. Third, most of the
current methods only focus on the worst-case reliability, or the
lower bound of the reliability. To understand the uncertainty in
the reliability, one may also want to know the upper bound of the
reliability.

The objective of this work is to deal with the aforementioned
challenges by developing a new random field approach for RAwith
both random and interval variables. The contributions and signifi-
cance of the new method are as follows: (1) This work develops a
new way to model the reliability with random and interval variables.
A response variable is viewed as a random field that is spatially
correlated at different locations of interval variables. This allows
for using random field methodologies to calculate the lower
and upper bounds of reliability. (2) A new FORM-based random
field approach is developed for the RA with random and interval
variables. The method transforms the general random field of the
response into a Gaussian field, which is then expanded as a function
of a number of Gaussian variables. The use of global optimization is
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thus avoided, and the use of Monte Carlo simulation (MCS) then
becomes possible to obtain both the maximum and minimum
values of the reliability simultaneously. (3) An efficient algorithm
of the Kriging model method is developed to build the mean and
autocorrelation functions of the transformed Gaussian field. The
transformed Gaussian field is therefore fully defined with good
accuracy and efficiency.

The reminder of this paper is organized as follows: Section 2
reviews the methods of RAwith both random and interval variables.
Section 3 discusses the idea of RA with a random field approach,
followed by the numerical implementation in Sec. 4. Three exam-
ples are presented in Sec. 5. Conclusions and future work are given
in Sec. 6.

2 Review of RA With Random and Interval
Variables

A response variable G may be a function of random variables
X ¼ ½Xi�i¼1; : : : ;n and interval variables Y ¼ ½Yj�j¼1; : : : ;m. If only
Y exists, the response is given by

G ¼ gðYÞ ð1Þ
where Y ∈ ½Y; Ȳ�; Y ¼ ½Yj�j¼1;m and Ȳ ¼ ½Ȳj�j¼1;m are the lower
and upper bounds, respectively.

G is also an interval, whose lower and upper bounds are defined
by

G ¼ min
Y∈½Y; Ȳ�

fgðYÞg ð2Þ

and

Ḡ ¼ min
Y∈½Y;Ȳ�

fgðYÞg ð3Þ

respectively. Figure 1 shows an interval response for a two-
dimensional case.

If both X and Y exist, the response is given by

G ¼ gðX;YÞ ð4Þ
The extreme responses Ḡ and G are now random variables. If a

failure occurs whenG < e, where e is a limit state, the probability of
failure is defined by

pf ¼ PrfgðX;YÞ < eg ð5Þ

Eq. (5) indicates that ḠðXÞ and GðXÞ are the best-case response
and worst-case response, respectively.

The corresponding best-case and worst-case probabilities are
then given by

p
f
¼ PrfḠðXÞ < eg ¼ Pr

n
max

Y∈½Y;Ȳ�
fgðX;YÞg < eg ð6Þ

and

p̄f ¼ PrfGðXÞ < eg ¼ Pr
n

min
Y∈½Y;Ȳ�

fgðX;YÞg < eg ð7Þ

As obtaining the extreme responses Ḡ and G requires the global
optimization on ½Y; Ȳ�, calculating p

f
and p̄f is extremely costly in

computation. Next, we briefly review two common types of RA
methods for problems with both random and interval variables.

The first type includes methodologies that combine RA, such as
FORM, and IA. If FORM is used for RA, X is transformed into
standard normal variables U [21], and the transformation is denoted
byX ¼ T½U�. Then the reliability indices (β̄ and β) are obtained by

� β̄ ¼ min
U

ffiffiffiffiffiffiffiffiffiffi
UUT

p

s:t:max
Y

fgðT½U�;YÞg ¼ e
ð8Þ

and

� β ¼ min
U

ffiffiffiffiffiffiffiffiffiffi
UUT

p

s:t:min
Y

fgðT½U�;YÞg ¼ e
ð9Þ

Then, the probabilities of failure are given by

p
f
¼ Φð−β̄Þ ð10Þ

and

p̄f ¼ Φð−βÞ ð11Þ

The optimal point from Eqs. (8) or (9) is called a MPP, denoted
by ū� for Eq. (8) and u� for Eq. (9).

Evaluating the equality constraint functions in Eqs. (8) and (9)
requires global optimization on Y ∈ ½Y; Ȳ�, and the entire analysis
needs a double-loop optimization process, thereby being computa-
tionally expensive. The following are some examples of the first-
type methodologies. An iterative procedure [15] using a probability
and convex mixed model was reported in [16]. By applying the
performance measure approach, the method transforms the nested
double-loop optimization problem into an approximate single-loop
minimization problem. With a similar principle, an SSL method, as
mentioned in Sec. 1, decouples the double-loop procedure into an
SSL [19,20].

After the SSL method, Jiang et al. [12] proposed an equivalent
model method to improve the robustness of the single-loop algo-
rithm. The method demonstrates that solving Eq. (9) is equivalent
to solving a general MPP problem after treating the interval vari-
ables as uniformly distributed random variables [12]. The method
is efficient compared with other single-loop methods, but similar to
other methods that use FORM; its accuracy may not be good. When
G is highly nonlinear with respect to Y, the linearization of the
limit-state function at the MPP with respect to Y will result in large
errors. The aforementioned methods also need to be performed
twice to obtain the lower and upper bounds of pf , thereby increas-
ing the computational cost.

The second type of methodologies uses design of experiments.
A surrogate model of G ¼ gðX;YÞ is built first, and then the
extreme probabilities of failure are estimated by MCS. In this group
of methods, interval variables are usually treated as variables
following uniform distributions. For instance, Zhuang and Pan ap-
proximated limit-state functions with interval variables using the
Kriging method [22]. Li et al. [23] also used the Kriging method
to build a surrogate model for a bilevel limit-state function with
only random variables. The model is constructed by applying the
probability theory for random variables and a nonprobabilistic reli-
ability method for interval variables. Yoo and Lee [24] performed

2Y

G

G

G
1Y

1Y
2Y

2Y

Fig. 1 Limit-state function with interval variables
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the sensitivity analysis with respect to interval variables, and surro-
gate models are employed to approximate the reliability. Zhang and
Hosder [25] expanded the random and interval variables using the
stochastic expansion methods.

