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Abstract 

Time-dependent reliability-based design ensures the satisfaction of reliability requirements 

for a given period of time, but with a high computational cost. This work improves the 

computational efficiency by extending the sequential optimization and reliability analysis 

(SORA) method to time-dependent problems with both stationary stochastic process loads and 

random variables. The challenge of the extension is the identification of the most probable points 

(MPP) associated with time-dependent reliability targets. Since the direct relationship between 

the MPP and reliability target does not exist, this work defines the concept of equivalent MPP, 

which is identified by the extreme value analysis and the inverse Saddlepoint approximation. 

With the equivalent MPP, the time-dependent reliability-based design optimization is 

decomposed into two decoupled loops: deterministic design optimization and reliability analysis, 

and both are performed sequentially. Two numerical examples are used to show the efficiency of 

the proposed method.  
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1. Introduction 

Time-dependent reliability ( )R t  provides the probability that a system or component works 

properly after it has been put into operation for a period of time [0, ]t . Let 1 2[ , , , ]nX X XX   

be a vector of random variables, 1 2[ , , , ]nx x xx   be a realization of X , and 

1 2( ) [ ( ), ( ), , ( )]mt Y t Y t Y tY   be a vector of stochastic processes, and then ( )R t  is defined by 

 ( ) Pr{ ( , ( )) 0, [0, ]}R t G g tX Y         (1) 

where ( , ( ))g X Y   is a limit-state function, and G   is the response. 0G   indicates a working 

state.  

The time-dependent probability of failure is computed by ( ) 1 ( )fp t R t  , or 

 ( ) Pr{ ( , ( )) 0, [0, ]}fp t g tX Y        (2) 

For special problems with only random variables X , the reliability becomes time 

independent or constant. A typical time-independent RBDO model is given by 

 

( , )
min ( )

s.t. Pr{ ( , ) 0} [ ], 1, 2, ,

( ) 0, 1, 2, ,

R

Pi fi p

Dj d

f

g p i n

g j n

Xd μ
d

d X

d





  


 

  (3) 

In the above model, ( )f d  is the objective function, and d  is a vector of deterministic design 

variables. [ , ]R PX X X  is a vector of random variables with RX  being random design variables 

and PX  being random parameters. The mean values of RX , or 
RX

μ , are usually treated as design 

variables. ( )Pg   is a constraint function for which reliability is concerned, and [ ]fp  is the 

permitted probability of failure. ( )Djg   is a deterministic constraint function.   
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Solving the above RBDO model is time consuming because the reliability analysis for 

Pr{ ( , ) 0}Pig d X   is embedded within the optimization. Many methods have been proposed to 

improve the computational efficiency. The commonly used methods are the sequential single-

loop methods, including the efficient reliability and sensitivity analysis method (Wu and Wang 

1996) and the Sequential Optimization and Reliability Analysis (SORA) method (Du and Chen 

2004). These methods decouple the RBDO process into a deterministic optimization process and 

a reliability analysis process. The decoupled processes make RBDO more efficient. 

When time-dependent uncertainties are involved (Wang and Wang 2012), the RBDO model 

for a period of time [0, ]t  becomes 

 

( , )
min ( )

s.t. Pr{ ( , , ( )) 0, [0, ]} [ ], 1, 2, ,

( ) 0, 1, 2, ,

R

Pi fi p

Dj d

f

g t p i n

g j n

Xd μ
d

d X Y

d

 





    


 

  (4) 

Time-dependent RBDO is much more difficult than its time-independent counterpart due to 

two reasons. First, it is difficult to obtain accurate reliability analysis results. Developing 

accurate time-dependent reliability methods is still an ongoing research topic (Mourelatos et al. 

2015, Wang et al. 2015, Jiang et al. 2014). A brief review about time-dependent reliability 

methods is available in (Hu et al. 2012). Second, RBDO is much more time consuming because 

of the higher computational cost of time-dependent reliability analysis (Li, Mourelatos, and 

Singh 2012, Singh, Mourelatos, and Li 2010, Wang and Wang 2012).  

Methodologies for time-dependent RBDO have been proposed and used in many applications. 

For instance, Kuschel and Rackwitz (Kuschel and Rackwitz 2000) developed a structure design 

optimization model by using the outcrossing rate method for time-dependent reliability analysis. 

Mourelatos et al. (Li, Mourelatos, and Singh 2012) introduced the time-dependent reliability 

http://www.scopus.com/authid/detail.url?authorId=7003333772&amp;eid=2-s2.0-84863215539
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analysis into the lifecycle cost optimization. Wang and Wang (Wang and Wang 2012) proposed 

a sequential design optimization method based on a nested extreme response method. A RBDO 

model was also developed in (Rathod et al. 2012) for problems with reliability degradation over 

time.  

The accuracy and efficiency of the existing time-dependent RBDO methodologies can be 

further improved. For example, most of the current methods imbed the reliability constraints in 

the optimization framework (Li, Mourelatos, and Singh 2012, Rathod et al. 2012), and this may 

require a large number of function evaluations. SORA is a feasible way to improve the efficiency 

by decoupling the reliability analysis from optimization by employing the First-Order Reliability 

Method (FORM). The direct application of SORA to time-dependent problems, however, may 

not be accurate. In this work, we extend SORA to time-dependent RBDO based on the concept 

of equivalent Most Probable Point (MPP).  

