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Product lifetime cost is largely determined by product lifetime reliability. In product design, the former is
minimized while the latter is treated as a constraint and is usually estimated by statistical means. In this
work, a new lifetime cost optimization model is developed where the product lifetime reliability is predicted
with computational models derived from physical principles. With the physics-based reliability method, the
state of a system is indicated by computational models, and the time-dependent system reliability is then
predicted for a given set of distributions and stochastic processes in the model input. A sampling approach
to extreme value distributions of input stochastic processes is employed to make the system reliability
analysis efficient and accurate. The physics-based reliability analysis is integrated with the lifetime cost
model. The integration enables the minimal lifetime costs including those of maintenance and warranty.
Two design examples are used to demonstrate the proposed model.

Keywords: product design; lifetime cost; reliability

1. Introduction

High reliability is expected for almost all products. Reliability is the probability that a product
performs its intended function under specified conditions for a specified period. It is important to
address reliability issues in the early design stages where many design concepts are generated and
then selected. During the design conceptualization, many tools can be used to identify potential
failure modes, their causes, their consequences, and the possible ways to eliminate these failures or
reduce their likelihood and consequences. These tools include failure modes and effects analysis
(FMEA), fault tree analysis (FTA) and quality function deployment (QFD).

Later in the parameter design stage, there are two major tasks regarding reliability. One is the
reliability analysis (Rackwitz 2001; Du and Sudjianto 2004; Mahadevan and Smith 2006; Guo and
Du 2010) where the reliability is predicted, and the other is reliability-based design optimization
(RBDO) (Du, Sudjianto, and Huang 2005; Du and Huang 2007; Du 2008; Du, Guo, and Beeram
2008) where the reliability target is achieved by selecting appropriate design variables. For a
given design, to evaluate whether its reliability is satisfactory, reliability analysis needs to be
performed to obtain the reliability prediction. If the reliability requirement is not met, RBDO
is then carried out to adjust the design variables. This process continues until the reliability and
other engineering requirements are satisfied. This process usually involves computer-aided design
(CAD), computer-aided engineering (CAE) and optimization.
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2 Z. Hu and X. Du

There are two kinds of reliability methodology: statistics based and physics based. The statistics-
based methods estimate the reliability based on experimental results and/or filed data. The physics-
based methods predict the reliability by computational models (limit-state functions) derived from
physics. The former methods largely reside in the field of reliability engineering while the latter
are often seen in the area of engineering design. In this work, the latter type is used. Since the
input variables of the limit-state functions include design variables, such as the major dimensions,
it is possible to adjust those design variables during the RBDO process so that an optimal balance
between cost and reliability can be reached. Many physics-based reliability methodologies have
been developed in recent decades (Huang, Chan, and Lou 2012; Hurtado and Alvarez 2012;
Jensen, Kusanovic, andValdebenito 2012; Kang et al. 2012; Sanchez-Silva, Klutke, and Rosowsky
2012). Design optimization with physics-based reliability (Du, Sudjianto, and Huang 2005; Du
and Huang 2007; Du 2008; Du, Guo, and Beeram 2008) has been applied in various engineering
fields to ensure that a design meets a specified reliability requirement.

The major drawback of traditional physics-based RBDO (Du, Sudjianto, and Huang 2005; Du
and Huang 2007; Du 2008; Du, Guo, and Beeram 2008) is that in many applications the reliability
is a constant with respect to time. The reason is that the limit-state functions are time independent,
e.g. a limit-state function involving only static stresses that do not change with time. As a result,
there is no way to relate the predicted reliability with time-dependent activities, such as warranty
and maintenance. This is the reason that only the initial development cost (not the lifetime cost)
usually appears in the objective function in the traditional physics-based RBDO.

In reality, reliability is time dependent. Theoretically, physics-based reliability methodolo-
gies are able to produce time-dependent reliability when limit-state functions involve time
(Andrieu-Renaud, Sudret, and Lemaire 2004; Singh, Mourelatos, and Li 2010; Zhang and Du
2011; Hu and Du 2012). With the availability of physics-based time-dependent reliability, in the
early design stage, the reliability of a product can be predicted after it has operated for a cer-
tain period. Various warranty and maintenance activities during the design optimization process
can then be taken into account. Studies on physics-based RBDO have been reported. Wang, Du,
and Huang (2010) established three physics-based RBDO models to integrate the warranty and
maintenance models with the optimization model. Streicher and Rackwitz (2004) proposed a
reliability-oriented time-variant structural optimization method for a series system by consider-
ing the dependency between failure modes and components with a simple maintenance model.
Singh, Mourelatos, and Li (2010) applied the composite limit state method to the lifecycle cost
optimization. Most recently, Li, Mourelatos, and Singh (2012) proposed a method for the opti-
mization of a preventive maintenance policy based on lifecycle cost analysis and time-dependent
reliability. A review of these physics-based RBDO models (Streicher and Rackwitz 2004; Li,
Mourelatos, and Singh 2012) shows that the applications of these models are limited
either by their time-dependent reliability analysis methods or by their lifetime optimization
models.

