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Accelerated Life Testing (ALT) Design Based on
Computational Reliability Analysis
Zhen Hu and Sankaran Mahadevan*†
Accelerated life testing (ALT) design is usually performed based on assumptions of life distributions, stress–life relationship,
and empirical reliability models. Time-dependent reliability analysis on the other hand seeks to predict product and system
life distribution based on physics-informed simulation models. This paper proposes an ALT design framework that takes
advantages of both types of analyses. For a given testing plan, the corresponding life distributions under different stress
levels are estimated based on time-dependent reliability analysis. Because both aleatory and epistemic uncertainty sources
are involved in the reliability analysis, ALT data is used in this paper to update the epistemic uncertainty using Bayesian
statistics. The variance of reliability estimation at the nominal stress level is then estimated based on the updated time-
dependent reliability analysis model. A design optimization model is formulated to minimize the overall expected testing
cost with constraint on confidence of variance of the reliability estimate. Computational effort for solving the optimization
model is minimized in three directions: (i) efficient time-dependent reliability analysis method; (ii) a surrogate model is
constructed for time-dependent reliability under different stress levels; and (iii) the ALT design optimization model is
decoupled into a deterministic design optimization model and a probabilistic analysis model. A cantilever beam and a
helicopter rotor hub are used to demonstrate the proposed method. The results show the effectiveness of the proposed
ALT design optimization model. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

E
ngineering products are commonly tested at higher than nominal stress conditions to yield failures in a relatively short time. This
method is referred to as accelerated life testing (ALT),1 which is an essential part of the reliability assurance process. A reasonably
designed ALT plan can not only reduce the cost of reliability testing, but also significantly accelerate the product development

cycle. ALT design 2 usually refers to designing the optimal stress testing levels and numbers of tests allocated to each stress level; this
is commonly based on assumptions of life distributions at different stress levels and relationship between stress and life.

Several approaches have been developed during the past decades to design optimal ALT plans. For instance, Dorp and Mazzuchi
developed a general Bayesian inference model for ALT design by assuming that the failure times at each stress level are exponentially
distributed.3 They also developed a general Bayes–Weibull inference model for ALT by assuming the failure times follow Weibull
distribution.4 Elsayed and Zhang5 developed a multiple-stress ALT model to overcome the limitation of traditional ALT models that
only focus on a single stress. Zhang and Meeker6 presented Bayesian methods for ALT planning with one accelerating variable
and discussed how to obtain the optimal testing plan. Lee and Pan studied the parameter estimation method of step-stress ALT
(SSALT) model.7 Voiculescu et al.8 studied the Arrhenius–Exponential model of ALT techniques using the maximum likelihood (ML)
and Bayesian methods. Even though many methods have been developed and studied, most of these methods purely depend on
testing data and make assumptions about the life distribution and stress–life relationship. Physics-informed computational models,
however, are seldom considered during ALT design.

With the same ultimate purpose of predicting product reliability, model-based reliability analysis methods based on physics-
informed models 9 have been intensively studied by another group of researchers in the past decades. Especially in recent years,
reliability analysis based on computer simulations is becoming increasingly popular for systems where testing is unaffordable. Such
model-based reliability analysis has been successfully applied to the prediction of reliability of automobiles,10 aircrafts,11 offshore
structures,12 civil structures,13 and many other problems14 by propagating uncertainty through computer simulation models. In
order to investigate the degradation of product reliability over time, a group of time-dependent reliability analysis methods have
been developed recent years. Examples of time-dependent reliability analysis methods include the PHI2 method developed by
Andrieu-Renaud et al.15, the probability density evolution method,16 the upcrossing rate-based method,17 the composite limit-state
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function method,18 the first-order sampling approach,19 and importance sampling approaches proposed by Mori and Ellingwood,20

Dey and Mahadevan,21 and Singh and Mourelatos.22 Because time-dependent reliability is connected to ALT through the
relationship between life and reliability, integration of physics-informed time-dependent reliability analysis models and ALT
methods is a promising way of designing optimal testing plans to reduce product development cost and time.

Efforts have been reported earlier to integrate ALT design with reliability analysis using computational models. For example, Zhang
and Mahadevan developed an integration method by combing the prior computational prediction and test data.23 Zhang and
Mahadevan also discussed how to update the life-distribution using testing data 24 in fatigue testing. These methods mainly focus
on the updating of life distribution based on ALT. In this paper, we develop a new ALT design optimization model based on time-
dependent reliability analysis. Instead of making assumptions about the stress–life relationship, physics-informed modeling and
simulation are used to represent the underlying relationship between stress and life.

The contributions of this paper are summarized as: (i) Formulation of a new ALT design optimization model, which enables the
decision maker to use the physics-informed computational model to guide the ALT design optimization. (ii) Relaxation of assumptions
on life distribution and stress–life relationship in ALT design. (iii) Introduction of methods to efficiently solve the new ALT design
optimization model.

In Section 2, the concept of ALT design is reviewed. Following that, in Section 3, time-dependent reliability analysis based on
physics-informed simulations is discussed. Section 4 proposes the new ALT design method based on time-dependent reliability
analysis and discusses how to solve the optimization model. Two examples of reliability testing design are given in Section 5.
Conclusions are drawn in Section 6.
2. ALT design

ALT is used to predict the reliability of a product under nominal stress level in a reasonable timeframe. The prediction is performed
based on the stress–life relationship obtained from reliability testing at stress levels that are higher than the nominal stress level. The
‘stress’ here refers to any factor that can be used in ALT to reduce the time to failure. It can be temperature, force, voltage, humidity,
etc. As shown in Figure 1, reliability tests are performed at higher stress levels, from which experimental data of life are collected.
Reliability at the nominal stress level is then estimated based on the experimental data at higher stress levels.

In order to predict the reliability of a product at the nominal stress level based on experimental data at higher stress levels, it is
commonly assumed in the literature that the life distribution at any stress level follows either a Lognormal or Weibull distribution.
Based on this distribution assumption, distribution parameters at tested stress levels are estimated. The distribution parameters are
then fitted as a function of stress level in the logarithmic coordinates (as indicated in Figure 1). The commonly used fitting functions
include linear, quadratic, and exponential functions. For instance, when a linear function is used to fit the mean of life, the mean
function is given by

μT Sð Þ ¼ α1 þ α2 log Sð Þ (1)

in which S is the stress level, μT(S) is the mean of life distribution at stress level S, and α1 and α2 are two parameters estimated based on
the experimental data.