The main contributions of this work include the following: (1) the extension of SORA so that 

time-dependent RBDO with stationary stochastic processes can be solved efficiently and 

accurately, (2) a new concept of equivalent MPP, which allows for decoupling deterministic 

optimization from time-dependent reliability analysis, and (3) an efficient approach to searching 

for the equivalent MPP.  

This paper is organized as follows. The original SORA is reviewed in Section 2. The new 

time-dependent SORA is discussed in Section 3, followed by the numerical procedure in Section 

4. Two numerical examples are given in Section 5, and conclusions are made in Section 6.   

2. Review of SORA 

The original SORA is for the time-independent RBDO defined in Eq. (3) (Du and Chen 

2004). SORA performs RBDO with sequential cycles of deterministic optimization and 
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reliability analysis. After an optimal design point is found from the deterministic optimization 

loop, FORM is performed at this point in the reliability analysis loop. The result of the reliability 

analysis is then used to reformulate a new deterministic optimization model for the next cycle so 

that the reliability will be improved. The process continues cycle by cycle till convergence (Du 

and Chen 2004). The deterministic optimization in the k-th cycle is formulated as  

 

[ , ]

( 1)

MPP,

min ( )

s.t. ( , ( )) 0, 1, 2, ,

( ) 0, 1, 2, ,

R

k

Pi i p

Dj d

f

g T i n

g j n

Xd μ
d

d u

d







 


 

  (5) 

where ( 1)

MPP,

k

iu
  is the MPP for the i-th probabilistic constraint from the reliability analysis in the (k-

1)-th cycle. ( )T   is the transformation operator given by ( )Tx u , where u  is a vector of the 

realization of standard normal variables U . The result of the optimization is the optimal point 

( ) ( )[ , ]
R

k k

X
d μ .  

Then reliability analysis or the inverse MPP search is performed at ( ) ( )[ , ]
R

k k

X
d μ  for each of the 

probabilistic constraint functions. The MPP ( )

MPP,

k

iu  is obtained from the following model:   

 ,

( )

,

,

max ( , ( ))

s.t.

i

k

Pi i

i i

g T
X

X
u

X

d u

u 







  (6) 

in which   stands for the norm of a vector, and   is called a reliability index and is given by 

 1([ ])i fip     (7) 

in which 1( )   is the inverse cumulative density function (CDF) of a standard normal variable.  

The MPP ( )

MPP,

k

iu  corresponds directly to the permitted probability of failure  [ ]fip  as shown 

in Eq. (7). If the constraint function at ( )

MPP,

k

iu  is less than 0, fip  will be less than [ ]fip . Therefore, 
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( )

MPP( , ( )) 0k

Pig Td u   in the deterministic optimization leads to the satisfaction of the reliability 

requirement. After the k-th cycle, if no convergence is reached, the (k+1)-th cycle is performed.  

Studies (Cho and Lee 2010, Rouhi and Rais-Rohani 2013) show that SORA performs well 

for RBDO problems where FORM is applied. It might also be applicable for time-dependent 

RBDO problems. However, the application is not straightforward since there is no direct 

correspondence of the MPP to the permitted time-dependent probability of failure. Major 

modifications of SORA are needed for time-dependent RBDO. In this work, we focus on 

modifying SORA for time-dependent RBDO involving only stationary stochastic processes and 

random variables.  

3. Time-Dependent SORA (t-SORA) 

In this section, we first introduce the main idea of time-dependent SORA (t-SORA) and then 

its details.  

3.1 Overview of t-SORA 

In the limit-state function ( , ( ))Pg X Y  , the components of ( )Y   are independent stationary 

stochastic processes. Since the distribution of ( )Y   on [0, ]t  does not change, so does the MPP 

of ( , ( ))Pg X Y  .  

Fig. 1 shows the flowchart of t-SORA. As t-SORA inherits the features of the original SORA, 

the steps of the two methods are similar. The entire optimization is performed cycle by cycle till 

convergence. Each cycle consists of decoupled deterministic optimization and time-dependent 

reliability analysis. However, the major difference or challenge is that the MPP corresponding to 

the permitted probability of failure [ ]fp   cannot be directly used in the deterministic 

optimization. The reason is explained as follows. 
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Fig. 1. Flowchart of t-SORA 

With ( )Y  , all the random variables at   become )[ , ( ]Z X Y  . The MPP *

z
u  is found by 

 
1

max ( , ( ))

s.t. ([ ])

P

fi

g T

p

Z

Z
u

Z

d u

u






 

  (8) 

where [ , ]
Z X Y

u u u  is a vector of the realizations of standard Gaussian random variables 

[ , ]Z X YU U U  with 
XU  and 

YU  being the transformed standard Gaussian random variables 

from X  and )(Y  , respectively. 