Although all the aforementioned methods can deal with
both random and interval variables, their accuracy and efficiency
may still need to be improved. From a different perspective, this
work views limit-state functions with interval variables as general
random fields, and this leads to a new modeling and analysis
method that can potentially improve the efficiency and accuracy
of the RA.

3 Reliability Modeling From a Random Field
Perspective

We now show that the RA problem can be approached from a
random field perspective, and we also discuss the advantages of
doing so. A random field is essentially a spatial-variant random
variable [26]. In other words, its distribution changes at different
locations, and the random variable at one location is usually depen-
dent on that at another location. Random fields have been used
to describe spatially varying and dependent quantities, such as
mechanical properties of materials, including Young’s modulus,
Poisson’s ratio, and yield stress [27], as well as temperature, defor-
mation, and surface forces.

For example, the thickness,D, of a metal sheet shown in Fig. 2 is
a random field. At a specific location ðy1; y2Þ, D is a random var-
iable with a specific distribution. The distribution ofD is different at
another location ðy 0

1; y
0
2Þ, and Dðy1; y2Þ is dependent on Dðy 0

1; y
0
2Þ.

In this case, the spatial variables are the Y1- and Y2-coordinates.
We can consider the response G ¼ gðX;YÞ as a random field.

The reasons are as follows:

• G is a random variable. If Y is fixed at y, G ¼ gðX; yÞ is
random, and its distribution is determined by gð·Þ and the
joint probability density function (PDF) of X.

• The distribution of G changes with respect to Y. The distri-
bution at y may be different from that at y 0 because G ¼
gðX; yÞ may be different from G 0 ¼ gðX; y 0Þ as shown
in the metal sheet example in Fig. 2 and another two-
dimensional example in Fig. 3.

• G ¼ gðX; yÞ and G 0 ¼ gðX; y 0Þ may be dependent because
they share common random variables X.

• For any given X ¼ x, G ¼ gðx;YÞ is a realization of
the field.

For the aforementioned reasons, G is indeed a random field
whose spatial variables are intervals Y. G is a general nonstationary
random field, as its distributions are not constant (varying with
respect to Y) and the dimensions of the spatial variable Y are
m, maybe greater than two or three.

The random field perspective allows us to use random field
methodologies to calculate the probability of failure. To do so,
we redefine the bounds of the probability of failure as follows:

p
f
¼ PrfG ¼ gðX; yÞ < e; ∀ y ∈ ½Y; Ȳ�g ð12Þ

where ∀ stands for “for all.” The minimum probability of failure is
the probability that all the interval bounds are completely in the fail-
ure region

p̄f ¼ PrfG ¼ gðX; yÞ < e; ∃ y ∈ ½Y; Ȳ�g ð13Þ
where ∃ stands for “there exists at least one.” The maximum prob-
ability is the probability that the interval bounds intersect the failure
region.

Let us examine why the new definitions are equivalent to the
original definitions given in Eqs. (6) and (7). Recall that the original
maximum probability of failure p̄f is defined as p̄f ¼ PrfG ¼
min

Y∈½Y;Ȳ�
fgðX;YÞg < eg in Eq. (7). The definition is equivalent to

the definition given in Eq. (13). The reason is that the two events
A ¼ fGðXÞ < eg in Eq. (7) and B ¼ fG ¼ gðX; yÞ < e; ∃y ∈
½Y; Ȳ�g in Eq. (13) are equivalent. For event B, at least at one point
of Y, G < e. There are two cases:

• Case 1: There is only one point y 0 where G < e, and event B
becomes B ¼ fgðX; y 0Þ < eg. This mean that at other points
on ½Y; Ȳ�, except at y 0,G ≥ e. Then y 0 is the point whereG is
minimum, or GðXÞ ¼ gðX; y 0Þ. Thus, event A becomes
A ¼ fG ¼ gðX; y 0Þ < eg. Event A is therefore equivalent
to event B.

• Case 2: There are multiple points ½y 0
i �i¼1;h where G < e.

Event B is then an intersection expressed by B ¼
∩h

i¼1 fgðX; y 0
i Þ < eg. At all the other points on ½Y; Ȳ�,

G ≥ e. Let y 0 0 ∈ ½y 0
i �i¼1;h be the point where G is minimum,

or G ¼ gðX; y 0 0Þ. Event B can be rewritten as B ¼
fminy 0

i
gðX; y 0

i Þ < eg ¼ fG ¼ gðX; y 0 0Þ < eg, which is
equivalent to event A.

Similarly, the original minimum probability of failure p
f
,

defined as p
f
¼ PrfḠ ¼ maxY∈½Y;Ȳ�fgðX;YÞg < eg in Eq. (6), is

equivalent to the definition given in Eq. (12) because event C ¼
fḠ < eg in Eq. (8) is equivalent to event D ¼ fgðX; yÞ < e;∀y ∈
½Y; Ȳ�g in Eq. (12). The equivalence holds because gðX; yÞ ≤ Ḡ for
all y ∈ ½Y; Ȳ�, and thus C ¼ fḠ < eg ¼ fgðX; yÞ ≤ Ḡ < e;
∀y ∈ ½Y; Ȳ�g ¼ D.

The advantages of the new definitions are multifold. First, it
avoids the direct use of the global responses with respect to interval
variables. The elimination of global optimization can improve the
computational efficiency significantly for responses that are highly
nonlinear with respect to interval variables. Second, defining the
probability of failure with a random field approach enables us to
use existing random field methodologies to estimate the bounds
of the probability of failure differently, and the methodologies
are potentially more accurate and efficient than the traditional meth-
ods. Third, as discussed in Sec. 4, the definitions also make it easy
to integrate the traditional reliability methods and a random field
approach to solve the problems with both random and interval
variables.
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Fig. 2 Random field thickness of a metal sheet
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Fig. 3 Responses with both random and interval variables
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As the second task of this work, we demonstrate the feasibility
of the proposed random approach by developing a new numerical
procedure that employs FORM and a random field expansion
method. The details are given in Sec. 4.