Similarly, the other parameters of the life distribution are fitted using functions or are assumed to be constant over different stress
levels. Based on the functions of parameters with respect to stress level, distribution parameters at the nominal stress level S0 are
obtained. The product reliability RS0 at the nominal stress level is then estimated based on the assumed life distribution type and
the estimated distribution parameters.

Because the experimental data may not be enough to exactly estimate the parameters of the function given in Eq. (1), the function
parameters are uncertain, which results in uncertainty in the estimation of RS0 . In addition, the assumption of Lognormal distribution
or Weibull distribution may not hold. This also contributes the uncertainty ofRS0. Motivated by reducing the variation in the estimation
Figure 1. Stress–life relationship in ALT
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of RS0 subjected to constraints on testing resources, ALT design methods have been proposed during the past decades. For instance,
Pascual and Montepiedra proposed a model-robust ALT planning method based on a weighted asymptotic sample ratio (ASR).25

Pascual also discussed a methodology for the designing of ALT plan robust to misspecification of the stress–life relationship.26 Fard
and Li developed a step stress ALT model to optimize the hold time of step stress tests.27 Liu and Tang proposed a Bayesian design
optimization model to minimize the expected pre-posterior variance of reliability prediction.28 They also developed a design
optimization approach for ALT with an auxiliary acceleration factor (AAF).29

All the above reviewed ALT methods have the same objective, which is to minimize the expected variance of reliability prediction
and subject to constraint on testing budget. Most of these empirical methods, however, rely on assumptions and do not utilize the
information of physics models, which are often available for computer simulations. In the subsequent sections, we will first introduce
the method of life prediction using time-dependent reliability analysis, which is based on physics computational model of the system.
Based on that, we present a new ALT design framework.
3. Life distribution based on time-dependent reliability analysis

3.1. Physics-based reliability analysis

The fundamental principle of physics-based reliability analysis is to predict the probability of failure based on the joint probability
density function (PDF) of input variables and the relationship between input variables and response obtained from physics models.
For a given realization of random variables, the response is predicted using numerical computational models such as finite element
analysis (FEA), computational fluid dynamics (CFD), or other physics simulation models. Based on that, the probability of failure is
computed as

pf ¼ ∫
g Xð Þ≤0

f X xð Þdx (2)

where X is a vector of random variables, g(X) is the response function, fX(x) is the joint PDF, and g(X) ≤ 0 is the failure event.
Many reliability analysis methods have been proposed during the past decades to efficiently and accurately solve the above

integration. The most widely used methods include the first-order reliability method (FORM), second-order reliability method (SORM),
and different methods of Monte Carlo sampling.

3.2. Time-dependent reliability analysis with only aleatory uncertainty

After considering time-dependent factors, the response function becomes G(t) = g(X, Y(t), t), where Y(t) is a vector of stochastic
processes and t is time. The time-dependent probability of failure or the first-passage probability of failure over a time interval of
interest [0, t] is given by

pf 0; tð Þ ¼ Pr G τð Þ ¼ g X; Y τð Þ; τð Þ ≤ 0; ∃ τ ∈ 0; t½ �f g (3)

where ‘∃’ means ‘there exists’.
Eq. (3) can also be written as

FT tð Þ ¼ Pr G τð Þ ¼ g X; Y τð Þ; τð Þ ≤ 0; ∃ τ ∈ 0; t½ �f g (4)

in which FT(t) is the cumulative density function (CDF) of life distribution.
Assuming that the statistics of the random variables X and stochastic processes Y(t) are precisely known and there is no error in the

response function g(X, Y(t), t), the time-dependent probability of failure (i.e. CDF of a given life t) can be estimated using the time-
dependent reliability analysis methods. When the system response is a monotonic function with respect to time, time-dependent
reliability analysis is equivalent to time-instantaneous reliability analysis at the initial or last time instant. When the response function
is not a monotonic function, a group of time-dependent reliability analysis methods have been proposed in the past decades.30

Among these methods, the outcrossing rate method based on the Rice’s formula is the most widely used.30 In the outcrossing rate
method, the outcrossing events are assumed to be independent and following the Poisson distribution. Based on this assumption,
pf(0, t) or FT(t) is estimated by

pf 0; tð Þ ¼ 1� R 0ð Þ exp �∫
t

0
vþ τð Þdτ

n o
(5)

where R(0) stands for the reliability at the initial time instant and v+(τ) is the outcrossing rate at time instant τ. v+(τ) is estimated by

vþ τð Þ≈ lim
Δt→0

Pr g X; Y τð Þ; τð Þ > 0 ∩g X; Y τ þ Δtð Þ; τ þ Δtð Þ ≤ 0f g
Δt

(6)

where ‘∩’ stands for ‘intersection’.
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015
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The outcrossing rate method is accurate for most problems when the failure threshold is high. When the failure threshold is low, the
Poisson assumption regarding the outcrossing rate may result in significant error in the reliability estimate. In order to improve the
accuracy of reliability analysis, other methods have been developed by releasing the Poisson assumption, such as the composite
limit-state function method,18 the stochastic discretization method,31 and first-order sampling approach (FOSA).19 In FOSA, FT(t) up
to the time interval of interest can be obtained from one analysis. In this paper, FOSA is therefore employed for problems with non-
monotonic limit state functions.

The basic principle of FOSA is to model the system response as a random process based on the following probability equivalency.

FT tð Þ ¼ Pr G τð Þ ¼ g X; Y τð Þ; τð Þ ≤ 0; ∃ τ ∈ 0; t½ �f g≈ Pr LG τð Þ ≤ 0; ∃ τ∈ 0; t½ �f g (7)

in the above equation, LG(τ) is a Gaussian random process. Based on the modeling of LG(τ), FT(t) is estimated through simulation. The
three main steps of FOSA are briefly summarized as below.