Then using the original SORA, we have 

 *Pr{ ( , , ( ) ( , ( ))}) [ ]
iP P fg g T p

z
d X Y d u     (9) 

However, the probability 
*Pr{ ( , ( )) ( , ( )), [0, ]}Pg g T tzX Y d u     over [0, ]t  is always 

greater than or equal to the time instantaneous probability 
*Pr{ ( , , ( ) ( ( ) }) , )P Pg g T zd X Y d u   (Li, 

Mourelatos, and Singh 2012, Singh and Mourelatos 2010a), and therefore 

   *Pr{ ( , ( )) ( , ( )), [0, ]} [ ]
iP fg g T t p

z
X Y d u       (10) 

As a result, the constraint *( , ( )) 0Pg T
z

d u   in the deterministic optimization can satisfy 

Pr{ ( , , ( ) 0}) [ ]
iP fg pd X Y     at only time instant  , and it may not satisfy the time-dependent 

reliability requirement Pr{ ( , ( )) 0, [0, ]} [ ]
if

g t pX Y       over the entire period of time [0, ]t . 

 
Deterministic 

optimization 
Time-dependent 

reliability analysis 

Converge? 
Formulate a new 

optimization model 
Optimal 

design 

Y N 

,  

Equivalent MPP  

One cycle 

Initial 

design 
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To address the above challenge, we propose a concept of equivalent MPP and denote it by 

Z
u . It is the MPP at which the limit-state function satisfies 

   Pr{ ( , ( )) ( , ( )), [0, ]} [ ]
iP fg g T t pZX Y d u       (11) 

Z
u  can be obtained by adding the above condition to the inverse MPP search model. The 

new model is given by 

 

][ ,
max ( ( ))

s.t.

Pr{ ( , ( )) ( ( )), [0, ]} [ ]
i

P

P f

g T

g g T t p

Z

Z

Z
u

Z

u

u

X Y u
















   


  (12) 

The reliability index   is also treated as a design variable in the MPP search since it cannot 

be predetermined. Then the task of time-dependent reliability analysis is to search for the 

equivalent MPPs with Eq. (12). Doing so, however, is too computationally expensive. In this 

work, we develop an efficient algorithm for Eq. (12). Next, we discuss how to use the equivalent 

MPP in the deterministic optimization and then how to search for the equivalent MPP.  

3.2 Deterministic optimization 

Using the equivalent MPP, we formulate the deterministic design optimization for the k-th 

cycle as 

 

( , )

( 1)

,

min ( )

s.t. ( , ( ) 0, 1, 2, ,

( ) 0, 1, 2, ,

R

k

Pi i p

Dj d

f

g T i n

g j n

Xd μ

Z

d

d u

d







 


 

  (13) 

in which ( 1)

,

k

iZ
u

  is the equivalent MPP for the i-th reliability constraint. The optimization model is 

similar to that of the original SORA. The only difference is that the MPPs are replaced by the 

equivalent MPPs. As discussed above, the use of the equivalent MPPs in constraints 
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( 1)

,( , ( ) 0, 1, 2, ,k

Pi i pg T i n
Z

d u
    ensures the satisfaction of time-dependent reliability 

requirements. 

3.3 Time-dependent reliability analysis 

The task herein is to search for the equivalent MPPs for ( , ( )) ( )P Pg gX Y Z  , where 

)[ , ( ]Z X Y  , given design variables [ , ]
RX

d μ . As indicated in Eq. (12), there are two research 

issues. The first is how to calculate the time-dependent probability 

Pr{ ( , ( )) ( , ( )), [0, ]}Pg g T tZX Y d u    , and the second is how to solve Eq. (12) efficiently.  

3.3.1 Calculation of Pr{ ( , ( )) ( , ( )), [0, ]}Pg g T tZX Y d u     

The task is to calculate the time-dependent probability Pr{ ( , ( )) , [0, ]}g c tX Y     , where 

( , ( ))Pc g T Zd u  on the condition that c  is known.  

Time-dependent reliability methods have been extensively studied (Hu and Du 2012, Li and 

Mourelatos 2009, Singh, Mourelatos, and Nikolaidis 2011a, Singh and Mourelatos 2010b, Singh, 

Mourelatos, and Nikolaidis 2011b). Amongst them, the most commonly used one is the 

upcrossing rate method with the Rice’s formula (Rice 1944). This method is accurate when the 

probability of failure is low, but may be inaccurate when the probability of failure is high. Many 

improvements have been made for the Rice’s formula, such as considering the correlation 

between upcrossings (Madsen and Krenk 1984), making empirical corrections to the Rice’s 

formula (Vanmarcke 1975), and employing important sampling (Li, Mourelatos, and Singh 

2012). A brief review of the upcrossing rate method is given in Appendix A.  

In this work, we use the first order sampling approach (FOSA), which completely removes 

the Poisson assumption used in the Rice’s formula. The accuracy and efficiency are significantly 

improved. Details of FOSA is available in Ref. (Hu and Du 2015).  
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3.3.2 Equivalent MPP search 

Existing MPP search algorithms cannot be used for Eq. (12) due to the constraint 

Pr{ ( , ( )) ( , ( )), [0, ]} [ ]P fg g T t pZX Y d u     . Directly solving the model in Eq. (12) will be 

time consuming because it involves a double-loop procedure. Using the same strategy as SORA, 

we propose to perform the MPP search with a sequential procedure. The idea is to separate the 

MPP search from the probability calculation, one is for searching for 
Z

u , and the other is for 

searching for   .  