4 FORM Using Random Field Approach
As indicated in Eqs. (12) and (13), the lower and upper bounds

of pf can be calculated by consideringG as a random field. Directly
using the random field G, however, is difficult because it is in
general a non-Gaussian and nonstationary random field, and no ana-
lytical solutions exist.

In this work, we use FORM to transform G into a Gaussian
random field ~G. A similar strategy has been applied to the time-
dependent RA involving stochastic processes [28], which can be
considered as one interval variable. Herein, we extend the strategy
to the problem with more interval variables. Although ~G is a
Gaussian field, its extreme value is not analytically available, as
it is in general a nonstationary random field. For this reason, we
use a simulation method, which is feasible because the original
limit-state function is no longer needed once ~G is available.

The simulation of ~G usually involves discretizing the random
field with respect to the spatial variables, or interval variables, par-
ticularly in this study. In the following sections, we first introduce
the discretization methods of a Gaussian field and then discuss the
details of the implementation procedure.

4.1 Discretization Methods of a Gaussian Random Field.
The discretization of a Gaussian field has been extensively studied.
There are three groups of discretization methods, including the
point discretization method, the average discretization method,
and the series expansion method [27]. A review of the discretization
methods is available in [29]. A simulation method only uses a finite
set of random variables with a sufficiently large size of the set. In
this work, we use the expansion optimal linear estimation method
(EOLE), because it is more efficient than the other approximation
methods for general problems when exact solutions of the eigen-
value problem are not available [29]. Note that the simulation meth-
ods are not limited to EOLE; other methods can also be used.

Theoretically, a Gaussian field consists of an infinite set of
correlated Gaussian random variables, and a simulation method
only uses a finite set of random variables. For this reason, EOLE
expands a Gaussian field ~G into a series of finite random variables.
Let ~G have its mean function μðyÞ, standard deviation function
σðyÞ, and autocorrelation function ρðy; y 0Þ. After discretizing
½Y; Ȳ� into p points ½yi�i¼1;p, ~G is expanded as

~G≈ μðyÞ þ σðyÞ
Xr

i¼1

ξiffiffiffiffi
ηi

p φT
i ρGðyÞ; ∀ y ∈ ½Y; Ȳ� ð14Þ

where ηi and φT
i are the eigenvalues and eigenvectors of the corre-

lation matrix ρ with element ρij ¼ ρðyi; yjÞ, i; j ¼ 1; 2; : : : ;p,
ρGðyÞ ¼ ½ρðy; y1Þ; ρðy; y2Þ; : : : ; ρðy; ypÞ�T , and r ≤ p is the num-
ber of terms of expansion. Note that the eigenvalues ηi are sorted
in decreasing order.

As discussed earlier, a Gaussian field can be completely char-
acterized and discretized once we know its mean value function
μðyÞ, standard deviation function σðyÞ, and autocorrelation function
ρðy; y 0Þ. Next, we discuss how to obtain ~G and its associated
functions.

4.2 Construction of an Equivalent Gaussian Field ~G. To
use EOLE in Eq. (14), we need to transform the general random
field G into an equivalent Gaussian field ~G. We do so by us-
ing FORM.

4.2.1 Transformation by FORM. FORM has been widely used
in RA with only random variables [30–32]. It can also be used for
problems with both random and interval variables. It requires

searching for the MPP. For a given y ∈ ½Y; Ȳ�, the MPP of
gðX; yÞ is obtained by

�
min
u

ffiffiffiffiffiffiffiffiffiffi
UUT

p

s:t:G ¼ gðTðUÞ; yÞ ≤ e
ð15Þ

where TðUÞ is an operator that transforms standard normal variables
U to X [21].

After the MPP search, gðTðUÞ; yÞ is linearized at the MPP point
u�ðyÞ using Taylor’s series expansion as follows:

gðTðUÞ; yÞ≈ ĝðU; yÞ ¼ gðu�ðyÞ; yÞ þ ∇gðu�ðyÞ; yÞðU − u�ðyÞÞT
ð16Þ

where

∇gðu�ðyÞ;yÞ ¼
�∂gðU; yÞ

∂U1

����
u�ðyÞ

;
∂gðU;yÞ
∂U2

����
u�ðyÞ

; : : : ;
∂gðU;yÞ
∂Un

����
u�ðyÞ

�

ð17Þ
The accuracy loss of the Taylor expansion is minimal at the

MPP, where gðu�ðyÞ; yÞ ¼ e, for y ∈ ½Y; Ȳ�. We then have

PrfG ¼ gðX; yÞ < eg≈ Prf∇gðu�ðyÞ; yÞðU − u�ðyÞÞT < 0g
ð18Þ

Eq. (18) is rewritten as

PrfG ¼ gðX; yÞ < eg≈ Pr

� ∇gðu�ðyÞ; yÞ
k∇gðu�ðyÞ; yÞkU

T

<
∇gðu�ðyÞ; yÞ
k∇gðu�ðyÞ; yÞku

�ðyÞT
�

ð19Þ

At the MPP point, we also have ∇gðu�ðyÞ;yÞ
k∇gðu�ðyÞ;yÞk ¼ − u�ðyÞ

ku�ðyÞk; Eq. (19)
then becomes

PrfG ¼ gðX; yÞ < eg≈ Pr

�
− u�ðyÞ
ku�ðyÞkU

T < − u�ðyÞ
ku�ðyÞku

�ðyÞT
�

ð20Þ
By defining αðyÞ ¼ − u�ðyÞ

ku�ðyÞk and βðyÞ ¼ ku�ðyÞk, we have

PrfG ¼ gðX; yÞ < eg≈ PrfαðyÞUT < −βðyÞg ð21Þ
Thus, the probability if failure is

PrfG ¼ gðTðUÞ; yÞ ≤ eg≈ Prf ~G ¼ ~gðU; yÞ ¼ αðyÞUT þ βðyÞ < 0g
ð22Þ

The mean and standard deviation functions of ~G are then
given by

μ ~GðyÞ ¼ EfαðyÞUTg þ βðyÞ ¼ βðyÞ ð23Þ

σ ~GðyÞ ¼ kαðyÞk ¼ 1 ð24Þ

where Ef·g stands for expectation.
Eqs. (23) and (24) indicate that for any y ∈ ½Y; Ȳ�, the equivalent

response ~G is a Gaussian random variable with mean μ ~GðyÞ ¼ βðyÞ
and standard deviation σ ~GðyÞ ¼ 1.