(a). Surrogate model construction: Training points τ= [τ1, τ2, ⋯, τtrain] of time are generated over [0, t] using design of
experiments (DOE) methods. For each training point τ ∈ τ, the associated most probable point (MPP), u*(τ), is identified by solving
the following optimization model

min β τð Þ ¼ u τð Þk k
u τð Þ ¼ uX; uY τð Þ½ �
G τð Þ ¼ g T uXð Þ; T uY τð Þð Þ; τð Þ≤0

8><
>: (8)

in which β(τ) is the reliability index at τ, ‖ � ‖ is the determinant of a vector, uX and uY(τ) are vectors of standard normal variables, T(�) is
an operator, which transforms uX and uY(τ) into original random variables X and Y(τ).

After solving Eq. (8) for each chosen time value τ, we have τ= [τ1, τ2, ⋯, τtrain] and β= [β(τ1), β(τ2),⋯ , β(τtrain)]. We also obtain
training points for the correlation function of LG(τ) as follows

ρL τi; τj
� � ¼ αX τið ÞαTX τj

� �þ αY τið Þρ τi; τj
� �

αTY τj
� �

; ∀τi; τj∈ τ1; τ2; ⋯; τtrain½ � (9)

where αX τkð Þ ¼ u�
X τkð Þ= u� τkð Þk k, αY τkð Þ ¼ u�

Y τkð Þ= u� τkð Þk k, k= i, j, and ρ(τi, τj) is given by

ρ τi; τj
� � ¼

ρY1
τi; τj
� �

0 ⋯ 0

0 ⋱ ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ ρYs
τi; τj
� �

2
66664

3
77775
s�s

(10)

in which ρYk
τi; τj
� �

, k=1, 2,⋯ , s, are the autocorrelation coefficients ofUYk tð Þbetween time instants τi and τj, and s is the number of
stochastic processes.

With the training points, τ, β, and ρL(τi, τj), ∀ τi, τj ∈ [τ1, τ2, ⋯, τtrain], surrogate models β̂ tð Þ and ρ̂L ti; tj
� �

are then constructed
using the Kriging method reviewed in Appendix A.

(b). Random process modeling: As discussed in Eq. (7), the original response can be approximated using an equivalent random
process LG(τ). After discretizing the time interval of interest into h time instants, ti, i= 1, 2, ⋯, h, LG(τ) is simulated using the
expansion optimal linear estimation method (EOLE) method 32 as below:

LG ≈� β τð Þ þ
Xr

i¼1

ξ iffiffiffiffi
ηi

p φT
i ρLτ τð Þ; ∀τ∈ 0; t½ � (11)

where ξ i, i=1, 2, ⋯, r, is a vector of independent standard normal variables, ρLτ(τ) = [ρL(τ, t1), ρL(τ, t2), ⋯, ρL(τ, th)]
T, ηi andϕT

i are the
eigenvalues and eigenvectors of correlation matrix ρL, r ≤ h is the number of terms of expansion, and ρL is obtained by inputting time
instants, ti, i=1, 2, ⋯, h, into bρL ti; tj

� �
. Note that the eigenvalues ηi are sorted in decreasing order.

(c). Reliability analysis: With the expression given in Eq. (11), samples of LG(τ) are generated by discretizing [0, t] intoW time instants
and generating N samples for each random variable of ξ i. After that, a sampling matrix is obtained as follows

eLN�W ¼

l t1; 1ð Þ l t2; 1ð Þ ⋯ l tW ; 1ð Þ
l t1; 2ð Þ l t2; 2ð Þ ⋯ l tW ; 2ð Þ

⋮ ⋮ ⋱ ⋮

l t1; Nð Þ l t2; Nð Þ ⋯ l tW ; Nð Þ

0
BBB@

1
CCCA

N�W

: (12)

The global minimum values of eLN�W are then identified by

lmin; i ¼ min l t1; ið Þ; l t2; ið Þ; ⋯; l tW ; ið Þf g; i ¼ 1; 2; ⋯; N (13)
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FT(t) or pf(0, t) is then approximated as

pf 0; tð Þ ¼

XN
i¼1

I� lmin; i

� �
N

(14)

where I�(lmin, i) = 1 if lmin, i ≤ 0, otherwise, I�(lmin, i) = 0.
More details about time-dependent reliability analysis can be found in.19 After performing time-dependent reliability analysis at

different life values using Eq. (4), CDF and PDF of life distribution (as shown in Figure 2) are obtained.

3.3. Time-dependent reliability analysis with both aleatory and epistemic uncertainty

3.3.1. Epistemic uncertainty. It is often difficult to obtain enough data to fully characterize the statistics of the input random variables
and stochastic processes. In addition, there are multiple approximation errors in computer simulation models. Because of both
reasons, epistemic uncertainty, which refers to uncertainty because of lack of knowledge, affects the time-dependent reliability
estimate. The epistemic uncertainty can be roughly classified into two groups.

• Data Uncertainty: Parameters of random variables and stochastic processes are usually modeled based on the collected data.
Limited data, noises in measurement, and sensor degradation result in uncertainty in the parameters.

• Model Uncertainty: Computer simulation models are widely used in reliability analysis. These simulation models will inevitably
have some errors because of model form assumptions and numerical approximations.

Modeling of epistemic uncertainty sources has been extensively studied during the past decades.33 In this paper, we mainly focus
on their effects on time-dependent reliability analysis.

3.3.2. Effects of epistemic uncertainty on time-dependent reliability. Let θ be a vector of variables representing various sources of
epistemic uncertainty, which include not only the epistemic parameters of random variables and stochastic processes, but also
epistemic uncertainty of model form error and numerical errors. Estimated distributions of θ can be obtained using interval analysis,
fuzzy set, and Bayesian theory based on limited data or expert opinions.33 Denote the PDF of θ as f(θ). After introducing θ into the
limit state function of time-dependent reliability analysis, the response function given in Section 3.2 becomes G(t) = g(X, Y(t), θ, t),
where X and Y(t) include random variables and stochastic processes those with known parameters and those with epistemic
parameters, θ. For any given realization of θ, the reliability analysis problem reduces to a time-dependent reliability analysis problem
with only aleatory uncertainty. As shown in Figure 3, different life distributions will be obtained from time-dependent reliability
analysis under different realizations of θ. From different life distributions, different reliability estimates are obtained with respect to
the life of interest. The reliability estimate under epistemic uncertainty θ is therefore uncertain (as indicated in Figure 3). Time-
dependent reliability analysis with aleatory and epistemic uncertainty is computationally intensive. An efficient reliability analysis
method has been developed in Ref. 34 to reduce the computational cost. Because the focus of this paper is ALT design, details of
time-dependent reliability analysis with aleatory and epistemic uncertainty are not given here; see Ref. 34 for details.