At first, the inverse MPP search is performed given  , with the following model: 

 
max ( ( ))

s.t.

Pg T
Z

Z
u

Z

u

u 






  (14) 

It is the regular MPP search and produces the MPP 
Z

u  given   . Then the next analysis is 

performed to update   given 
Z

u . The purpose is to find a new   so that 

Pr{ ( , ( )) ( , ( )), [0, ]} [ ]P fg g T t pZX Y d u     . How to update    will be discussed in Sec. 

3.3.3. The two analyses are performed repeatedly till convergence as shown in Fig. 2. After 

convergence, the MPP search produces the equivalent MPP 
Z

u .  

 

Fig. 2. Time-dependent MPP search 

Initial 

 

MPP search 

 

Reliability index updating 

Find  such that 

 

   

Converge? 
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Y 
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3.3.3 Reliability index updating 

We now discuss how to update   so that ( ) Pr{ ( ( )) 0, [0, ]} [ ]f P fp t g T t pZU     . 

Since FORM is used, we approximate ( ( ))Pg T ZU  at 
Z

u . As shown in Appendix A, after 

approximation, the time-dependent probability is 

  Pr{ ( ( )) 0 [0, ]( ) } Pr{ ( , [0 }) , ]T

f Pp g T t L tt
Z ZZ

U U u           (15) 

where )( TL
Z

U   is a linear combination of 
ZU , and  is a constant vector evaluated at 

Z
u  

and is given in Eq. (A2). If ( ) [p ]f ftp  , we should obtain a new reliability index   so that 

( ) [ ]f ftp p . 

Let the global maximum of )(L   over [0, ]t  be W ; namely 

 max{ ( ), [0, ]}W L t


     (16) 

( )fp t  can then be calculated by 

 Pr{( ) }fp Wt
Z

u   (17) 

If ( ) [p ]f ftp  , we should reduce the old reliability index 
Zu  and obtain an updated 

reliability index    such that 

 Pr{ ( ) , [0, ]} [p ]fL t      (18) 

or 

 Pr{W } [ ]fp    (19) 

It is obvious that 
Z

u  . The problem now becomes to find the percentile value of W  

given a probability level [ ]fp  . It is a difficult task because there may not be a close-form 

solution to the distribution of the extreme value W . Wang (Wang and Wang 2012) proposed a 
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kriging model method to approximate the extreme value distribution, but the method is limited to 

limit-state functions in the form of ( , )g tX  without any input stochastic processes. Herein we 

use a sampling method.  

Recall that )( TL
Z

U   is a stationary Gaussian process with known coefficients . We can 

then use simulations to obtain its sample trajectories, and for each trajectory, we find the 

maximum value. Then the samples of W  will be available for the estimation of the CDF of W . 

The CDF will then produce   as indicated in Eq. (19). The samples can be efficiently generated 

using the Orthogonal Series Expansion (OSE) (Zhang and Ellingwood 1994), which is given in 

Appendix B. 

Once the samples of W  are available, the percentile value of W  in Eq. (19) is approximated. 

Since [ ]fp  is small,   is in the far right tail of the distribution of W . To obtain an accurate 

result, we use the saddlepoint approximation (SPA) method (HU and Du 2013). The details are 

provided in Appendix C. Since the sampling approach is based on )( TL
Z

U  , the original 

limit-state function ( )Pg   will not be called.  

3.3.4 Numerical procedure of the time-dependent reliability analysis 

We now summarize the strategy of the time-dependent reliability analysis and its procedure. 

For a general limit-state function ( , ( )) ( )P Pg gX Y Z  , when it is approximated at an MPP, a 

number of iterations are needed to solve the following model: 

 

][ ,
max ( ( ))

s.t.

Pr{ ]W } [

P

f

g T

p

Z

Z
u

Z

u

u




















  (20) 
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It is derived from the original model in Eq. (12) when FORM is employed. The model is 

solved with the procedure shown in Fig. 2 where the MPP search and reliability index updating 

are performed separately and sequentially. The main steps are as follows:  

Step 1: Initialization: set the initial reliability index  . Since the time-dependent probability 

of failure is usually larger than the time-independent ones, based on our experience, we 

recommend using the following initial value: 

 11.2 ]( )[ fp      (21) 

Step 2: MPP search: Search for the MPP using Eq. (14). The results are the MPP 
Z

u  and 

vector  (given in Eq. (A2)). 

Step 3: Update the reliability index: (1) Construct ( )L   by )( TL
Z

U  .  (2) Generate 

samples for ( )L   over [0, ]t  . (3) Obtain the samples of the extreme value of W . (4) Use SPA to 

compute the reliability index  . 

Step 4: Check convergence: If the difference between the current   value and previous   is 

larger than a predefined tolerance, repeat Steps 2 through 4; otherwise, set the equivalent MPP 

Z Zu u  and stop. The convergence tolerance can be set to 0.01 or 0.001 or other small numbers.  

A more detailed flowchart is given in Fig. 3. The above procedure is for a general limit-state 

function. It should be executed for all the limit-state functions in the overall RBDO model. 

4. Summary of the Numerical Procedure 

We now summarize the procedure of the entire RBDO and show it in Fig. 4. 