4.2.2 Properties of ~G. If the MPP search is performed at two
points, y; y 0 ∈ ½Y; Ȳ�, we have

PrfG ¼ gðTðUÞ; yÞ ≤ eg≈ Prf ~GðyÞ ¼ αðyÞUT þ βðyÞ < 0g
ð25Þ
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PrfG ¼ gðTðUÞ; yÞ ≤ eg≈ Prf ~Gðy 0Þ ¼ αðy 0ÞUT þ βðy 0Þ < 0g
ð26Þ

Since ~GðyÞ and ~Gðy 0Þ share common random variables U, they
are generally correlated. The correlation coefficient between ~GðyÞ
and ~Gðy 0Þ is given by

ρðy; y 0Þ ¼ Ef ~GðyÞ ~Gðy 0Þg − Ef ~GðyÞgEf ~Gðy 0Þg
σ ~GðyÞσ ~Gðy 0Þ

ð27Þ

The aforementioned expression can be simplified as

ρðy; y 0Þ ¼ αðyÞαðy 0ÞT ; y; y 0 ∈ ½Y; Ȳ� ð28Þ
From the previous discussions, we know that ~G has he following

properties:

• ~G is a Gaussian random variable for any given y ∈ ½Y; Ȳ�.
• The distribution of ~G changes with respect to y as its mean

μ ~GðyÞ ¼ βðyÞ is a function of y.
• For any two points y; y 0 ∈ ½Y; Ȳ�, ~GðyÞ, and ~Gðy 0Þ are in

general correlated with the correlation coefficient given
in Eq. (28).

The properties of ~G show that ~G is indeed a Gaussian field with
mean μ ~GðyÞ ¼ βðyÞ, standard deviation σ ~GðyÞ ¼ 1, and autocorre-
lation function ρðy; y 0Þ. By performing FORM at every point
y ∈ ½Y; Ȳ�, we can map the random field G into an equivalent
Gaussian field ~G.

Based on the equivalence given in Eq. (22), the minimum
and maximum probabilities of failure are then computed with ~G
as follows:

p
f
¼ PrfG ¼ gðX; yÞ < e; ∀ y ∈ ½Y; Ȳ�g
≈ Prf ~G ¼ ~gðU; yÞ < 0; ∀ y ∈ ½Y; Ȳ�g ð29Þ

p̄f ¼ PrfG ¼ gðX; yÞ < e; ∃ y ∈ ½Y; Ȳ�g
≈ Prf ~G ¼ ~gðU; yÞ < 0; ∃ y ∈ ½Y; Ȳ�g ð30Þ

There are no close forms available for the probabilities given in
Eqs. (29) and (30). To estimate these probabilities, a sampling-
based method is presented based on the discretization of the equiv-
alent Gaussian field.

4.3 Discretization of the Equivalent Random Field

4.3.1 Discretization of ~G. Assume that the functions of βðyÞ
and ρðy; y 0Þ are exactly known, the equivalent Gaussian field ~G is
then fully defined. The original limit-state function is no longer
needed for the RA. ~G is usually a nonstationary Gaussian field,
and there is no analytical solution available to find whether there
exists a particular point of y on ½Y; Ȳ� when a failure occurs.
For this reason, we need to approximate or discretize ~Gwith respect
to Y so that the sample points of Y, where failure occurs, can be
captured. As discussed in Sec. 4.1, there are many discretization
methods available. Here, we use the EOLE [33] method.

We first generate s points for the interval variables on ½Y; Ȳ�
using the Hammersley sampling (HS) sampling method. Let the
s points be ½yi�i¼1;s; using the Kriging model of ρðy; y 0Þ, we have
the correlation matrix of these points as follows:

Σ ¼

0
BBBB@

ρðy1; y1Þ ρðy1; y2Þ · · · ρðy1; ysÞ
ρðy2; y1Þ ρðy2; y2Þ · · · ρðy2; ysÞ

..

. ..
. . .

. ..
.

ρðys; y1Þ ρðys; y2Þ · · · ρðys; ysÞ

1
CCCCA

s×s

ð31Þ

where ρðyi; yjÞ, i; j ¼ 1; s, are correlation coefficients of ~GðyiÞ and
~GðyjÞ, which are obtained by plugging yi and yj into the surrogate
model ρðy; y 0Þ.

Based on the correlation matrix and Eq. (14), ~G is then discre-
tized as

~G≈ βðyÞ þ
Xs

i¼1

Ziffiffiffiffi
ηi

p φφT
i ρ ~GðyÞ; ∀ y ∈ ½Y; Ȳ� ð32Þ

where Zi, i ¼ 1; s, are independent standard normal variables, ηi
and φi are eigenvalues and eigenvectors of the correlation matrix
Σ, and ρ ~GðyÞ ¼ ½ρðy; y1Þ; ρðy; y2Þ; : : : ; ρðy; ysÞ�T .

Upon the discretization of ~G, MCS can be performed by plug-
ging random samples of Zi, i ¼ 1; s, and samples ofY into Eq. (32).
Suppose nMCS samples are generated for each random variable Zi
and ny samples are generated for Y on ½Y; Ȳ� using the HS method;
we then have the following sampling matrix of ~G

~G ¼

0
BBBBB@

~Gðy1; 1Þ ~Gðy2; 1Þ · · · ~GðynY ; 1Þ
~Gðy1; 2Þ ~Gðy2; 2Þ · · · ~GðynY ; 2Þ

..