We already introduced background concepts on ALT design and life distribution analysis using time-dependent reliability analysis.
In the following section, we will discuss how to perform ALT design based on time-dependent reliability analysis.
Figure 2. Illustration of life distribution from reliability analysis with only aleatory uncertainty

Figure 3. Life distribution from reliability analysis with both aleatory and epistemic uncertainty
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4. ALT design based on time-dependent reliability analysis

In this section, we first analyze the connection between ALT and time-dependent reliability analysis. Based on that, the ALT design
optimization problem is formulated next. We then discuss how to solve the ALT design optimization problem.
4.1. Connection between ALT and time-dependent reliability analysis

As presented in Sections 2 and 3, ALT predicts the product reliability based on experimental data, whereas time-dependent reliability
analysis estimates reliability based on physics-based computational simulation models. These two methods are connected by their
ultimate goal: reliability prediction at the nominal stress level. After introducing stress level S into the limit-state function of time-
dependent reliability analysis, the response function given in Section 3.3 is rewritten as

G S; tð Þ ¼ g X; Y tð Þ; θ; t; Sð Þ: (15)

For a given realization of θ, the time-dependent probability of failure given in Eq. (4) becomes

FT S; tð Þjθ ¼ Pr G S; τð Þ ¼ g X; Y τð Þ; θ; τ; Sð Þ ≤ 0; ∃ τ ∈ 0; t½ �f g: (16)

The above equation predicts the probability that the product life is less than t under stress level S for a given realization of
epistemic uncertainty, θ. If time-dependent reliability analysis is performed at multiple stress levels, as indicated in Figure 4, similar
to ALT, a stress–life relationship will be obtained.

The difference between the stress–life relationships obtained from ALT and time-dependent reliability analysis is that the stress–life
relationship is modeled using some assumed functions (i.e. linear, quadratic functions) based on experimental data in ALT whereas the
life distributions at different stress levels are connected through the underlying physics model in time-dependent reliability analysis.
Because ALT and time-dependent reliability analysis aim to model the same stress–life relationship, physics-informed time-dependent
reliability analysis model can be used to guide the data-based ALT design by fusing the information from these two sources.
4.2. ALT design optimization model

4.2.1. Formulation of ALT design optimization model. In ALT design, decision makers hope to minimize the reliability testing cost
while maintaining the confidence of product reliability prediction. Based on this motivation, we defined the following objective
and constraints for ALT design optimization.

(a) Optimization objective
The reliability testing costs consist of two parts: (i) manufacturing cost of testing units, and (ii) inspection, labor, and other costs

related to testing time. The first cost is only related the number of testing units. The second cost is related to not only the number
of testing units but also the expected testing time. The optimization objective is therefore defined as follows

Ctotal ¼
Xm
i¼1

ni C1 þ C2ttest Sið Þð Þ (17)

where Ctotal is the total expected testing cost, m is the number of stress levels in ALT (for example, m= 2 for two-level stress testing
design and m= 3 for three-level stress testing design), n= [n1, n2, ⋯, nm] and S= [S1, S2, ⋯, Sm] are design variables, ni is the
number of tests allocated to stress level Si, ttest(Si) is the expected testing time per testing unit under stress level Si, C1 is the
manufacturing cost per testing unit, and C2 is the testing cost per unit testing time (i.e. labor cost and inspection cost).

(b) Optimization constraints
The optimization constraints relate to the number of tests allocated to each stress level, the testing stress levels, and confidence of

reliability estimation. For the constraint of reliability estimate confidence, the most common method is to use the expected pre-
posterior variance given as 6
Figure 4. Illustration of stress–life relationship obtained from time-dependent reliability analysis
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V Rs0ð Þ ¼ Etj n; S Varθ̂jt; n; S Rs0ð Þ
� �

(18)

where S0 is the nominal stress level,Rs0 is the prediction of product reliability at the nominal stress level, θ̂ are the posterior samples of θ
after Bayesian updating using data t, Varθ̂jt; n; S Rs0ð Þ is the pre-posterior variance of Rs0 under given values of t, n, and S, Et|n, S(�) is the
expectation of pre-posterior variance by considering variation in t, and variation in t is obtained from the marginal distribution of t.

The pre-posterior variance Varθ̂jt; n; S Rs0ð Þ has been widely used for ALT design in previous studies.6,28 By assuming that the

posterior distribution follows a multivariate normal distribution, the pre-posterior variance can be estimated using the expected
Fisher information matrix 35, whose elements are second derivatives of the logarithmic likelihood. Because the expected Fisher

information matrix is only related to the ML estimate (MLE) θ of θ for given life testing data t, the variation of Varθ̂jt; n; S Rs0ð Þ comes

from the variation in θ. Zhang and Meeker 6 showed that the prior probability distribution of θ provides an excellent approximation

to the distribution of θ because the distribution of θwill converges to θ when sample size increases. This implies that the variation of
Varθ̂jt; n; S Rs0ð Þ mainly comes from the variation in θ. Eq. (18) is therefore rewritten as

V Rs0ð Þ ¼ Eθ Varθ̂jθ; n; S Rs0ð Þ
� �

: (19)

The above equation requires multi-dimensional integration over the probability domain of θ. For some problems, it might be
computationally expensive because the estimation of Varθ̂jθ; n; S Rs0ð Þbased on time-dependent reliability analysis is computationally

intensive. In this paper, we use the probabilistic constraint given below to substitute for the expectation constraint:

Prθ g n; S; θð Þ ¼ Varθ̂jθ; n; S Rs0ð Þ > e
n o

≤ Pr½ � (20)

where [Pr] is a probability specified by decision maker to quantify the desired confidence of reliability prediction and e is the threshold for
pre-posterior variance of Rs0 .