Although many lifetime optimization models have been developed based on the statistics-based
reliability method (Ahmad and Kamaruddin 2012; Chien, Sheu, and Zhang 2012; Doyen 2012;
Herrmann 2012; Pan, Liao, and Xi 2012; Suliman and Jawad 2012;Ye, Shen, and Xie 2012; Zhou
et al. 2012a; Zhou, Lu, and Xi 2012b), they cannot be applied directly to the design optimization
of a product during the parameter design stage, because they are statistics based. The purpose of
this work is to develop a lifetime optimization model where the system reliability is predicted by
a physics-based reliability method. To ensure high accuracy, a recently developed time-dependent
reliability analysis method, which uses a sampling approach to the extreme values of stochastic
processes (Hu and Du 2013), is integrated with a lifetime cost model and the RBDO model.
By taking account of the costs of product development, reliability, maintenance and warranty,
the proposed model can identify optimal design variables so that the product lifetime cost is
minimized.
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Engineering Optimization 3

2. Physics-based time-dependent reliability

Physics-based reliability means that the reliability is estimated based on the physical model instead
of historical data in early design stages. Suppose that a performance variable G with inputs of
random variables X, stochastic processes Y(t) and time t is given by

G = g(X,Y(t), t) (1)

Define G = g(X,Y(t), t) ≤ 0 as the safe region and G = g(X,Y(t), t) > 0 as the failure region.
For the period [t0, t], the physics-based time-dependent reliability Rs(t0, t), which is also called
the first passage reliability, is the probability that the response G always remains in the safe region.
Rs(t0, t) is given by

Rs(t0, t) = R0 Pr{G = g(X,Y(τ ), τ) ≤ 0, ∀τ ∈ [t0, t]} (2)

where R0 is the initial reliability at time instant t0.
If the above time-dependent reliability can be predicted from the computational model g(·),

the distribution of the product life can also be estimated.
When limit-state functions are time dependent, directly using time-invariant reliability methods

may not be applicable. To estimate Rs(t0, t), time-dependent reliability analysis methods need to be
employed. Many time-dependent reliability analysis methods have been proposed, including the
most commonly used upcrossing rate methods (Yang and Shinozuka 1971; Bernard and Shipley
1972; Vanmarcke 1975; Ditlevsen 1983; Hu and Du 2012; Hu et al. 2013), methods that transform
time-dependent problems into time-independent ones (Singh, Mourelatos, and Li 2010; Wang and
Wang 2012a, 2012b) and sampling approaches (Singh, Mourelatos, and Nikolaidis 2011). In this
work, a newly developed time-dependent reliability analysis method, which employs a sampling
approach to the global extreme of a stochastic process and the saddlepoint approximation (Hu
and Du 2013), is used. This method is accurate, but only applicable for component reliability. In
this work, the method is extended to the system reliability analysis. Thus, the reliability at the
product level, or the system reliability, with respect to time, can be predicted computationally.

In the subsequent sections, the optimization model for the lifetime cost is given first, after which
the necessary submodels for the optimization model are derived.

3. Lifetime cost optimization with physics-based time-dependent reliability

In this section, the three components of the optimization model, including design variables,
objective function and constraint functions, are discussed first. Then, the complete optimization
model is presented.

3.1. Design variables

In this work, two types of design variable are considered. The first type includes those design
variables that appear in traditional engineering optimization problems. Examples include the
dimensions of components and system configurations. For example, if a hollow transmission
shaft is to be optimized, the design variables could be the inside diameter, the outside diameter,
the positions of bearings, and so on. For a transmission system optimization, the design variables
could also include the number of gears and number of shafts. With the physics-based reliability
method, the link between the design variables and reliability can easily be established using limit-
state functions. However, this type of design variable is missing in a statistics-based reliability
optimization model because no direct link is available between the design variables and reliability.
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4 Z. Hu and X. Du

The other type of design variables includes those related to product operations, such as the
number of preventive maintenances. These variables usually appear in a statistics-based reliability
optimization model. The new optimization model in this work can also accommodate this type of
design variables.

Some of the design variables may be deterministic and do not change randomly, e.g. the number
of teeth of a gear, whereas other design variables may be random, e.g. the diameter of a shaft is a
random design variable because of the random manufacturing imprecision. In this work, for ease
of presentation, the mean values of the random design variables are assumed to be determined.
However, the proposed model is also applicable to situations where other distribution parameters,
such as standard deviations, are involved. In this work, the vector d is used to denote all the actual
design variables, including both deterministic design variables and the mean vales of random
design variables.

3.2. Objective function

In the traditional physics-based RBDO model, the objective is often the initial development cost.
The present model accounts for the total product lifetime cost, including not only the initial
development cost, but also other lifetime associated costs. By minimizing the expected total cost,
the optimal design variables d can then be found under uncertainties in X and Y(t). The objective
function is defined by

Cunit(d) = Clife(d)

Tlife(d)
(3)

in which Clife and Tlife are expected lifetime cost and service life of the product, respectively.
Clife(d) is larger when Tlife(d) is longer. This is the reason why the expected unit lifetime cost

Cunit(d) is used. Given a specified set of design variables d, both Clife(d) and Tlife(d) can be
derived from the physics-based time-dependent reliability; and so can Cunit(d).

3.3. Constraints

Constraints are used to represent requirements or restrictions. A general constraint can be
expressed as g(d) ≤ 0.

Owing to the involvement of random variables X and stochastic processesY(t), a constraint may
not be satisfied completely, or doing so may be extremely costly. For a constraint g(d, X, Y(t)) < 0
with X and Y(t), it can be satisfied up to a desired or required level. This gives

R ≥ P (4)

where R is the reliability associated with G = g(d, X, Y(t)) ≤ 0. It could be the initial reliability at
t0 or time-dependent reliability over [t0, t]. P is the required reliability. The reliability requirement
can also be a constraint.

3.4. Optimization model

Based on the three components of the optimization model, the new general lifetime cost
optimization model is given as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min Cunit(d)

Subject to

Ri ≥ Pi, i = 1, 2, . . . , nu

fj(d) ≤ 0, j = 1, 2, . . . , nd

dL ≤ d ≤ dU

(5)
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Engineering Optimization 5

where nd is the number of deterministic constraints, nu is the number of probabilistic constraints,
fj(d) is the jth deterministic constraint, and Ri is the reliability of the ith probabilistic constraint.

As the optimization model given in Equation (5) integrates the lifetime cost model with physics-
based reliability analysis methods, the model can identify the optimal design variables from the
aspect of lifetime cost. Thus, the solutions generated are closer to the true optimal design than
those obtained from the traditional physics-based RBDO method.

However, the model given in Equation (5) is just a general model. To apply this model to the
optimization of lifetime cost, several submodels are needed. They include component and system
reliability models, cost model and lifetime model.