. ..
. . .

. ..
.

~Gðy1; nMCSÞ ~Gðy2; nMCSÞ · · · ~GðynY ; nMCSÞ

1
CCCCCA

nMCS×nY

ð33Þ

Based on the sampling matrix, the bounds of probability of fail-
ure are estimated, which will be discussed in Sec. 4.4. From the
discretization mentioned previously of the equivalent Gaussian ran-
dom field, it can be found that βðyÞ and ρðy; y 0Þ are required at each
of the discretization point. If MPP searches are performed at each of
the discretization point to obtain βðyÞ and ρðy; y 0Þ, it will be com-
putationally expensive. To further improve the efficiency, we use
surrogate models to reduce the number of MPP searches.

4.3.2 Surrogate Models of βðyÞ and ρðy; y 0Þ. As discussed in
Sec. 4.2.2, if we perform the MPP search at y, we obtain βðyÞ. If we
also perform the MPP search at y 0, we obtain βðy 0Þ and ρðy; y 0Þ.
After the two MPP searches at y and y 0, we obtain βðyÞ, βðy 0Þ, and
ρðy; y 0Þ. In this work, we use the Kriging model method [34], which
determines the locations of y and y 0 iteratively without using uni-
formly distributed points of y and y 0. In this way, the number of
MPP searches can be reduced.

The output of a Kriging model is assumed to be a stochastic
process [34–36]. The Kriging model of a function fðyÞ is given
by [37–39]

f̂ðyÞ ¼ hðyÞTυþ εðyÞ ð34Þ

where υ ¼ ½υ1; υ2; : : : ; υp�T is a vector of unknown coefficients,
hðyÞ ¼ ½h1ðyÞ; h2ðyÞ; : : : ; hpðyÞ�T is a vector of regression func-
tions, hðyÞTυ is the polynomial parts and the trend of prediction,
and εðyÞ is usually assumed to be a Gaussian process with zero
mean and covariance Cov½εðyiÞ; εðyjÞ�.

The covariance between two points yi and yj is given by

Cov½εðyiÞ; εðyjÞ� ¼ σ2
εRðyi; yjÞ ð35Þ

in which σ2
ε is the process variance and Rð·; ·Þ is the correlation

function. There exists a variety of correlation functions, such as
the exponential function, Gaussian function, cubic function, and
spline function. The most commonly used correlation function is
the Gaussian correlation function, which is given by [34–39]

Rðyi; yjÞ ¼ exp

�
−Xnd

k¼1

akjyki − ykj j2
	

ð36Þ
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where nd is the number of design variables, ak are the unknown
correlation parameters, and yki is the kth component of the
sample yi.

With ns training points, ½yi; fðyiÞ�i¼1,2; : : : ;ns , a correlation matrix
R with element, Rðyi; yjÞ, i; j ¼ 1; 2; : : : ; ns, will be obtained. Let
H ¼ ½hðy1ÞT ;hðy2ÞT ; : : : ;hðynsÞT �T and
F ¼ ½fðy1Þ; fðy2Þ; : : : ; fðynsÞ�T , the coefficient υ is solved by

υ ¼ ðHTR−1HÞ−1HTR−1F ð37Þ

For a new point y, the expected value of the prediction is given
by

f̂ðyÞ ¼ hðyÞTυþ rðyÞTR−1ðF −HυÞ ð38Þ

where

rðyÞ ¼ ½Rðy; y1Þ;Rðy; y2Þ; : : : ;Rðy; ynsÞ� ð39Þ

The mean square error (MSE) of the prediction is given by [40]

MSEðyÞ ¼ Ef½f̂ðyÞ − fðyÞ�2g ¼ σ2
εf1 − rðyÞTR−1rðyÞ

þ ½HTR−1rðyÞ − hðyÞ�TðHTR−1HÞ−1
× ½HTR−1rðyÞ − hðyÞ� ð40Þ

in which

σ2
ε ¼

ðF −HυÞTR−1ðF −HυÞ
ns

ð41Þ

The unknown parameters ak, k ¼ 1; 2; : : : ; n, are solved by
maximizing the maximum likelihood estimator (MLE), which is
given as follows:

ln½ðFjRÞ� ¼ − ns ln σ2
ε

2
− ln jRj

2
ð42Þ

where jRj is the determinant of R.
Detailed derivations of aforementioned equations are available

in [38,39,41,42], and a Kriging toolbox DACE is also available
[40]. Herein, we focus on the application of the Kriging model
for βðyÞ and ρðy; y 0Þ.

Even if βðyÞ and ρðy; y 0Þ are two different functions, they share
common input variables on ½Y; Ȳ�. The result of the MPP search for
βðyÞ can also be used for ρðy; y 0Þ. We therefore construct surrogate
models for βðyÞ and ρðy; y 0Þ simultaneously. In addition, Eq. (28)
gives ρðy; y 0Þ ¼ 1 for any y ¼ y 0. Taking advantage of these fea-
tures of βðyÞ and ρðy; y 0Þ, we can design an efficient algorithm
to create the surrogate models. Figure 4 shows such a procedure.
The detailed steps are explained as follows:

Step 1 through Step 3: Create initial Kriging models

• Step 1: Generate evenly distributed initial samples ys ¼
½ysi �i¼1; : : : ;k on ½Y; Ȳ� using the HS sampling approach.

• Step 2: Obtain initial samples of β and ρ for surrogate
models:
1. Perform MPP searches at ysi , i ¼ 1; k, using the optimiza-

tion model given in Eq. (15); obtain αðysi Þ and βðysi Þ.
2. Obtain β ¼ ½βi�i¼1; : : : ;k, yy

s ¼ ½ysi ; ysj� i;j¼1; : : : ;k
, and ρ ¼

½ρðysi ; ysjÞ�i;j¼1; : : : ;k
using Eq. (30).