Step 1: Initialize parameters. (1) Define the initial design variables.  (2) Set 1k  .  

Step 2: Perform deterministic optimization. If 1k  , solve deterministic optimization at mean 

values of random variables and main functions of stochastic processes. If 1k  , formulate the 
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deterministic optimization model using the equivalent MPPs ( 1)

,

k

iZ
u

 , where 1,2, , pi n , 

obtained from the ( 1k  )-th cycle; then solve the optimization model given in Eq. (13). The 

optimal solution is ( ) ( )[ ,μ ]k k

Xd .   

 

Fig. 3. Detailed flowchart for time-dependent reliability analysis 

Step 3: Perform time-dependent reliability analysis at ( ) ( )[ ,μ ]k k

Xd  following the procedure in 

Fig. 3. The solution is the equivalent MPPs ( )

,

k

iZu , where 1,2, , pi n . 

Step 4: Check convergence. If the limit-state functions satisfy 

 ( ) ( )

,( , ( ))k k

Pi ig T
Z

d u    (22) 

where   is a small positive number, then the optimal solution is found and stop. Otherwise, 

update the cycle counter by 1k k  , and repeat Steps 2 through 4. 

Step 3: Update reliability index 

 
Step 4: 

Convergence? 

Step 2: MPP search 

 

Approximate  using Eq. 

(B1) 

N 

Y 

 

 

Step 1: Initialization 

 

Obtain extreme value samples 

 

Compute reliability index using 

Eq. (C3) 
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Fig. 4. Numerical procedure of t-SORA 

Similar to the original SORA, the t-SORA usually converges within a few cycles, and the 

typical number of cycles is between three and five. In addition to the decoupling between 

optimization and reliability analysis, the proposed approach to the equivalent MPP search 

converges quickly, and this also makes t-SORA fast.  

5. Numerical Examples 

5.1 A two-bar frame under a stochastic force 

A two-bar frame is subjected to a stochastic force ( )F t  as shown in Fig. 5. The distances 

O1O3 and O1O2 are random parameters and are denoted by 1l  and 2l , respectively. Failures occur 

when the maximum stresses of the two bars are larger than their material yield strengths 1S  and 

2S . The diameters D1 and D2 of the two bars are random design variables.  

Step 2 
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Fig. 5. A two-bar frame under stochastic force 

The limit-state functions are given by 

 2 2 2

1 1 2 2 1 1( , , ( )) 4 ( ) ( ) 1g F l l l D Sd X Y        (23) 

 2

2 1 2 2 2( , , ( )) 4 ( ) ( ) 1g F l l D Sd X Y       (24) 

where [ , ]R PX X X , 1 2[ , ]R D DX  , 1 2 1 2[ , , , ]P l l S SX  ,  
1 2

[ , ]D Dd   , and ( ) [ ( )]t F tY  .  

The information known is given in Table 1, where STD and GP stand for a standard 

deviation and a Gaussian process, respectively. The auto-correlation coefficient functions of 

( )F   is 

   2

1 2 2 1( , ) exp ( )F          (25) 

in which 0.1 year   is the correlation length.  

The objective is to minimize the weight of the two bars, and the RBDO model for a service 

period of [0,10]  years is formulated as 

 

l2 

l1 

O1 

O2 

O3 

D1 

 
A 

A 

A-A 

B 

B 

D2 

 

B-B 

F(t) 
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1 1 1 2 2

2 2 2 2

( , )
min ( ) 4 4

s.t. Pr{ ( , , ( )) 0, [0, ]} [ ], 1, 2

0.07 m 0.25 m, =1, 2
i

l D l l D

i fi

D

f

g t p i

i

Xd μ
d

d X Y

     

 



   



    


  


  (26) 

where 1[ ] 0.01fp  , 2[ ] 0.001fp  , and 10t   years. 

Table 1. Random variables and stochastic process 

Variable Mean STD Distribution Autocorrelation 

1D  
1D  31 10 m  Normal N/A 

2D  
2D  31 10 m  Normal N/A 

1S  81.7 10  Pa  7101.7  Pa  Lognormal N/A 

2S  81.7 10  Pa  7101.7  Pa  Lognormal N/A 

1l  0.4 m 31 10 m  Normal N/A 

2l  0.3m 31 10 m  Normal N/A 

( )F t  62.2 10  N  52 10  N  GP Eq. (25) 

 

To evaluate the accuracy and efficiency of t-SORA, we used three methods to solve the 

problem with the same starting point. The three methods are the t-SORA with the Orthogonal 

Series Expansion (OSE) method presented in Appendix B, the double-loop method using the 

same time-dependent reliability analysis method as t-SORA, and the double-loop method with 

the Rice’s formula for time-dependent reliability analysis presented in Appendix A. Next we call 

the latter two methods the Double (OSE) and Double (Rice).  

The parameters of OSE used by t-SORA and Double (OSE) are given below. 

 The number of time instants that divide [0, ]t  equally: 500Q   

 The number of samples generated at each time instant: 610N   

 The number of  terms used in the OSE model: 200M   

Table 2 shows the convergence history of t-SORA. The optimal solution was obtained within 

three cycles. After the first cycle, the two limit-state functions were much larger than zero, and 
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this is the indication that the reliability requirements were not met. After the third cycle, the two 

limit-state functions were close to zero. Then the time-dependent probabilities of failure were 

almost at their target values.  