4. Physics-based reliability model

The expected total lifetime cost Clife(d) is a function of product reliability Rs(t0, t) over the
lifetime [t0, t]. Rs(t0, t) is the product system reliability and depends on component reliability.
The physics-based component reliability is discussed next, followed by the physics-based system
reliability.

4.1. Physics-based component reliability analysis

The method employed is the first order reliability method (FORM), which is commonly used in
physics-based reliability analysis and RBDO.

For component i with time-invariant random variables X, assume that the associated limit-state
function is Gi = gi(d, X) = 0 and that the threshold is ei. The reliability Ri is computed by

Ri = �(βi) = �(‖u∗‖) (6)

Vector u∗ is called the most probable point (MPP), which is obtained by solving the following
optimization model: {

min
u

‖u‖
subject to gi(d, T−1(u)) = 0

(7)

where T(·) stands for a transformation operator. The transformation is given by

U = T(X) (8)

which transforms the general random variables X into independent and standard normal variables
U. The transformation is given in Choi, Grandhi, and Canfield (2007).

Note that the limit-state function Gi = gi(d, X) = 0 is not time dependent, and neither is the
reliability Ri.

When stochastic processes Y(t) are involved, the associated limit-state function becomes Gi =
gi(d, X,Y(t)) = 0, which is also a stochastic process. For a given period [t0, t], the time-dependent
reliability of component i is then given by

Ri(t0, t) = Ri,0(Pr{G = gi(d, X,Y(τ )) ≤ 0, ∀τ ∈ [t0, t]}) (9)

To estimate Ri(t0, t), in this work, a newly developed sampling approach is employed (Hu and
Du 2013). Using this method, the time-dependent problem is transformed to a time-independent
problem, and Ri(t0, t) is calculated by

Ri(t0, t) = Ri,0(Pr{G = gi(d, X,Yext) ≤ 0}) (10)

in which Yext is the extreme value of Y(t) over [t0, t].
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6 Z. Hu and X. Du

After the transformation, a time-independent reliability method such as FORM can be applied
to estimate Ri(t0, t).

To obtain the distributions ofYext, The Monte Carlo simulation (MCS) method is employed. The
simulation is performed only on stochastic processY(t), and it does not call the limit-state function.
In engineering applications, calling a limit-state function may be time consuming because it may
involve expensive simulations such as a finite element analysis. Without evaluating a limit-state
function, the sampling method for Yext is efficient. More details about the sampling method can
be found in Hu and Du (2013).

It should be noted that the requirements of the sampling method are that there is only one
stochastic process in Y(t) and that the process is either a general strength variable or a general
stress variable (Hu and Du 2013). However, these restrictions can be removed if other methods
are used.

4.2. Physics-based system reliability analysis method

Typical systems can be classified into three categories: parallel systems, series systems and com-
bined systems. Herein, the physics-based system reliability analysis for series systems is focused
on as the parallel system can be transformed into series system. Using the bounding formulae
given by Ditlevsen (1979), the probability of failure of a series system can be approximated with
the following bounds:

pf ,min ≤ 1 − Rs(t0, t) ≤ pf ,max (11)

where

pf ,min = [1 − R1(t0, t)] +
n∑

i=2

max{[1 − Ri(t0, t)] −
i−1∑
j=1

Pij(t0, t), 0} (12)

pf ,max =
n∑

i=1

[1 − Ri(t0, t)] −
n∑

i=2

max
j<i

Pij(t0, t) (13)

where R1(t0, t) is the reliability of the component whose probability of failure is the largest.
Pij(t0, t) is the probability that both components i and j fail over the time interval [t0, t].

From Equations (12) and (13), it can be seen that Ri(t0, t) and Pij(t0, t) are the bases
for the physics-based system reliability analysis. Suppose Gi = gi(d, X,Y(t)) = 0 and Gj =
gj(d, X,Y(t)) = 0 are limit-state functions for components i and j, Pij(t0, t) is then given by

Pij(t0, t) = Pr{Gi = gi(d, X,Y(χ)) > 0∩
Gj = gj(d, X,Y(τ )) > 0, ∃χ and τ ∈ [t0, t]} (14)

Song and Der Kiureghian (2006) proposed a method to solve Equation (14) using the Rice formula
(Rice 1944, 1945). Their method, however, only focuses on problems with multiple stationary
Gaussian stochastic processes. The new method is more general because it can be used for non-
stationary processes. By applying the sampling-based method discussed in Hu and Du (2013), the
new method transforms limit-state functions Gi = gi(d, X,Y(t)) = 0 and Gj = gj(d, X,Y(t)) = 0
into

Pr{Gi = gi(d, X,Y(τ )) > 0, ∃τ ∈ [t0, t]} = Pr{Gi = gi(d, X, Yext, i) > 0} (15)

and

Pr{Gj = gj(d, X,Y(τ )) > 0, ∃τ ∈ [t0, t]} = Pr{Gj = gj(d, X, Yext, j) > 0} (16)
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Engineering Optimization 7

The time-invariant random variables are transformed into standard normal space and MPPs are
searched for Gi and Gj using FORM. Once the MPPs are available, Equations (15) and (16) are
further transformed into

Pr{Gi = gi(d, X,Yext) > 0} ≈ Pr{Li = αiUi > βi} (17)

and

Pr{Gj = gj(d, X,Yext) > 0} ≈ Pr{Lj = αjUj > βj} (18)

in which Uj are transformed variables from X and Yext in the standard normal space, and L is the
linearized state response G in the standard normal space.