• Step 3: Construct the initial Kriging models of βðyÞ and
ρðy; y 0Þ using fys; βg and fyys; ρg, respectively.
Step 4 through Step 8: Update models and create final models

• Step 4: Identify the maximum MSE and the associated new
sample point:

1. Find the maximum MSEs of βðyÞ and ρðy; y 0Þ using
½yβ; εmax

β � ¼ argmax
y∈½YL;YU �

MSEβðyÞ and ½ðyρ1; yρ2Þ; εmax
ρ � ¼

argmax
y1 ;y2∈½YL;YU �

MSEρðy1; y2Þ, respectively.
2. MSEβðyÞ and MSEρðy1; y2Þ are obtained from the outputs

of the Kriging model based on Eq. (40) [40].
3. If εmax

ρ > εmax
β , let εmax ¼ εmax

ρ , ynew ¼ ½yρ1; yρ2�; otherwise,
let εmax ¼ εmax

β , ynew ¼ yβ .
• Step 5: Check convergence: If εmax > εMSE, go to next step;

otherwise, obtain surrogate models of βðyÞ and ρðy; y 0Þ.
• Step 6: Perform MPP searches at ynew using the optimization

model given in Eq. (15), and obtain αðynewÞ and βðynewÞ.
• Step 7: Update ys, β, yys, and ρ: ys ¼ ½ys; ynew�, β ¼ ½β;

βðynewÞ�, yys¼½ysi ;ysj�i;j¼1;:::;h
, and ρ¼½ρðysi ;ysjÞ�i;j¼1;:: :;h

,
where h is the number of samples of ys.

• Step 8: Construct new Kriging models βðyÞ and ρðy; y 0Þ
using fys; βg and fyys; ρg, and then go to Step 4.

In Step 1, many sampling generation methods can be used, such
as the random sampling method (RS) [43], the Latin hypercube
sampling (LHS) method [44], and the HS method [45]. In this work,
we use the HS method as it is capable of generating more evenly
distributed samples than other methods. In Step 2, MPP searches are
performed. To reduce the number of function calls, we should care-
fully select a good starting point for the MPP search. We pick the
MPP that has been already obtained as the starting point. The MPP
of the sample point, which is the closest to the current sample point
ysi , is selected as the starting point of ysi . In Step 4, the maximum
MSEs are used as the stopping criteria. As they are calculated by the
Kriging models, there is no need to call the original limit-state func-
tion in this step. Any optimization methods can be used to deter-
mine the maximum MSEs, e.g., the DIRECT algorithm [46].

The numerical procedure shows that MPP searches are per-
formed in Steps 2 and 6. At each training point of y, the MPP search
is performed. As a result, the total number of MPP searches is equal
to the total number of training points of y, including both the initial
training points and the updated training points. If we consider cre-
ating the Kriging models as one loop and the MPP search as the
other loop, the proposed method involves a double-loop procedure,
but it is in general more efficient than the traditional double-loop
method where the global optimization with respect to the interval
variables is required. The new method eliminates the need of global
optimization, thereby increasing computational efficiency. Note that
we use the Kriging method to create the surrogate models of the
mean and autocorrelation functions of the approximated Gaussian
field, but other regression methods can also be used.

Fig. 4 Flowchart of constructing surrogate models of
β�y� and ρ�y;y 0�
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4.4 Reliability Analysis. To approximate the lower and upper
bounds of the probability of failure, we first define the following
indicator function:

Fði; jÞ ¼
�
1; if ~Gðyj; iÞ < 0; i ¼ 1; : : : ; nMCS; j ¼ 1; : : : ; nY

0; otherwise

ð43Þ

According to Eqs. (29) and (30), p
f
and p̄f are then estimated

by

p
f
≈ 1

nMCS

XnMCS

i¼1

FLðiÞ ð44Þ

p̄f ≈ 1

nMCS

XnMCS

i¼1

FUðiÞ ð45Þ

where

FLðiÞ ¼
�
1; if

PnY
j¼1 Fði; jÞ ¼ nY

0; otherwise
ð46Þ

FUðiÞ ¼
�
1; if

PnY
j¼1 Fði; jÞ > 0

0; otherwise
ð47Þ

As indicated previously, with the new approach, p
f
and p̄f can

be estimated simultaneously, and no global optimization with re-
spect to the interval variables is required.

5 Examples
In this section, three examples are used to demonstrate the ac-

curacy and efficiency of the proposed method. Each example is
solved using the following four methods:

• The proposed random field approach, denoted by
Random Field.

• The direct Kriging model method, denoted by Direct
Kriging, which constructs a surrogate model of the response
with respect to both random and interval variables and then
uses MCS to calculate the extreme probabilities of failure.

• The equivalent model method proposed by Jiang et al. [12],
denoted by Equivalent MPP.

• The direct MCS.

The solution from MCS with a sufficiently large sample size is
used as a benchmark for the accuracy comparison, and the effi-
ciency is measured by the number of the limit-state function calls
for the response variable.

5.1 Mathematical Example. The model is given in Eq. (48)
with four random variables and one interval variable defined in
Table 1. The response function is nonlinear with respect to the
interval variable.

gðX;YÞ ¼ −10.5þ 2.1X2
1X2sin2ðY1 þ 0.3Þ − 2X3ðY1 þ 0.3Þ

þ ðX1 þ X4ÞðY1 − 0.7Þ2 ð48Þ

The limit state is e ¼ −10, and thus the probability of failure is
given by

pf ¼ PrfgðX;YÞ < −10g ð49Þ

where X ¼ ½Xi�i¼1;4.

In Table 1, parameters 1 and 2 are the mean and standard
deviation of a random variable, respectively. For an interval
variable, the two parameters are the lower and upper bounds,
respectively.

Building the surrogate models for βðyÞ and ρðy; y 0Þ is critical for
the proposed random field approach, and we now show the results
of the two models in Figs. 5 and 6. The initial training points
and added training points of Y are also plotted in the figures.
For surrogate models of βðyÞ and ρðy; y 0Þ, the regression function
is chosen to be constant (hðyÞ ¼ 1) and the Gaussian correlation
function is used as the correlation function. The initial point, lower
bound, and upper bound for the optimization of unknown coeffi-
cients ak are a0k ¼ 10, alk ¼ 0.1, and auk ¼ 500, respectively.