Table 2 Convergence history of t-SORA 

k f (m
3
) 

1 2
( , )D D   (m) 

1  2  1 ,1( , ( ))Pg T
Z

d u  2 ,2( , ( ))Pg T
Z

d u

 

1 0.0173 (0.0831, 0.0743) 3.5662 4.2095 0.6049 0.7541 

2 0.0290 (0.1051, 0.0981) 3.5715 4.2111 9.44×10
-4

 9.24×10
-4

 

3 0.0290 (0.1051, 0.0982) 3.5721 4.2138 2.50×10
-4

 4.88×10
-4

 

 

Table 3 shows the final results from the three methods. We use the number of function calls 

(NOFC) to measure the efficiency.  t-SORA and Double (OSE) produced almost identical results. 

t-SORA is much more efficient than the Double (OSE) and Double (Rice) methods. The fourth 

and fifth columns of Table 3 present the probabilities of failure after the optimization. Since t-

SORA does not compute the probabilities of failure directly, their values are not available. The 

probabilities of failure of the Double (OSE) and Double (Rice) methods are computed by the 

OSE-based sampling method (Appendix B) and Rice’s formula (Appendix A), respectively. The 

results show that the reliability constraints were satisfied by the three optimization methods.  

Table 3 Optimal results 

Method f (m
3
) 

1 2
( , )D D  (m) 1( )fp t  2 ( )fp t  NOFC 

t-SORA 0.0290 (0.1051, 0.0982) N/A N/A
 

715 

Double (OSE) 0.0290 (0.1051, 0.0982) 0.0099 0.0010 18840 

Double (Rice) 0.0297 (0.1066, 0.0990) 0.0100 0.0010
 

11050 

 

To verify the accuracy, we also performed Monte Carlo Simulation at the optimal design 

points in Table 3 from the three methods. In MCS, [0, ]t  was discretized into 200 time instants, 

and 10
6
 samples were generated at each time instants. Table 4 gives the percentage errors, and 
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Table 5 gives the 95% confidence intervals of the MCS solutions. The percentage error is 

computed by 

 MCS MCS( ) ( ) / ( ) 100%f f fp t p t p t      (27) 

For t-SORA and Double (OSE), ( )fp t  is calculated by the OSE-based sampling method, and 

for Double (Rice), it is calculated by the method based on Rice’s method. MCS( )fp t  is the 

probability of failure obtained from MCS.  

Table 4 Accuracy comparison 

 1( )fp t  MCS

1 ( )fp t  Error (%) 2 ( )fp t  MCS

2 ( )fp t  Error (%) 

t-SORA 0.01 0.0094 5.3 0.001 9.4×10
-4

 6.38 

Double (OSE) 0.01 0.0094 5.3 0.001 9.4×10
-4

 6.38 

Double (Rice) 0.01 0.0046 117.39 0.001 5.4×10
-4

 85.19 

 

Table 5 95% confidence intervals of MCS solutions 

 t-SORA Double (OSE) Double (Rice) 
MCS

1fp  [0.0092, 0.0096] [0.0092, 0.0096] [0.0044, 0.0047] 

MCS

2fp  [8.77, 9.97] ×10
-4

 [8.77, 9.97] ×10
-4

 [4.96, 5.88]×10
-4

 

 

The results indicate that the accuracy of t-SORA is good. For the t-SORA and Double (OSE) 

methods, at the optimal design points, the actual time-dependent probabilities of failure are very 

close to the permitted ones. The probabilities of failure from the Double (Rice) method are much 

lower than the permitted ones. The reason is that the Rice’s formula overestimates the 

probability of failure, which resulted in an over-design for this problem.  

5.2 A simply supported beam under stochastic loadings 

A simply supported beam shown in Fig. 6 is subjected to two stochastic loadings, which are 

the stochastic force F(t), and the uniformly distributed loading ( )q t . The height a and width b of 
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the cross section are random design variables. A failure of the beam occurs when the stress 

exceeds the ultimate strength of the material S . The weight of the beam is expected to be 

minimized under the constraint that the time-dependent probability of failure of the beam over 30 

years is less than 0.05.  The limit-state function of the beam is given by   

  2 2 2( , , ( )) 4 ( ) / ( ) / 8 / 8 ( ) 1stg F l s q l abl ab Sd X Y          (28) 

where [ , ]R PX X X , [ , ]R a bX  , [ ]P SX  , [ , ]a bd   , and ( ) [ ( ), ( )]F qY    , S  is the 

ultimate strength, st  is the density, and l  is the length of the beam.  

Table 6 gives the random variables, parameters, and stochastic processes. The auto-

correlation coefficient functions of ( )F   and ( )q   are 

   2

1 2 2 1( , ) exp ( ) /F          (29) 

and 

 1 2 2 1( , ) cos( ( ))q         (30) 

respectively, where 0.8 year   is the correlation length of ( )F  .  