αi = u∗
i∥∥u∗
i

∥∥ and αj = u∗
j∥∥∥u∗
j

∥∥∥ (19)

βi = ∥∥u∗
i

∥∥ and βj = ∥∥u∗
j

∥∥ (20)

where u∗
i and u∗

j are obtained using Equation (7).
With Equations (14)–(20), the joint probability of failure Pij(0, t) of components i and j is then

computed by

Pij(t0, t) =
∫ ∞

βi

∫ ∞

βj

1

2π
√

1 − ρ2
exp

{
−L2

i + L2
j − 2ρLiLj

2(1 − ρ2)

}
dLjdLi (21)

in which

ρ = αiα
T
j (22)

After Ri(t0, t) and Pij(t0, t) have been solved, the physics-based system reliability can be estimated
using Equations (11)–(13).

5. Lifetime cost model

With the availability of the system reliability function of time, it is possible to estimate the product
lifetime cost in the parameter design stage. The cost will be a direct function of design variables,
and then the cost model can be used for the objective function to be minimized.

The lifetime cost Clife(d) consists of two parts: the initial development cost CI and maintenance
cost CM. Then,

Clife(d) = CI + CM (23)

Next, the equations for CI and CM are derived based on the system reliability function Rs(t0, t).

5.1. Initial cost CI

The initial cost includes the design, development and production costs (Wang, Du, and Huang
2010). It depends on many factors. For example, better materials and larger dimensions usually
imply a higher initial cost. Higher reliability may be also associated with a higher initial investment.
A cost model normally relies on specific products, and a universal cost model may not be available
for all products. This is the reason why many cost models exist (Krishnaswami and Mayne 1994;
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8 Z. Hu and X. Du

Huang, Liu, and Murthy 2007; Kalowekamo and Baker 2009). Take the model proposed by Mettas
(2000) as an example. The model is given by

CI = A1 + B1 exp(qR0) (24)

The model indicates that the initial cost increases exponentially with respect to the initial reliability.
The cost goes up slowly when the initial reliability is low and rises rapidly when the initial
reliability is high. The parameters in Equation (24) are determined according to either the initial
cost data of similar products or empirical experience. It is a simple model that directly relates the
initial cost to the initial system reliability. As mentioned previously, a more advanced initial cost
model may also be used.

5.2. Maintenance cost CM

The maintenance cost CM is directly related to the system reliability. To derive equations for the
maintenance cost CM, the general maintenance policy is discussed first.

5.2.1. Maintenance policy

For products with a warranty, as shown in Figure 1, the product lifetime is divided into the
warranty period and post-warranty period. In this work, only the one-dimensional warranty policy
is considered, which covers a specified period and does not cover the amount of use.

Typically, the type of maintenance to be implemented is determined by the type of failure. Fail-
ure may not always be catastrophic; sometimes, its effects may be minor or moderate. According
to the economic loss, failures may be classified into two categories:

• Type I failure: a minor or moderate failure that does not affect the operation of the system
• Type II failure: a catastrophic failure that can be removed only by replacement over the warranty

period or by corrective maintenance over the post-warranty period.

Let the probabilities of type I and II failures be p1 and p2, respectively. They satisfy

p1 + p2 = 1 (25)

The summation is one, which indicates that failure events can be either a type I failure or a type
II failure. p1 and p2 may be determined by field data of existing similar products, assumptions or
other means. In this work, p1 and p2 are assumed to be known.

The maintenance activities are defined as follows:

• Minimal maintenance: maintenance activities performed to the system whenever a type I failure
occurs. Such activities do not affect the failure rate of the system.

• Corrective maintenance: maintenance activities performed to the system to remove type II
failures over the post-warranty period.

• Preventive maintenance: maintenance activities conducted over the post-warranty period to
guarantee the reliability of the system. Preventive maintenance is performed whenever the

Warranty period

0 Td

Post-warranty period 

TW

Figure 1. Warranty period and post-warranty period of a system.
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Engineering Optimization 9

system operation time reaches the planned period T since the last preventive maintenance or
corrective maintenance.

• Replacement: activities performed to the system to recover the system from type II failures
over the warranty period. After the replacement, the system starts with a new warranty period.

A corrective maintenance may not completely recover the system from type II failures. Herein,
a positive coefficient γ1 ≤ 1 is used to quantify the capacity of corrective maintenances (Wang,
Du, and Huang 2010). Define RI,i as the immediate system reliability after the ith maintenance.
If the ith maintenance is corrective,

RI,i = γ1R0 (26)

Similarly, another coefficient 0 ≤ γ2 ≤ 1 is used to describe the capacity of preventive mainte-
nance. γ2 = 1 means that the product will be as good as new after preventive maintenance, while
γ2 = 0 indicates that the product will be as bad as old after preventive maintenance; otherwise,
the product will be between the old and new states.

Let Rs,i−1 be the system reliability right before the ith maintenance. If the ith maintenance is
preventive, after it, the system reliability RI,i is then

RI,i = Rs,i−1 + γ2(R0 − Rs,i−1) (27)

Equation (27) indicates that when γ2 = 0, RI,i = Rs,i−1 and that when γ2 = 1, RI,i = R0.
With Equations (26) and (27), RI,i after the ith maintenance is computed as follows:

RI,i =

⎧⎪⎨
⎪⎩

γ1R0, if Type II failure occurs between (i − 1) − th and

i-th maintenances

Rs, i−1 + γ2(R0 − Rs, i−1), otherwise

(28)

Based on the above maintenance polices, the expected total maintenance cost CM is given by

CM = CW + CP (29)

in which CW and CP are the expected maintenance cost over the warranty period and post-warranty
period, respectively.