Table 1 Variables and parameters of Example 1

Variable Parameter 1 Parameter 2 Distribution

X1 2 0.2 Normal
X2 3 0.3 Normal
X3 3.5 0.35 Normal
X4 2 0.4 Normal
Y1 0 1.5 Interval

0 0.5 1 1.5
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

 Y1

 (Y1)

Initial training points
Added training points

Fig. 5 Surrogate model of β�y�
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Fig. 6 Surrogate model of ρ�y;y 0�

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems
Part B: Mechanical Engineering

DECEMBER 2015, Vol. 1 / 041005-7

Downloaded From: http://risk.asmedigitalcollection.asme.org/ on 11/09/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use



The convergence criterion of the two surrogate models is
εMSE ¼ 1 × 10−4. Thirteen training points in total were used, and
thus, the MPP search was performed 13 times. The results show
that both βðyÞ and ρðy; y 0Þ are nonlinear with respect to the interval
variable.

Recall that the probability of failure pf can be evaluated with the
equivalent Gaussian random field ~G through Eqs. (29) and (30).
With βðyÞ and ρðy; y 0Þ available, ~G is fully defined. Then ~G could
be expanded, followed by MCS. The final results are given in
Table 2, where NOF is the number of function calls. The Random
field approach evaluated the limit-state function 335 times.

For a fair comparison, we used 500 training points for the direct
Kriging method to generate a direct Kriging model for the response
with respect to X and Y. The number of the training points was
much higher than that used by the random field approach. The range
of a random variable X was set to ½μX − 5σX;μX þ 5σX�, and the
training points were generated by the HS method. The equivalent
MPP method and MCS were also executed.

All the results are given in Table 2. ε and ε̄ are the percentage
errors of the lower and upper probabilities of failure with respect
to the MCS solutions, respectively. The results show that the pro-
posed random field approach is more efficient and accurate than
the direct Kriging method. Note that the equivalent MPP method
used the fewest number of function calls, but this does not mean
that it is more efficient than the random field approach because
it calculated only the upper probability of failure, and its accuracy
is much worse.

5.2 Cantilever Tube. The cantilever tube example shown in
Fig. 7 is modified from Ref. [19]. The component is subjected to
three forces F1, F2, and P, as well as a torque T. A failure occurs
when the maximum von Mises stress σmax is larger than the yield
strength Sy. The limit-state function is given by

G ¼ gðX;YÞ ¼ Sy − σmax ð50Þ

where X ¼ ½Sy; t; d;F1;F2;P;T�, Y ¼ ½θ1; θ2�, and σmax is given
by

σmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
x þ 3τ2zx

q
ð51Þ

in which

σx ¼
P
A
þM

I
ð52Þ

τxz ¼
½2T þ F1d sinðθ1Þ − F2d sinðθ2Þ�d

8I
ð53Þ

I ¼ π
64

½d4 − ðd − 2tÞ4� ð54Þ

A ¼ π
4
½d2 − ðd − 2tÞ2� ð55Þ

and

M ¼ F1L1 cosðθ1Þ − F2L2 cosðθ2Þ ð56Þ

where L1 ¼ 120 mm and L2 ¼ 60 mm.
All the input variables are given in Table 3. Parameters 1 and 2

have the same meanings as those in Example 1. The probability of
failure is defined by pf ¼ PrfG ¼ gðX;YÞ < 0g, and the limit state
is e ¼ 0. This problem involves seven independent random varia-
bles and two interval variables.

Figure 8 shows the maximum von Mises stress with respect to
interval variables θ1 and θ2, where all the random variables are fixed
at their mean values. The surface is quite nonlinear. Given that the
maximum von Mises stress is part of the response, the response is
therefore also highly nonlinear with respect to the interval variables.

The parameters of the Kriging model for constructing surrogate
models of βðyÞ and ρðy; y 0Þ are the same as those of Example 1. The
RA results of all the methods are provided in Table 4. For the direct
Kriging model method, we used 400 training points, which are more
than the training points used by the random field approach.

The results also show the high accuracy and efficiency of the
random field method.

Table 2 Results of Example 1

Method ½p
f
; p̄f � ½ε; ε̄� (%) NOF

Random field ½4.21 × 10−4; 1.25 × 10−2� ½0.94; 2.8� 335
Direct Kriging ½3.50 × 10−4; 1.08 × 10−2� ½17.65; 16.18� 500
Equivalent MPP ½N=A; 1.0 × 10−2� ½N=A; 22.48� 242
MCS ½4.25 × 10−4; 1.29 × 10−2� N/A 4 × 108
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1F

1

Fig. 7 Cantilever tube

Table 3 Variables of Example 2

Variable Parameter 1 Parameter 2 Distribution

t (mm) 6 0.2 Normal
d (mm) 43 0.2 Normal
F1 (N) 1000 50 Normal
F2 (N) 1700 80 Normal
P (N) 1000 50 Normal
T (Nm) 350 20 Normal
Sy (MPa) 360 0 Normal
θ1 (°) −5 10 Interval
θ2 (°) −10 6 Interval
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5.3 Ten-Bar Aluminum Truss. This example is modified
from Refs. [12,16,47]. As shown in Fig. 9, a ten-bar aluminum truss
is subjected to forces F1, F2, and F3. The vertical displacement of
joint 2 is of interest. Its allowable value is dmax ¼ 0.046 m. The
Young’s modulus of the material is E ¼ 68.948 GPa. The lengths
of the horizontal and vertical bars are all L ¼ 9.144 m.