 

Fig. 6. A beam under stochastic loadings  

The RBDO model is given by 

b 

  

A 

l/2 
F(t) 

 

A-A 

a 

q(t) 

A 

l 
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[ , ]
min ( )

s.t. Pr{ ( , , ( )) 0, [0, ]} [ ]

4 ; 0.04 m 0.15 m

0.15 m 0.25 m

a b

f

b a a

b

f

g t p

Xd μ
d

d X Y

 

 

  



 

    


  


 

  (31) 

where [ ] 0.05fp   and 30 yearst  . 

The RBDO model was solved by the t-SORA, Double (OSE), and Double (Rice) methods 

with the same initial design point. Table 7 gives the convergence history of t-SORA. The results 

show that t-SORA converged with three cycles.  

Table 6 Variables, parameters, and stochastic processes 

Variable Mean STD Distribution Autocorrelation 

a  a  -35 1 m0    Lognormal N/A 

b  b  -35 1 m0    Lognormal N/A 

S  82.4 10  Pa  7102.4  Pa  Lognormal N/A 

( )F 
 6000 N 600 N GP Eq. (29) 

( )q 
 900 N/m 90 N/m GP Eq. (30) 

l
 

15 m N/A Deterministic N/A 

st
 78.5 kN/m

3 
N/A Deterministic N/A 

 

Table 7 Convergence history of t-SORA 

k f (m
2
) ( , )a b  (m)   

,1( , ( ))g T
Z

d u  

1 0.0065 (0.0403, 0.1613) 2.2726 0.4384 

2 0.0085 (0.0460, 0.1840) 2.2887 0.0036 

3 0.0085 (0.0461, 0.1842) 2.2887 1.29×10
-5 

 

Table 8 presents the final results from the three methods. The results show that t-SORA is 

much more efficient than the other two methods.  

Table 8 Optimal results 

Method f (m
2
) ( , )a b  (m) ( )fp t  NOFC 
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t-SORA 0.0085 (0.0461, 0.1842) N/A 156 

Double (OSE) 0.0085 (0.0463, 0.1836) 0.0500 7756 

Double (Rice) 0.0092 (0.0478, 0.1914) 0.0500 1612 

 

Table 9 gives the probabilities of failure from MCS at the optimal design points from the 

three aforementioned methods. Table 10 presents the 95% confidence intervals of the MCS 

solutions. The time interval [0, 30] year was divided into 600 time instants, and 10
6
 samples 

were generated at each time instant for MCS.  The t-SORA and Double (OSE) methods are more 

accurate than the Rice’s formula, which overestimated the probability of failure. The optimal 

design obtained from the Double (Rice) method is therefore conservative.  

Table 9 Accuracy comparison 

 ( )fp t  MCS( )fp t  Error (%) 

t-SORA 0.05 0.0522 4.2 

Double (OSE) 0.05 0.0522 4.2 

Double (Rice) 0.05 0.0093 440.96 

 

Table 10 95% confidence intervals of MCS solutions 

 t-SORA Double (OSE) Double (Rice) 
MCS( )fp t  [0.0517 0.0526] [0.0518 0.0527] [0.0091 0.0094] 

 

Although the two examples involve explicit limit-state functions, they are actually treated as 

black-box functions since the derivatives of the limit-state functions are evaluated numerically.  

6. Conclusion 

Time-dependent Sequential Optimization and Reliability Analysis (t-SORA) method is 

developed for problems with both random variables and stochastic processes. To address the 

limitation that there is no direct connection between time-dependent reliability and the Most 

Probable Point (MPP), t-SORA uses the equivalent MPP, which directly corresponds to the 
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required time-dependent reliability. This ensures that the overall optimization be solved 

sequentially in cycles of deterministic optimization and reliability analysis. The results show that 

t-SORA can effectively solve design optimization with time-dependent reliability constraints.  

The proposed method is based on FORM. Its accuracy is then affected by the linearization 

made by FORM. However, the proposed method may not be limited to FORM. If the limit-state 

function in the transformed normal variable space is highly nonlinear, more accurate reliability 

analysis methods, such as the Second Order Reliability Method (SORM), can also be used.  

t-SORA is for problems with only stationary stochastic processes. The same strategy may be 

extended to problems with non-stationary processes. The implementation, however, will be 

significantly different and will be more challenging. It needs a further investigation.   
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Appendix A. Reliability analysis with the Rice’s formula and FORM 

For a limit-state function ( , , ( )) ( , ( ))P Pg t g td X Y d Z , where ( ) [ , ( )]t tZ X Y , its MPP is 

obtained from 

 
min

s.t. ( [ ( )]) 0Pg T t

Z

Z

U

U





  (A1) 

where ( ) [ , ( )]X Yt tZU U U  is the standard normal variables associated with X  and ( )tY .  
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After the MPP ( ) [ , ( )]Yt t
X

u u u  is found,  the limit-state function 

( , , ( )) ( , ( ))P Pg t g td X Y d Z  is linearized at the MPP, the time-dependent probability of failure 

given in Eq. (5) is then approximated by (Hu and Du 2012, Hagen and Tvedt 1991): 

 ( ) Pr{ ( , , ( )) 0, [0, ]} Pr{ ( ) ( ) ( ), [0, ]}f

T

Pp t g t L t
Z

d X Y U               (A2) 

in which ( ) ( )u    and ( ) /u  . 