5.2.2. Expected maintenance cost over the warranty period CW

The maintenance cost over the warranty period, CW, is given by

CW = CWI + CWII (30)

CWI is given by

CWI = CminNI (31)

where Cmin is the expected minimal maintenance cost per time and NI is number of type I failures.
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10 Z. Hu and X. Du

Recall that a type II failure is removed by replacement in the warranty period. CWII is therefore
given by

CWII = NrCI (32)

Since the system starts with a new warranty period after each replacement, the probability that a
replacement is the last one over the warranty period is given by

pr = p1 + p2Rs(0, TW ) (33)

The expected number of replacements Nr follows a geometric distribution (Bain and Engelhardt
1992) with parameter pr . Nr is given by

Nr = 1/pr = 1/(p1 + p2Rs(0, TW )) (34)

For each replacement before the last replacement, the expected operation time, Tr, between two
replacements is computed by

Tr = p2

∫ TW

0
Rs(0, t)dt − p2TW Rs(0, TW ) (35)

With the lifetime distribution from the physics-based time-dependent reliability analysis, the
expected number of type I failures, NWI, is then computed by (Wang, Du, and Huang 2010)

NWI =
∫ Tr

0
λ(t)dt = − ln[Rs(t0, Tr)] (36)

where t0 = 0 and λ(t) is the failure rate at time instant t.
For the last replacement, the expected number of type I failures, NWI−last, is given by

NWI−last = − ln[Rs(0, TW )] (37)

With Equations (31), (34), (36) and (37), NI is given by

NI =(Nr − 1)NWI + NWI−last

= − [1/(p1 + p2Rs(0, TW )) − 1] ln[Rs(t0, Tr)] − ln[Rs(0, TW )] (38)

Plugging Equations (31) and (38) into Equation (30), the expected maintenance cost over the
warranty period is obtained as follows:

CW =[1/(p1 + p2Rs(0, TW )) − 1]{Cmin ln[1/Rs(0, Tr)] + CI}
− Cmin ln[Rs(0, TW )] (39)

5.2.3. Expected maintenance cost over the post-warranty period CP

Suppose that during the post-warranty period the system is maintained N times, including the
preventive maintenance with an expected cost Cp1 and corrective maintenance with an expected
cost Cp2. After the N maintenances, the system will be replaced with a new one. During the
post-warranty period [TW , Td], a preventive maintenance is performed whenever the operation
time of the system reaches T = (Td − TW )/N since the last preventive or corrective maintenance.
When a type II failure occurs before the next preventive maintenance, a corrective maintenance
is performed immediately to correct the failure. Defining the N maintenances as N states of the
system, the maintenance model over the post-warranty period is depicted as in Figure 2.
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Engineering Optimization 11

0 1 2 i N–1 N

Path a

Path b

a a a a a a

b b b b b b

Waiting time Wi
*

Pf (t0, t0 + t)

t

Figure 2. Maintenance policy over the post-warranty period.

T
Wi

Wi

Path a
Preventive maintenance

T
Wi

* = Wi

Wi
* = T

Path b

Corrective maintenance

Figure 3. Two paths of maintenance activities.

As indicated in Figure 2, there are two paths for the state transition of the system. The system
goes from one maintenance state to the next one, either by reaching the planned preventive
maintenance time T or by correcting a type II failure. The two paths are demonstrated in Figure 3.
Define W∗

i as the waiting time between two successive maintenances and Wi as the waiting time
of a type II failure since the last maintenance.

For Path a, the system is preventively maintained because the waiting time between two suc-
cessive type II failures Wi is longer than the planned preventive maintenance period T . For Path
b, the system is correctively maintained as the type II failure occurs within the planned preven-
tive maintenance period T . The waiting time W∗

i between two successive maintenance states is
therefore given by

W∗
i =

{
Wi, if Wi ≤ T

T , if Wi > T
(40)

The waiting time W∗
i is a random variable associated with the system reliability. Sheu et al. (2001)

derived the expressions for W∗
i and the associated maintenance cost. Their derivations, however,

assume that the failures are independent of each other and are based on the statistics-based
reliability method. Besides, they have not considered the effect of warranty on the maintenance
cost. In this section, the physics-based reliability analysis method is applied to derive the preventive
maintenance cost. As there are two paths for the system to go from one maintenance state to
the next, the expected maintenance cost Cpu,i for transition i (i.e. from maintenance i − 1 to
maintenance i) is given by

Cpu,i = Pa,iCpa,i + Pb,iCpb,i (41)

in which Pa,i (i.e. Pr{Wi > T}) and Pb,i (i.e. Pr{Wi ≤ T}) are the probabilities that the system
has transition i by Paths a and b, respectively, and Cpa,i and Cpb,i are corresponding expected
maintenance costs, respectively.

Pa,i and Pb,i are given by

Pa,i = 1 − p2(1 − Rs,i−1) = p1 + p2Rs,i−1 (42)
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12 Z. Hu and X. Du

and

Pb,i = p2(1 − Rs,i−1) (43)

where Rs,i−1 = RI , i−1Rs(0, T)/R0.
Since there are two possible paths between two successive maintenances, there are 2i−1 possible

paths for the system to reach its ith maintenance from its initial condition. For the jth path for Pa,i

and Pb,i,

Pa,i,j = 1 − p2(1 − Rs,i−1,j) = p1 + p2Rs,i−1,j, j = 1, 2, . . . , 2i−1 (44)

and

Pb,i,j = p2(1 − Rs,i−1,j), j = 1, 2, . . . , 2i−1 (45)

in which

Rs,i−1,j = RI, i−1,jRs(0, T)/R0, j = 1, 2, . . . , 2i−1 (46)

The probability that RI,i is equal to RI,i,j is given by

Pi+1, j = Pr{RI, i = RI, i,j, j = 1, 2, · · · , 2i} =
{

Pa,i, j+1Pi, (j+1)/2, if j is odd

Pb,i, j/2Pi, j/2, if j is even
(47)

where P1, 1 = 1.
With Equations (44)–(46), Equation (41) becomes

Cpu,i,j = Pa,i,jCpa,i,j + Pb,i,jCpb,i,j (48)

and

Cp,i =
2i−1∑
j=1

(Pi,jCpu,i,j) (49)

in which Cp,i stands for the expected maintenance cost for transition i, and Cpa,i,j and Cpb,i,j are
expected maintenance costs of transition i for Paths a and b given that RI ,i−1 equals RI ,i−1,j,
respectively.