There are two main advantages for the use of a probabilistic constraint instead of expectation. First, as shown in Figure 5,
Varθ̂jθ; n; S Rs0ð Þ is always larger than zero and follows a distribution with a long right tail. By controlling the percentile value at the right

tail using the probabilistic constraint, the confidence of reliability prediction can be easily guaranteed. Using an expectation constraint,
however, may still have a high probability that the variance of reliability prediction is large. Second, the computational effort for evaluation

of the expectation of Eθ Varθ̂jθ; n; S Rs0ð Þ
� �

is typically more intensive than that for the approximation of a single percentile value.

(c) Optimization model
Based on the objective and constraints, the ALT design optimization model is formulated as

min
n;S

Ctotal ¼
Xm
i¼1

ni C1 þ C2ttest Sið Þð Þ

s:t: Prθ g n; S; θð Þ ¼ Varθ̂jθ; n; S Rs0ð Þ > e
n o

≤ Pr½ �
1 ≤ n ≤ nmax

S0 ≤ S ≤ SmaxXm
i¼1

ni ≤ nmax

ni�1 < ni; for i ¼ 1; 2; ⋯; m

(21)

in which nmax is themaximumnumber of tests that can be allocated to each stress level and Smax is themaximum allowable testing stress.
Figure 5. Illustration of distribution of Varbθ��θ; n; S
Rs0ð Þ
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In the above optimization model, C1 and C2 are obtained from field data, [Pr] and e are specified by the decision maker according
to product reliability requirement, and ttest(Si) and Varθ̂jθ; n; S Rs0ð Þ are two unknown terms. We will discuss how to model these two

unknown terms in the subsequent sections.
4.2.2. Modeling of ttest(Si)

Before performing ALT, we do not have information about the expected testing time at different stress levels. In this paper, we use
time-dependent reliability analysis to estimate the expected testing time. At a stress level Si, the expected testing time, ttest(Si), is
computed by

ttest Sið Þ ¼ ∫∫tf t tjθ; Sið Þf θ θð Þdtdθ (22)

where fθ(θ) is the joint PDF of θ and ft(t|θ, Si) is the PDF of t given θ and Si, which is given by

f t tjθ; Sið Þ ¼ FT t þ Δtð Þjθ; Si � FT tð Þjθ; Si
Δt

¼ Δ Pr

Δt
(23)

and

Δ Pr ¼ Pr G Si; τð Þ ¼ g X; Y τð Þ; θ; τ; Sið Þ ≤ 0; ∃τ ∈ 0; t þ Δt½ �f g
� Pr G Si; τð Þ ¼ g X; Y τð Þ; θ; τ; Sið Þ ≤ 0; ∃τ ∈ 0; t½ �f g: (24)

The above equation is solved based on time-dependent reliability analysis at stress level Si. Substituting Eq. (22) into the
optimization model given in Eq. (21), the optimization model is rewritten as

min
n;S

Ctotal ¼
Xm
i¼1

ni C1 þ C2∫∫tf t tjθ; Sið Þf θ θð Þdtdθ
h i

s:t: Prθ g n; S; θð Þ ¼ Varθ̂jθ; n; S Rs0ð Þ > e
n o

≤ Pr½ �
1≤ n ≤ nmax

S0 ≤ S ≤ SmaxXm
i¼1

ni ≤ nmax

ni�1 < ni; for i ¼ 1; 2; ⋯; m:

(25)

Considering that the optimizer will evaluate the objective function numerous times when solving the above optimization model
and the integration operator in the objective will call ft(t|Si, θ) many times, we construct a surrogate model for ft(t|S, θ) to save the
computational effort. As indicated in Eq. (23), ft(t|Si, θ) is computed from FT(t)|θ, Si which is obtained from time-dependent reliability
analysis; we therefore construct a surrogate model for FT(t)|θ, Si and compute ft(t|Si, θ) using Eq. (23) based on the surrogate model.
The Kriging approach briefly summarized in Appendix A is used in this paper to construct the surrogate model.
4.2.3. Evaluation of pre-posterior variance of reliability, Varθ̂jθ; n; S Rs0ð Þ
Because Etj n; S Varθ̂jt; n; S Rs0ð Þ

� �
is transformed into Eθ Varθ̂jθ; n; S Rs0ð Þ

� �
and θ provides an approximation to the MLE θ (as

discussed in Section 4.2.1), θ mentioned in this section is also θ. For a given value of θ (i.e. θ), the reliability under nominal stress level

Rs0 is predicted by inputting θ, S0, the life of interest te into the surrogate model F̂ T t; θ; Sð Þ . The asymptotic variance of Rs0 is
computed based on the first-order Taylor expansion as

Varθ̂jθ; n; S Rs0ð Þ ¼ dRs0
dθ

� 	
C

dRs0
dθ

� 	’
(26)

where
dRs0
dθ

h i
¼ dRs0

dθ1
;

dRs0
dθ2

; ⋯;
dRs0
dθq

h i
, q is the number of epistemic uncertain variables, and C is the covariance matrix of θ in the

posterior distribution.
In this paper, we use the expected Fisher information matrix to estimate C. C is given by

C ¼ I θð Þ½ ��1 (27)

where I(θ) is the expected Fisher information matrix with (i, j)-th element as

Iij θð Þ ¼ �
Xm
k¼1

nkE
k
θ

∂2

∂θi∂θj
log L tk jθð Þð Þ

� 	
; i; j ¼ 1; 2; ⋯; q: (28)
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Ekθ
∂2

∂θi∂θj log L tk jθð Þð Þ
h i

is the expectation of ∂2
∂θi∂θj log L tk jθð Þð Þ by considering the variation of tk at the k-th testing stress level. It is

computed as

Ekθ
∂2

∂θi∂θj
log L tk jθð Þð Þ

� 	
¼ ∫

∂2 log L tk jθð Þð Þ
∂θi∂θj

f t tk jθ; Skð Þdtk : (29)

The term ∂2 log L tk jθð Þð Þ
∂θi∂θj is computed using a second-order numerical partial differentiation method. As mentioned in Section 4.2.2, ft

(tk|θ, Sk) is obtained based on the surrogate model F̂ T t; θ; Sð Þ (constructed in Section 4.2.2) by fixing values of θ and Sk. For a given
value tk, L(tk|θ) is computed as

L tk jθð Þ ¼ F̂ T tk þ Δt; θ; Skð Þ � F̂ T tk ; θ; Skð Þ
Δt

: (30)