The Rice’s formula gives the upcrossing rate by (Rice 1944) 

  ( ) ( ) ( ( )) ( ) ( )v t t t t t         (A3) 

where ( )   is the probability density function (PDF) of a standard normal variable, and  

 ( ) ( )t t t      (A4) 

 ( ) ( ) ( )x x x x       (A5) 

and 

 
2

12( ) ( , )T Tt t tC     (A6) 

in which 

 t t     (A7) 

and 

 
1 2

1 2

2

1 1 2 1 2

12 1 2

2

1 2 1 2

0 0 0

0 ( , ) 0 0

( , ) 0 0 0

0 0 0 ( , )

t t t

m t t t

t t t t

t t

t t t t

0

C





 

 

 
 

  
 
 
 
 
    

 (A8) 
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in which 
1 2( , )l t t , 1, 2,l m , are the coefficients of the autocorrelation of stochastic process 

( )
lYU t , and m is the number of stochastic processes. Since the stochastic processes ( )tY  are 

assumed to be stationary, 0 , and 0   .  

fp  is computed by (Hu and Du 2012) 

   0
(t) 1 exp )(0) (

t

fp R v d       (A9) 

where ( (0) )R   is the time instantaneous reliability at the initial time instant. 

Appendix B. Orthogonal Series Expansion (OSE) 

As shown in Eq. (A2), the time-dependent probability of failure ( )fp t  is approximated by 

( ) Pr{ ( ) ( , , ( )) 0, [0, ]} Pr{ ( ) ( ) , [0, ]}Pf

Tp t G g t L t
Z

d X Y U               , where 

( )G   is a non-Gaussian stochastic process and ( )L   is a standard Gaussian stochastic process. If 

the maximum value of )(L   over [0, ]t  , W , is available, according to Eq. (17), 

Pr( }) {fp t W   .  The distribution of W  can be obtained from the samples of )(L  , and the 

samples may be generated from the OSE method. 

OSE approximates ( )L   as follows (Zhang and Ellingwood 1994): 

 
0 0

( ) ( ( ))
M M

i

i i j j

i j

L P h  
 

    (B1) 

in which i  is the i-th eigenvalue of covariance matrix Σ , i

jP  is the projection of the i-th 

eigenvector of covariance matrix Σ  on the j-th Legendre polynomial, and ( )jh t  is the j-th 

Legendre polynomial, i , where  1, 2, ,i M , are M independent standard normal variables, 

and Σ  is a matrix with element ij  given by (Zhang and Ellingwood 1994) 
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1 2 1 2 1 2

0 0
( ) ( )

t t

ij t t i jh t h t dt dt      (B2) 

where   

 
1 2 1 2( , ) T

C     (B3) 

and 
1 2( , )C    is a diagonal matrix with the diagonal element being the covariance of 1( )ZU   and 

2( )T

Z
U  . 

Once the approximated response ( )L   is available, N  samples can be generated at Q  

discretizing instants over [0, ]t  . The samples are given in matrix N QL 
 as below. 

 

1 2

1 2

1 2

( ,1) ( ,1) ( ,1)

( , 2) ( , 2) ( , 2)

( , ) ( , ) ( , )

Q

Q

N Q

Q N Q

l t l t l t

l t l t l t
L

l t N l t N l t N





 
 
 
 
  
 

  (B4) 

N  samples of the extreme value W  can then available through the following equations:  

 1 2max{ ( , ), ( , ), , ( , )}, where 1, 2, ,j Qw l t j l t j l t j j N    (B5) 

Appendix C. Saddlepoint Approximation (SPA) 

At first, the cumulants of W  are computed from the samples by (Fisher 1928)  

 

1 1

2

2 2 1

3 2

3 1 1 2 3

24 2 2

1 3 41 1 2 2
4

( ) ( ( 1))

(2 3 ) ( ( 1)( 2))

4 ( 1) ( 1)6 12 3 ( 1)

( 1)( 2)( 3) ( 1)( 2)( 3)

m N

Nm m N N

m nm m N m N N N

N N m m N N mm nm m N N m

N N N N N N N N












  


    


        
      

  (C1) 

where i  is the i-th cumulant of W , sm  (
 

1,2,3,4s  ) are the sums of the s-th power of the 

samples W  and are given by 
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1

N
s

s i

i

m w


   (C2) 

in which iw  is the i-th sample of W  given in Eq. (B5). 

In this work, the first four moments are used. Higher order may also be used.  Once j , 

1, 2, 3, 4j  , are available, the reliability index   is updated by 

 
2 3

1 2 3 41! 2! 3!             (C3) 

where   is the saddlepoint, which satisfies the following equations: 

  1 [ ] ( ) ( ) 1 1fp z z z v      (C4) 

  
1/2

'sign( ) 2 ( ) ( )L Lz K K         (C5) 

 
1/2

" ( )Lv K       (C6) 

 
4

1

( ) !i

L i

i

K i  


   (C7) 

and 

 
4

" 2

2

3

( ) ( 2)!j

L j

j

K j    



     (C8) 

where sign( ) = +1,  ̶ 1, or 0, depending on whether   is positive, negative, or zero.   
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