For Path a, the preventive maintenance is performed before a type II failure occurs. Cpa,i,j is
therefore given by

Cpa,i,j = Cp1 + ln{1/Rs(0, T)}Cmin, j = 1, 2, . . . , 2i−1 (50)

For Path b, the corrective maintenance is carried out before the operation time reaches T , and Cpb

is derived to be

Cpb,i,j = p2
RI ,i−1,j

R0

{
Cp2[1 − Rs(0, T)] + Cmin{Rs(0, T) ln[Rs(0, T)] − Rs(0, T) + 1}} (51)

Plugging Equations (50) and (51) into Equation (49) and after simplification, Cpu, i,j is

Cpu,i,j =[p1 + p2Rs,i−1,j]Cp1 + p1Cmin ln[1/Rs(0, T)]

+ p2
2

RI ,i−1,j

R0
(1 − Rs,i−1,j)(Cmin + Cp2)[1 − Rs(0, T)]

+ p2CminRs,i−1,j ln[1/Rs(0, T)][p1 + p2Rs,i−1,j]
(52)
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Engineering Optimization 13

For the last cycle, there is no preventive maintenance, and the system is replaced with a new one.
The expected maintenance cost Cpu, N ,j is given by

Cpu,N ,j =CI + p1Cmin ln[1/Rs(0, T)]

+ p2
2Cmin

RI ,i−1,j

R0
(1 − Rs,i−1,j)[1 − Rs(0, T)]

+ p2CminRs,i−1,j ln[1/Rs(0, T)](p1 + p2Rs,i−1,j)

(53)

and

Cp,N =
2N−1∑
j=1

{PN ,jCpu,N ,j} (54)

Since the system is maintained N times, CP is given by

CP =
N∑

i=1

Cp,i =
N∑

i=1

2i−1∑
j=1

(Pi,jCpu,i,j) (55)

Equations (50)–(55) indicate that the initial reliabilities RI ,i, i = 1, 2, . . . , N need to be solved
to compute the expected maintenance cost over the post-warranty period. To solve the initial
reliabilities, the procedure given in Figure 4 is followed iteratively.

The iterative process starts from Rs,0, which is given by

Rs,0 = RI ,0Rs(0, T)/R0 (56)

Since the last replacement survives over the warranty period [0, TW ], RI ,0 is given as follows:

RI ,0 = Rs(0, TW ) (57)

With Equations (56) and (57), the initial reliabilities and associated probabilities can be solved
using Equations (44)–(46) and (28) iteratively. So far, all the equations needed for the maintenance
costs over both warranty period and post-warranty period have been obtained.

5.3. Lifecycle cost Clife

Based on the discussion on various costs, the expected lifecycle cost can now be obtained. Sub-
stituting Equations (24), (29), (39) and (55) into Equation (23), the expected lifecycle cost Clife

Figure 4. Iteration procedure for solving initial reliabilities.
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14 Z. Hu and X. Du

turns out to be

Clife(d)

= CI + [1/(p1 + p2Rs(0, TW )) − 1]{Cmin ln[1/Rs(t0, Tr)] + CI}

+ Cmin ln[1/Rs(0, TW )] +
N∑

i=1

2i−1∑
j=1

{Pi,jCpu,i,j}
(58)

5.4. Expected service life Tlife

In order to apply the optimization model given in Equation (5) for the life cost optimization, the
expected service life Tlife is also needed. The expected service life consists of the warranty period
and the post-warranty period. The latter is determined by the expected waiting time Tp,i between
two successive maintenances. Tp,i between the (i − 1)th and ith transitions is given by

Tp,i =
2i−1∑
j=1

(Pi,jTpu,i,j) (59)

where Tpu,i,j is the expected waiting time for transition i given that RI ,i−1 equals RI ,i−1,j, and is
computed by

Tpu,i,j = TPa,i,j + Pb,i,j

[
p2

RI ,i−1,j

R0

∫ T

0
Rs(0, t)dt − Tp2Rs,i−1,j

]
(60)

Substituting Equation (60) into (59),

Tp,i =
2i−1∑
j=1

{
Pi,j

{
TPa,i,j + Pb,i,j

[
p2

RI ,i−1,j

R0

∫ T

0
Rs(0, t)dt − Tp2Rs,i−1,j

]}
(61)

Therefore, the expected service life is given by

Tlife =[1/(p1 + p2Rs(0, TW )) − 1][p2

∫ TW

0
Rs(0, t)dt − p2TW Rs(0, TW )] + TW

+
N∑

i=1

2i−1∑
j=1

{
Pi,j TPa,i,j + Pb,i,j

[
p2

RI ,i−1,j

R0

∫ T

0
Rs(0, t)dt − Tp2Rs,i−1,j

]}} (62)

Plugging Equations (58) and (62) into Equation (3) yields

Cunit =

{
CI + [1/(p1 + p2Rs(0, TW )) − 1]{Cmin ln[1/Rs(t0, Tr)] + CI}

+Cmin ln[1/Rs(0, TW )] + ∑N
i=1

∑2i−1

j=1 (Pi,jCpu,i,j)

}

[1/(p1 + p2Rs(0, TW )) − 1][p2
∫ TW

0 Rs(0, t)dt − p2TW Rs(0, TW )] + TW

+ ∑N
i=1

∑2i−1

j=1

{
Pi,j

{
TPa,i,j + Pb,i,j

[
p2

RI ,i−1,j

R0

∫ T
0 Rs(0, t)dt − Tp2Rs,i−1,j

]}
(63)

where

T = (Td − TW )/N (64)

With the formula given in Equation (63) and the connection between design variables and time-
dependent reliability, the lifetime cost design optimization model is then complete, as shown in
Equation (5).
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Engineering Optimization 15

6. Numerical procedure

Here, the numerical procedure is summarized for the proposed lifetime cost optimization. Figure 5
shows the flowchart.