The probability of failure is given by

pf ¼ PrfG ¼ gðX;YÞ ¼ dmax − d < 0g ð57Þ

in which d is computed by [47]

d ¼
�X6

i¼1

N0
i Ni

Ai
þ

ffiffiffi
2

p X10
i¼7

N0
i Ni

Ai

�
L
E

ð58Þ

where

8>>>>>>>>>>><
>>>>>>>>>>>:

N1 ¼ F2 −
ffiffi
2

p
2
N8;N2 ¼ − ffiffi

2
p
2
N10

N3 ¼ −F1 − 2F2 þ F3 −
ffiffi
2

p
2
N8

N4 ¼ −F2 þ F3 −
ffiffi
2

p
2
N10

N5 ¼ −F2 −
ffiffi
2

p
2
N8 −

ffiffi
2

p
2
N10;N6 ¼ − ffiffi

2
p
2
N10

N7 ¼
ffiffiffi
2

p ðF1 þ F2Þ þ N8;N8 ¼ a22b1−a12b2
a11a22−a12a21

N9 ¼
ffiffiffi
2

p
F2 þ N10;N10 ¼ a11b2−a21b1

a11a22−a12a21

ð59Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

a11 ¼



1
A1
þ 1

A3
þ 1

A5
þ 2

ffiffi
2

p
A7

þ 2
ffiffi
2

p
A8

�
L
2E

a12 ¼ a21 ¼ L
2A5E

a22 ¼



1
A2
þ 1

A4
þ 1

A6
þ 2

ffiffi
2

p
A9

þ 2
ffiffi
2

p
A10

�
L
2E

b1 ¼


F2

A1
− F1þ2F2−F3

A3
− F2

A5
− 2

ffiffi
2

p ðF1þF2Þ
A7

� ffiffi
2

p
L

2E

b2 ¼

 ffiffi

2
p ðF3−F2Þ

A4
−

ffiffi
2

p
F2

A5
− 4F2

A9

�
L
2E

ð60Þ

and N0
i , i ¼ 1; 2; : : : ; 10, are obtained by plugging F1 ¼ F3 ¼ 0

and F2 ¼ 1 into Eqs. (59) and (60).
There are ten independent random variables and three interval

variables as shown in Table 5. The parameters for constructing
the Kriging models of βðyÞ and ρðy; y 0Þ are also the same as those
in Example 1. The RA results are provided in Table 6. For the direct
Kriging model method, we used the HS method to generate 1000
training points, which were more than the training points used by
the random field approach. This example again shows the high
accuracy and efficiency of the random field approach.

6 Conclusions
Interval variables are usually used to model uncertainty with

limited information. As a result, the probability of failure is also
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Fig. 8 Maximum von Mises stress of the tube for a given
θ1 and θ2

Table 4 Results of Example 2

Method ½p
f
; p̄f � ½ε; ε̄� (%) NOF

Random field ½2.07 × 10−4; 9.86 × 10−4� ½1.90; 1.89� 371
Direct Kriging ½1.2 × 10−4; 7.10 × 10−3� ½43.13; 576.19� 400
Equivalent MPP ½N=A; 5.64 × 10−4� ½N=A; 43.62� 257
MCS ½2.11 × 10−4; 1.0 × 10−3� N/A 3 × 109

Fig. 9 Ten-bar aluminum truss

Table 5 Variables of Example 3

Variable Parameter 1 Parameter 2 Distribution

A1 (mm2) 4000 50 Normal
A2 (mm2) 4000 50 Normal
A3 (mm2) 4000 50 Normal
A4 (mm2) 4000 80 Normal
A5 (mm2) 4000 80 Normal
A6 (mm2) 4000 80 Normal
A7 (mm2) 4000 100 Lognormal
A8 (mm2) 4000 100 Lognormal
A9 (mm2) 4000 100 Lognormal
A10 (mm2) 4000 100 Lognormal
F1 (N) 442,800 446,800 Interval
F2 (N) 442,800 446,800 Interval
F3 (N) 1709,200 1849,200 Interval

Table 6 Results of Example 3

Method ½p
f
; p̄f � ½ε; ε̄� (%) NOF

Random field ½0; 4.153 × 10−3� ½0; 1.49� 401
Direct Kriging ½0; 3.88 × 10−3� ½0; 5.18� 1000
Equivalent MPP ½N=A; 4.82 × 10−2� ½N=A; 1077.91� 605
MCS ½0; 4.092 × 10−3� N/A 3 × 109
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an interval variable. Most of the RA methods for both random and
interval variables rely on the global extreme values of a
response with respect to interval variables. When the response is
a nonlinear function of the interval variables, the accuracy and
efficiency of RA are not good. This work shows that the response
is a random field with respect to interval variables. From this per-
spective, the reliability or probability of failure can be redefined
using a random field approach. The new definition allows for
a new RA method that maps the random field response into a
Gaussian field through the FORM. The Kriging model method
is employed to determine the mean and autocorrelation functions
of the Gaussian field, which is then expanded with a number of
Gaussian variables. Then the bounds of the probability of failure
are estimated by MCS.

The proposed method avoids global optimization with respect to
interval variables and therefore avoids performing FORM on the
extreme values of the response. In addition, the proposed method
obtains the lower and upper bounds of the probability of failure si-
multaneously. As the three examples demonstrated, the proposed
method is accurate and efficient.

It is critical to construct the models of the mean and autocorre-
lation functions of the Gaussian field. The Kriging method is used
in this work for this task. Other surrogate model methods can also
be employed. When the dimension of interval variables is high,
the proposed method may not perform well, because the Kriging
method may not be efficient for large-scale problems. A large num-
ber of interval variables, however, should be avoided, because this
situation will cause too-conservative RA results. More information
should be collected to reduce the number of interval variables. The
future work in this area is the sensitivity analysis that identifies the
most important interval variables, for which more information needs
to be collected.

Although the FORM-based random field approach does
not approximate the limit-state function with respect to interval
variables, it linearizes the limit-state function with respect to the
transformed random variables. Even though the accuracy of
FORM is acceptable for many engineering problems, its error will
be large if the limit-state function is highly nonlinear with respect
to the transformed random variables. Future work is to use a
more accurate and reliable method, such as the SORM, to replace
FORM.
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