4.2.4. Solution of the design optimization model. The ALT formulation in Eq. (21) is a nonlinear optimization problem with mixed
integer (n) and continuous (S) design variables and probabilistic constraint. Directly solving Eq. (21) results in a double-loop
procedure. The inner loop is probabilistic analysis and outer loop is design optimization. Because the probabilistic analysis needs
to solve g(n, S, θ) repeatedly, the double-loop procedure is computationally very expensive. In order to improve the efficiency, we
first transform the uncertain variables, θ, from the original space to an equivalent standard normal space (uθ) and rewrite Eq. (21) as

min
n;S

Ctotal ¼
Xm
i¼1

ni C1 þ C2ttest Sið Þ½ �

s:t: Pruθ g n; S; T uθð Þð Þ ¼ Varθ̂jT uθð Þ; n; S Rs0ð Þ > e
n o

≤ Pr½ �
1 ≤ n ≤ nmax

S0 ≤ S ≤ SmaxXm
i¼1

ni ≤ nmax

ni�1 < ni; for i ¼ 1; 2; ⋯; m

(31)

where T(uθ) is a transformation operator which transforms uθ into θ.
The formulation in Eq. (31) helps to decouple the two loops. The sequential optimization and reliability assessment (SORA) method

36 is employed to decouple the optimization model (Eq. (31)) into a deterministic design optimization model and a probabilistic
analysis model. The deterministic design optimization model is given by

min
n;S

Ctotal ¼
Xm
i¼1

ni C1 þ C2ttest Sið Þ½ �

s:t: g n; S; T u�
θ

� �� � ¼ Varθ̂jT u�θð Þ; n; S Rs0ð Þ ≤ e

1 ≤ n ≤ nmax

S0 ≤ S ≤ SmaxXm
i¼1

ni ≤ nmax

ni�1 < ni; for i ¼ 1; 2; ⋯; m

(32)

where u�
θ is obtained from the following probabilistic analysis model

max
uθ
� g n; S; T u�

θ

� �� �
s:t: u�

θ



 

 ¼ β0
(33)

in which β0 =Φ(1� [Pr]).
The deterministic design optimization model given in Eq. (32) is a mixed integer and continuous optimization problem, and

requires a mixed integer programming algorithm. In this work, the genetic algorithm 37 is used to solve Eq. (32). Algorithms for solving
above probabilistic analysis model in (Eq. (33)) are well established and available in.38 Based on Eqs. (32) and (33), Eq. (31) can be
solved in a decoupled procedure as given in Figure 6.

In the above figure, ε is a convergence criterion for the optimization. In the next sub-section, we will summarize the overall
procedure of ALT design based on time-dependent reliability analysis.
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Figure 6. Flowchart for solving the ALT design optimization model
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4.3. Implementation procedure

The overall numerical procedure of the proposed ALT design optimization is summarized in Figure 7. There are mainly five steps:

Step 1: Generate training points for t, θ, and S using DOE and according to the maximum allowable testing stress.
Step 2: Perform time-dependent reliability analysis at the training points. If the system response is a monotonic function with

respect to time, only time-instantaneous reliability analysis is needed. Otherwise, time-dependent reliability analysis needs
to be employed.

Step 3: Construct a surrogate model for F̂ T t; θ; Sð Þ using the training points. If the accuracy (i.e. bias and variance) of the
surrogate model output is not satisfactory, add more training points until the desired accuracy is achieved.

Step 4: Model the expected testing time using the method presented in Section 4.2.2 and the surrogate model obtained from
Step 3.

Step 5: Solve the ALT design optimization model using the method given in Section 4.2.4.
5. Numerical example

5.1. A cantilever beam with an initial random fatigue crack

5.1.1. Problem statement A cantilever beam (shown in Figure 8) with an initial random planar fatigue crack (through crack) near the
fixed support is employed as the first example. The beam is subjected to a cyclic loading at the end of the beam. The fatigue crack
length is assumed to grow vertically downward because of the cyclic loading. Failure is defined as when the fatigue crack length is
larger than 0.15 inch. An ALT plan needs to be designed to estimate the reliability of the beam.
Figure 7. Overall numerical procedure of ALT design optimization

Figure 8. Finite element analysis model of the beam
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In order to numerically predict the fatigue crack growth, the Paris law 39 is used to estimate the rate of crack growth during each
cycle as follows

da

dN
¼ C ΔKð Þm (34)

where a is the crack length, N is the number of cycles, C and m are model parameters of Paris law, and ΔK= K(a, S) is the stress
intensity factor, which is a function of current crack geometry and applied load.

The uncertain variables and parameters of the crack growth model are summarized in Table I. Based on available information, the
distribution of initial crack length a0 is assumed to be precisely known, while the Paris law parameters (C and m) are assumed to have
Gaussian distribution but with unknown means and standard deviations.

The lack of knowledge (epistemic uncertainty) about the mean and standard deviation of C and m is expressed through prior
distributions given in Table II. Let the manufacturing cost per testing unit be C1 = $500, and the testing cost per cycle be C1 = $0.1.
Assume that the maximum number of tests that can be allocated to a stress level is 80, the nominal stress level is 2.5 N, and the
allowable testing stress is 15N. The ALT design optimization model is thus formulated as

min
n;S

Ctotal ¼
Xm
i¼1

ni C1 þ C2ttest Sið Þð Þ

s:t: Prθ g n; S; θð Þ ¼ Varθ̂jθ; n; S Rs0ð Þ > e
n o

≤ Pr½ �
1≤ n ≤ 80
2:5 ≤ S ≤ 15Xm
i¼1

ni ≤ 80

ni�1 < ni; for i ¼ 1; 2; ⋯; m

(35)

where θ = [μC, σC, μm, μm], e= 0.001, and [Pr] = 0.05.
For given realizations of epistemic parameters θ= [μC, σC, μm, μm], the fatigue reliability of the beam is computed as