In the proposed model, there are two main modules: the sample generation module and the
optimization module. The purpose of the sampling generating module is to estimate the global
extreme value distributions of stochastic processes over different periods. The generated extreme
distributions from the sampling generating module are then used as the input to the optimization
module. The optimization module consists of three different models, including the design opti-
mization model, reliability analysis models and the lifecycle cost model. These three models are
coupled together by the design variables, reliabilities and cost variables.

By solving the proposed model, it can obtain not only the optimal design variables, but also
the associated optimal warranty period and preventive maintenance period.

7. Examples

Two design optimization examples with time-dependent uncertainties are used to demonstrate the
proposed method. They are a beam under stochastic loading and a Daniels structural system. The
first example has one component and the second one is a parallel system with two components.

7.1. Example 1: Design optimization of a beam under stochastic loading

Figure 6 shows a simply supported beam under stochastic loading. The cross-section of the beam
is rectangular, and the width a and height b are to be optimized to minimize the expected unit
lifetime cost. The length of the beam is L, and a stochastic force F(t) is applied at the mid-span.

The major failure mode of the beam is the breakage due to excessive normal stress. The
limit-state function of the beam is therefore given by

g(X, Y(t)) = (F(t)L/4 + ρstabL2/8) − ab2σu/4 = 0 (65)

in which X = [a, b, σu], Y(t) = [F(t)]. The uncertain and deterministic variables are given in
Table 1.

Initial design
d0,TW

0 
,N0

Sampling of  Y (t)

Samples of
extreme values 

Design optimization
model

Life cycle cost
model

Physics-based
reliability

analysis model Saddlepoint
approximation 

Optimal design

d*,TW
* , N*

TW ,T, t

Pr{Yext < y}

d

R

R

d Cunit

Figure 5. Flowchart of lifecycle cost-optimization model.
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16 Z. Hu and X. Du

A

L/2
F A-A

a

b

L

Figure 6. A simply supported beam under dead load and stochastic loading.

Table 1. Deterministic parameters and random variables.

Variable Mean Standard deviation Distribution Autocorrelation

a Design variable 0.01 m Normal N/A
b Design variable 5 × 10−3 m Normal N/A
σu 2.4 × 108 Pa 2.4 × 107 Pa Normal N/A
F(t) 4500 N 900 N Gaussian Equation (66)
L 20 0 Deterministic N/A
ρst 7.85 × 104 0 Deterministic N/A

Table 2. Optimal results with different p1.

Optimized results
p1

μa μb TW N Cunit

0.2 0.6408 m 0.1059 m 118.49 months 12.68 $2.4389 × 105

0.4 0.4804 m 0.1087 m 47.16 months 12.00 $2.4372 × 105

0.6 0.4259 m 0.1099 m 60.26 months 9.00 $2.4265 × 105

0.8 0.4281 m 0.1098 m 59.94 months 6.21 $2.4184 × 105

The auto-correlation function of the stochastic process F(t) is given by

ρF(t1, t2) = exp(−4(t2 − t1)
2) (66)

where t1 and t2 are time in months. The design life of the beam is 30 years or 360 months. The
initial reliability of the beam should not be less than 0.999. The design optimization model for
the beam problem is then given by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min Cunit(d)

Subject to

Pr{g(d, X, Y(t0)) > 0} ≤ 0.001

CI = 5 × 105 + 36 exp{14Rs(d, t0)}
dL < d < dU

(67)

where Cunit(d) is given in Equation (63), d = [μa, μb, N , TW ], T = (360 − TW )/N , dL =
[0.41, 0.10, 1, 24], dU = [0.65, 0.15, 20, 120], Cp1 = $ 1 × 105, Cp2 = $ 1.8 × 106, Cmin =
$ 6 × 104, γ1 = 0.9, γ2 = 0.8, p1 = 0.8, and p2 = 0.2.

The initial design points are d0 = [μ0
a, μ0

b, N0, T 0
W ] = [0.42 m, 0.11 m, 5 times, 60 months].

The optimized design variables are given in the row where p1 = 0.8 in Table 2.
To study the effect of failure types on the optimization results, the beam was optimized with

different values of p1. The results are also given in Table 2.
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Engineering Optimization 17

Table 3. Optimal results with different γ2.

Optimized results
γ2

μa μb TW N Cunit

0.4 0.4287 m 0.1098 m 60.41 months 6.27 $2.4195 × 105

0.6 0.4286 m 0.1098 m 59.91 months 6.26 $2.4189 × 105

0.8 0.4281 m 0.1098 m 59.94 months 6.21 $2.4184 × 105

0 50 100 150 200 250 300 350 400
0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

[0, t] months

R
el
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bi
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Figure 7. Time-dependent reliability.

The results indicate that the number of preventive maintenances and the expected unit lifetime
cost decrease as p1 increases. This means that a higher probability of type I failures requires fewer
preventive maintenances. It is noted the optimized numbers of maintenances are not integers;
for example, when p1 = 0.2, the number of maintenances is 12.68, and 12 maintenances are
expected during the post-warranty period. Since the warranty period is 118.49 months, the planned
maintenance period is T = (360 − 118.49)/12.68 months, and the system will continue to operate
for 0.68T = 12.95 months after the maintenance and before it is replaced.

The influence of the capacity of preventive maintenance was also investigated using different
values of γ2. The optimal results are given in Table 3. The result demonstrates that the required
number of maintenances decreases when the capacity of maintenance increases.

Figure 7 shows the time-dependent reliability for the case where p1 = 0.8 and γ2 = 0.8 at the
optimal designs.As shown in Figure 7, the time-dependent reliability is disturbed by the preventive
maintenance. The probability of failure increases with time during the warranty period. For the
post-warranty period, six preventive maintenances are scheduled to guarantee the probability of
failure below a certain level and thus minimize the expect unit lifetime cost.

7.2. Example 2: Design optimization of a Daniels system

The second example is the optimization design of a Daniels system as shown in Figure 8, which
indicates that the system is in parallel. This example is adapted from McDonald and Mahadevan
(2008) with the random loading changed to a stochastic process.
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18 Z. Hu and X. Du

P(t)

21

Figure 8. A two-bar system.