Rs0 ¼ Pr aNe C; m; a0ð Þ < 0:15f g (36)

in which aNe is the crack length after Ne cycles of loading and Ne is the life of interest (Ne=1.5 × 104 cycles). aNe is solved using Eq. (34).
Because the crack length grows with time, the response function is a monotonic function of time. The time-dependent reliability

analysis therefore reduces to time-instantaneous reliability analysis at the last time instant (Ne).
In the following sections, we will solve the ALT design optimization model using the proposed method and perform ALT design for

two cases, namely two-stress level ALT design and three-stress level ALT design, respectively.
5.1.2. Expected testing time under different stress levels Based on the surrogate model, F̂ T t; θ; Sð Þ, we analyzed the expected testing
time under different stress levels. Figure 9 gives the relationship between the expected testing time and stress level. It shows that the
expected testing time decreases significantly with the stress level. However, after the stress level increases to a particular value (larger
than 10N), the reduction in the expected testing time is not significant anymore.
Table I. Uncertainty variables in the fatigue reliability analysis of the beam

Variable Mean Standard deviation Distribution

a0 0.03 0.005 Gaussian
C Unknown Unknown Gaussian
m Unknown Unknown Gaussian

Table II. Information of uncertain distribution parameters

Variable Mean Standard deviation Distribution

μC 3.2115 × 10�8 2 × 10�9 Gaussian
σC 2.5 × 10�9 2 × 10�11 Gaussian
μm 2.1277 0.1 Gaussian
σm 0.15 0.005 Gaussian
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Figure 9. Expected testing cycles under different stress levels
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5.1.3. Effect of number of tests on the variance of reliability prediction Based on the model given in Section 4.2.3, we used the two-
stress level testing design case to investigate the effect of the number of tests on the variance of reliability prediction. We first fix
θ at the mean values of their prior distributions and stress levels at 7 N and 10N. We then compute the posterior variances of reliability
prediction at different combinations of numbers of tests. As indicated in Figure 10, the variance in reliability prediction can be
reduced by increasing the number of tests. This demonstrates the effectiveness of the proposed posterior variance prediction model.
5.1.4. ALT design optimization We solved the ALT design optimization model for the two-stress level and three-stress level testing
designs, respectively. The design variables are the number of tests at each stress level, and the magnitude of each stress level. Thus,
there are four design variables (n= [n1, n2], S= [S1, S2]) for the two-stress level testing design and six design variables (n= [n1, n2, n3],
S= [S1, S2, S3]) for the three-stress level testing design. Table III gives the optimized design variables and corresponding total
expected testing costs for the two-stress level case. Following that, Table IV presents the iteration history of the design optimization.
It shows that the decoupled optimization approach in Eqs. (32) and (33) is very efficient.

Similar to the two-stress level case, Tables V and VI present the optimal solution and iteration history for the three-stress level ALT
design case.

The results show that the required numbers of tests in the two-stress level testing are higher than those of three-stress level
testing. For this example, the expected testing cost of two-stress level testing is also higher than that of three-stress level testing. This
Figure 10. Variance of reliability prediction under different numbers of tests (two-stress level)

Table III. Optimization results of two-stress level ALT design

Variable n1 n2 S1 (N) S2 (N) Ctotal

Optimal value 24 20 9.98 8.64 $ 2.83×104
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Table V. Optimization results of three-stress level ALT design

Variable n1 n2 n3 S1 (N) S2 (N) S3 (N) Ctotal

Optimal value 14 8 14 9.45 8.18 10.61 $ 2.30 × 104

Table VI. Iteration history of the three-stress level ALT design

Iteration n1 n2 n3 S1 (N) S2 (N) S3 (N) ĝ n; S; T u�
θ

� �� �
1 5 8 1 9.21 6.79 9.10 0.0437
2 15 7 14 10.09 8.66 11.12 0.0042
3 14 8 14 9.45 8.18 10.61 7.18 × 10�4

Table IV. Iteration history of the two-stress level ALT design

Iteration n1 n2 S1 (N) S2 (N) ĝ n; S; T u�
θ

� �� �
1 20 16 9.60 8.50 0.0120
2 24 20 9.98 8.64 1.57 × 10�4

Z. HU AND S. MAHADEVAN
is an interesting result, showing that with fewer stress levels, more tests at each level are required to achieve the same confidence in
the reliability prediction when compared to the case with more stress levels, while such a result is qualitatively expected, the
proposed approach combines physics-based modeling and time-dependent reliability analysis to quantify the number of tests
required at each level. This is an important benefit of the proposed methodology.

5.2. Helicopter rotor hub

5.2.1. Problem statement A helicopter rotor hub yoke made of laminated composite material is adopted from Ref. 24 as our second
example. The laminate is tapered as shown in Figure 11 and the resin pockets are possible sites for initiating fatigue delamination
failure.

The reliability of the composite rotor hub yoke with respect to the delamination failure is required to be evaluated. The delamination
life is desired to be at least Ne= 3× 103 cycles. A limit state function has been established based on non-linear FEA, virtual crack-closure
technique (VCCT), and available experimental data.24 The limit state function is modeled using response surface and is given by

g ¼ Gcrit - 0:175344�γ� 0:569 - 0:0861 E11 þ 0:0231P - 0:117θ- 0:000546 P2 þ 0:00376 θ2 þ 0:0046 P θ
� �

(37)

where θ is the force angle, P is the load with standard deviation of 23.35 kN, E11 is the modulus of composite material which follows
normal distribution with unknown mean μE11 and standard deviation σE11, and Gcrit is the critical value of the strain energy release rate,
which is fitted as a function of load cycles based on experimental data as follows 24

Gcrit ¼ β0 þ β1 log Nð Þ þ ε (38)

in which β0 and β0 are two parameters obtained from experiment, N is the number of load cycles, ε is regression residual used to
account for model uncertainty in Gcrit, and γ is an epistemic uncertain parameter to represent model uncertainty in computational
simulation model. Same as Ref. 24, γ is assumed to be follow a uniform distribution between [0.9, 1.1]. The time-dependent reliability
of the rotor hub is computed by
Figure 11. Half of the symmetric section of tapered composite in a helicopter rotor hub
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Table VIII. Optimization results of two-stress level ALT design

Variable n1 n2 S1 S2 Ctotal

Optimal value 100 9 298.16 320.02 $ 1.16 × 05

Table IX. Optimization results of three-stress level ALT design

Variable n1 n2 n3 S1 S2 S3 Ctotal

Optimal value 17 14 47 143.87 179.18 247.78 $ 9.57 × 104

Table VII. Uncertainty variables in the helicopter rotor hub example

Variable Mean value Standard deviation Distribution Uncertainty type

θ (degree) 10 2 Gaussian Aleatory
P (kN) Testing stress 23.35 Gaussian Aleatory
β0 448.56 20 Gaussian Aleatory
β1 �58.57 4 Gaussian Aleatory
μE11 (10

9 N/m2) 6.9 0.2 Gaussian Epistemic
σE11 (10

9 N/m2) 0.09 0.003 Gaussian Epistemic
ε 0 36.6 Gaussian Epistemic
γ 1 0:2=2

ffiffiffi
3

p
Uniform Epistemic

Z. HU AND S. MAHADEVAN
R 0; Nð Þ ¼ Pr g τð Þ > 0; ∀τ∈ 0; N½ �f g: (39)

Table VII summarizes the aleatory and epistemic uncertain parameters and variables of this example.
Based on the above information, the ALT design optimization model for the rotor hub is formulated as

min
n;S

Ctotal ¼
Xm
i¼1

ni C1 þ C2ttest Sið Þð Þ

s:t: Prθ g n; S; θð Þ ¼ Varθ̂jθ; n; S Rs0ð Þ > e
n o

≤ Pr½ �
1 ≤ n ≤ 100
125 ≤ S ≤ 320
ni�1 < ni; for i ¼ 1; 2; ⋯; m

(40)

where C1 = $1000, C2 = $1.5 × 10� 4, θ = [μE, σE, ε, γ], e= 2× 10� 4, and [Pr] = 0.02.

5.2.2. ALT design optimization Tables VIII and IX show the ALT design optimization results obtained using the proposed method for
the two-stress and three-stress level cases. Similar conclusions are obtained as Example 1. Note that the overall cost of two-level
testing is higher than that of three-level testing, similar to Example 1.
6. Conclusion

ALT is widely used in manufacturing to accelerate the product development process and guarantee the reliability of the product.
Optimization of the ALT plan is vital to reduce the product testing time and cost. Conventional ALT design methods only depend
on testing data and are based on assumptions of life distributions at different stress levels and relationship between stress and life.
For some problems, it is possible for us predict the reliability based on physics-informed computational simulation models. Integration
of ALT with the physics-informed reliability analysis methods will bridge the gap between ALT design and probabilistic engineering
design (reliability analysis) for such problems.

A novel ALT design optimization model is developed in this paper based on time-dependent reliability analysis. The expected
testing cost is minimized with constraints on the variance of reliability prediction and testing parameters. For a given testing plan,
the reliability of the product at different stress levels is analyzed using physics-based time-dependent reliability analysis. Because there
are epistemic uncertainty sources involved in the reliability analysis based on computational models, ALT data are used to reduce the
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015
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epistemic uncertainty in the reliability estimate using Bayesian statistics. The ALT plan is then optimized such that the variance of
reliability prediction from the computational model can satisfy the requirement specified by the decision maker. Directly solving the
proposed ALT design model is very computationally expensive. Therefore a surrogate modeling method and a decoupled optimization
approach are employed to reduce the computational cost. A cantilever beam with fatigue crack growth and a composite laminate
helicopter rotor hub with fatigue delamination are used to demonstrate the effectiveness of the proposed method.

Future research may investigate the application of the proposed methodology to realistic, complicated problems. The numerical
examples mainly focus on time-dependent fatigue reliability problem. Other time-dependent reliability cases will be also considered
in our future work. This study only considers reliability with respect to a single criterion. Future work needs to extend this approach
to include multiple failure modes and system with multiple components. In such realistic cases, the different failure modes may grow
at different rates, and different tests even at the same test level might cause the components to fail in different sequences. Extension of
the proposed ALT design approach to such situations will make the methodology powerful for realistic applications.
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Appendix A Kriging model

In a Kriging model, the output is assumed to be a Gaussian stochastic process.40,41 The Kriging model of an unknown function g(x)
with inputs of x is given by 40

ĝ xð Þ ¼ h xð ÞTυþ ε xð Þ (41)

where υ= [υ1, υ2, ⋯, υp]
T is a vector of unknown coefficients, h(x) = [h1(x), h2(x), ⋯, hp(x)]

T is a vector of regression functions, h(x)Tυ
is the trend of prediction, and ε(x) is usually assumed to be a Gaussian process with zero mean and covariance Cov[ε(xi), ε(xj)].

The covariance between two points xi and xj is given by

Cov ε xið Þ; ε xj
� �� � ¼ σ2εR xi; xj

� �
(42)

in which σ2ε is the process variance and R(�, �) is the correlation function. A variety of correlation functions have been studied in the
literature, such as the exponential function, Gaussian function, cubic function, and spline function.

With ns training points, xi; g xið Þ½ �i¼1; 2; ⋯; ns
, the coefficients υ are obtained by

υ ¼ HTR�1H
� ��1

HTR�1g (43)

where R is the correlation matrix with element, R(xi, xj), i, j=1, 2, ⋯, ns, H ¼ h x1ð ÞT ; h x2ð ÞT ; ⋯; h xnsð ÞT
h iT

, and g ¼
g x1ð Þ; g x2ð Þ; ⋯; g xnsð Þ½ �T .
For a new point x, the expected value of the prediction is given by

ĝ xð Þ ¼ h xð ÞTυþ r xð ÞTR�1 g� Hυð Þ (44)

where

r xð Þ ¼ R x; x1ð Þ; R x; x2ð Þ; ⋯; R x; xnsð Þ½ � (45)

The mean square error (MSE) of the prediction is given by 42

MSE xð Þ ¼ σ2εf1� r xð ÞTR�1r xð Þ
þ HTR�1r xð Þ � h xð Þ� �T

HTR�1H
� ��1

HTR�1r xð Þ � h xð Þ� � (46)

in which

σ2ε ¼
g� Hυð ÞTR�1 g� Hυð Þ

ns
: (47)

The unknown parameters ak, k= 1, 2, ⋯, n can be estimated by maximizing the log likelihood given as

ln gjRð Þ½ � ¼ �ns ln σ2ε
2

� ln Rj j
2

(48)

where |R| is the determinant of R. More details about Kriging model method can be found in,40,41 and a MATLAB Kriging toolbox is
available.42
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