Table 4. Random variables.

Variable Mean Standard deviation Distribution Autocorrelation

S1 Design variable 0.1 in2 Normal N/A
S2 Design variable 0.1 in2 Normal N/A
σb,1 36 ksi 3 ksi Normal N/A
σb,2 36 ksi 3 ksi Normal N/A
P(t) 90 kips 9 kips Gaussian Equation (69)

Each of the two bars is assumed to resist a load of P(t)/2 until both of the two bars are yielded.
The limit-state functions for the components are given by

gi(X, Y(t)) = Siσb,i − P(t)/2 = 0, i = 1, 2 (68)

The design life of the beam is 10 years or 120 months. The cross-sections of the two bars are to be
optimized. At the same time, the associated optimal warranty period and preventive maintenance
policy are expected to be identified. The initial probability of failure of the system is required to
be less than 1 × 10−3.

The cross-section and yield stress of the two bars are independently distributed. There are
therefore four design variables: the cross-sections of the two bars, the warranty period, and the
preventive maintenance period over the post-warranty period. The deterministic parameters and
random variables are given in Table 4.

The auto-correlation function of the stochastic process P(t) is given by

ρP(t1, t2) = exp

[
−

(
(t2 − t1)

3

)2
]

(69)

where t1 and t2 are in months. Based on the above information, the optimization model is given
as follows: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min Cunit(d)

Subject to

CI = 1000 + 18 exp{10Rs(d, t0)}
R0(d) ≥ 0.999

dL < d < dU

(70)

where d = [μS1 , μS2 , N , TW ], T = (120 − TW )/N , dL = [1.55, 1.55, 1, 20], dU =
[1.9, 1.9, 20, 80], Cp1 = $ 3.5 × 103, Cp2 = $ 1.2 × 104, Cmin = $ 1 × 103, γ1 = 0.99, γ2 = 0.9,
p1 = 0.8, and p2 = 0.2.

The initial design points are d0 = [μ0
S1

, μ0
S2

, N0, T 0
W ] = [1.65 in2, 1.65 in2, 7 times,

40 months].
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Engineering Optimization 19

Table 5. Optimal design variables.

Optimized results

μS1 μS2 TW N Cunit

1.5715 in2 1.8373 in2 20 months 10.81 $6.8628 × 103

0 20 40 60 80 100 120
0.988

0.99

0.992

0.994

0.996

0.998

1

(0, t) months
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bi
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Figure 9. Time-dependent system reliability under the optimal design.

The optimization results of Example 2 are given in Table 5. The results imply that the system
is planned to have a warranty period of 20 months and will be maintained 10 times during
the post-warranty period. With the optimal design results, the expected unit lifecycle cost is
$6.8628 × 103.

Figure 9 plots the time-dependent system reliability during the optimal warranty period and
preventive maintenance period.

8. Conclusion

A lifetime cost optimization model is proposed to account for reliability, warranty and preventive
maintenance. Physics-based time-dependent system reliability is used to predict the warranty and
maintenance costs and to minimize the product lifecycle cost. The proposed method produces opti-
mal design variables, including the optimal warranty period and optimal preventive maintenance
policy.

The model extends a newly developed time-dependent component reliability method to system
reliability analysis. It integrates the reliability model with the lifecycle cost model and the design
optimization model. These models are coupled together by shared input variables. The two numer-
ical examples demonstrate that the proposed model is applicable not only for the component-level,
but also for the system-level design optimization.

Since the proposed model embeds the sampling-based time-dependent reliability analysis into
the optimization framework, the program will call the limit-state functions repeatedly during
optimization. The computational effort for solving the optimization model is relatively high.
Future work is therefore needed to improve the computational efficiency. Other future work could
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20 Z. Hu and X. Du

include more stochastic processes in the optimization because the present method can handle only
one stochastic process as the input to a limit-state function.
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Appendix 1. List of nomenclature

Clife Expected total lifetime cost
Cmin Expected minimal maintenance cost per time
Cp1 Expected cost for preventive maintenance
Cp2 Expected cost for corrective maintenance
Cpa,i Expected maintenance costs of transition i for Path a
Cpa,i,j Expected maintenance cost for Path a of transition i given that system reaches the transition by the jth

path
Cpb,i Expected maintenance costs of transition i for Path b
Cpb,i,j Expected maintenance cost for Path b of transition i given that system reaches the transition by the jth

path
Cp,i Expected maintenance cost for transition i
Cpu,i,j Expected maintenance cost for transition i given that system reaches the transition by the jth path
Cunit Expected unit lifetime cost
CWI Expected costs for type I failures over the warranty period
CWII Expected costs for type II failures over the warranty period
Pa,i Probability that the system has transition i by Path a
Pb,i Probability that the system has transition i by Path b
Pa,i,j Probability that the system reaches Path a of its ith maintenance by the jth path
Pb,i,j Probability that the system reaches Path b of its ith maintenance by the jth path
Pi,j Probability that the system reaches its ith maintenance by the jth path
Ri,0 Residual reliability of component i at the initial time instant t0
RI , 0 Initial system reliability after the warranty period
RI, i Immediate system reliability after the ith maintenance
RI, i−1,j Immediate system reliability after the (i − 1)th maintenance by the jth path
Rs,i−1 System reliability right before the ith maintenance
Rs,i−1,j System reliability right before the ith maintenance by the jth path
Td Design life of product
Tlife Expected product service life
Tp,i Expected waiting time between the (i − 1)th and the ith transitions
Tpu,i,j Expected waiting time for transition i given that system reaches the transition by the jth path
TW Warranty period of product
Wi Waiting time between two successive type II failures
W∗

i Waiting time between two successive maintenances
γ1 Coefficient used to quantify the capacity of corrective maintenances
γ2 Coefficient used to quantify the capacity of preventive maintenances
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