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10 Parametric Uncertainty
11 1 Limited2 data of stochastic load processes and system random variables result in uncertainty
12 in the results of time-dependent reliability analysis. An uncertainty quantification (UQ)
13 framework is developed in this paper for time-dependent reliability analysis in the presence
14 of data uncertainty. The Bayesian approach is employed to model the epistemic uncertainty
15 sources in random variables and stochastic processes. A straightforward formulation of
16 UQ in time-dependent reliability analysis results in a double-loop implementation pro-
17 cedure, which is computationally expensive. This paper proposes an efficient method
18 for the UQ of time-dependent reliability analysis by integrating the fast integration method
19 and surrogate model method with time-dependent reliability analysis. A surrogate model is
20 built first for the time-instantaneous conditional reliability index as a function of variables
21 with imprecise parameters. For different realizations of the epistemic uncertainty, the as-
22 sociated time-instantaneous most probable points (MPPs) are then identified using the fast
23 integration method based on the conditional reliability index surrogate without evaluating
24 the original limit-state function. With the obtained time-instantaneous MPPs, uncertainty in
25 the time-dependent reliability analysis is quantified. The effectiveness of the proposed
26 method is demonstrated using a mathematical example and an engineering application
27 example. [DOI: 10.1115/1.4032307]

28 Keywords: Bayesian approach, time-dependent reliability, stochastic loading, time series,
29 epistemic uncertainty
30
31

32 1 Introduction
33 Time-dependent reliability analysis considers both the statistical
34 variation at a time instant and variations over time. During the past
35 decades, a group of time-dependent reliability analysis methods
36 have been proposed [1–5]. For instance, Madsen and Tvedt pre-
37 sented a general and efficient method for time-dependent reliability
38 and sensitivity analysis [2]; Mori and Ellingwood [6] proposed an
39 important sampling approach for time-dependent system reliability
40 analysis and performed service-life assessment for aging concrete
41 structures using time-dependent reliability analysis [7]; Zheng and
42 Ellingwood investigated the role of nondestructive evaluation in
43 time-dependent reliability analysis [8]; Hagen and Tvedt [9,10] pro-
44 posed a parallel system approach to solve time-dependent problems
45 with binomial distributions; Andrieu-Renaud et al. developed a
46 PHI2 method for problems with random variables and stochastic
47 processes [11]; Sudret [12] derived analytical expressions for the
48 outcrossing rate in time-dependent problems and applied the devel-
49 oped method to the cooling towers [13] and degradation of rein-
50 forced concrete structures [14]; and Li and Chen developed a
51 reliability analysis method for dynamic response using a new prob-
52 ability density evolution approach [15].
53 Review of the above literature indicates that most of the current
54 methods are based on the assumption that the random variables and
55 stochastic processes are modeled with abundant data (i.e., no epi-
56 stemic uncertainty, only aleatory variability). In practical engineer-
57 ing applications, however, the collected data of random variables
58 and stochastic loadings are usually limited either because of limi-
59 tations of experiments or shortage of historical data. For example,
60 when designing a wind turbine system for a 20-year service life, the

61designer may have only historical wind speed data for the previous
6230 or 50 years [16,17]. The limited data cause epistemic uncertainty
63in the modeling of the random variables and stochastic loading.
64Besides, noise and discrepancy in the sensors and measurement
65conditions also contribute to uncertainty in the data about random
66variables and stochastic loads. There are also other types of episte-
67mic uncertainty sources in time-dependent reliability analysis, such
68as model uncertainties due to the use of model form assumptions
69and numerical approximations. In the presence of all these sources
70of uncertainties, a question that needs to be quantitatively answered
71is: how confident are we in our reliability analysis result?
72Considering epistemic uncertainty while performing reliability
73analysis has gained much attention during the past decades. For ex-
74ample, Der Kiureghian and Liu [18] developed a framework for the
75analysis of structural reliability under incomplete probability infor-
76mation; Der Kiureghian also investigated the assessment of struc-
77tural safety under imperfect states of knowledge [19] and parameter
78uncertainties [20]; Der Kiureghian and Ditlevsen [21] discussed the
79importance of considering epistemic uncertainty during reliability
80analysis; Roland and Sudret developed an imprecise reliability
81analysis method using PC-Kriging [22]; Li et al. calculated the
82probability of failure distribution using the Bayes’ rule [23]; Wang
83et al. developed a Bayesian reliability analysis method for problems
84with insufficient and subjective data sets [24]; and Coolen and
85Newby developed an extension of the standard Bayesian approach
86for reliability analysis based on imprecise probabilities and intervals
87of measures [25]. Although many reliability analysis methods under
88epistemic uncertainty have been proposed, available methods
89mainly focus on the epistemic uncertainty of random variables and
90time-independent reliability analysis. This paper aims to develop a
91UQ framework that performs time-dependent reliability analysis
92and accounts for both aleatory and epistemic uncertainty during
93the analysis.

1Corresponding author.
Manuscript received March 26, 2015; final manuscript received December 04,

2015; published online Month XX, XXXX. Assoc. Editor: Ioannis Kougioumtzoglou.

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems
Part B: Mechanical Engineering

Vol. 0 / XXXXXX-1
Copyright © 2015 by ASME

http://dx.doi.org/10.1115/1.4032307
http://dx.doi.org/10.1115/1.4032307


94 In this work, the Bayesian approach is used to describe the epi-
95 stemic uncertainty in both system random variables and stochastic
96 load processes in time-dependent reliability analysis. A straightfor-
97 ward way of UQ in time-dependent reliability analysis is to imple-
98 ment a double-loop procedure. In the outer loop, realizations of
99 epistemic variables are generated, and time-dependent reliability

100 analysis is performed in the inner loop conditioned on the realiza-
101 tions of the epistemic variables. Since time-dependent reliability
102 analysis is already very computationally expensive, the double-
103 loop procedure is computationally prohibitive. A surrogate model
104 is an obvious choice. But, building a surrogate model of the time-
105 dependent failure probability as a function of epistemic parameters
106 is still computationally expensive. This paper proposes an efficient
107 two-step approach for the UQ in time-dependent reliability analysis.
108 A surrogate model of the time-instantaneous conditional reliability
109 index is built first as a function of variables with epistemic param-
110 eters. The conditional reliability index surrogate model is then in-
111 tegrated with the fast integration method to efficiently identify the
112 time-instantaneous MPP under different realizations of epistemic
113 parameters without evaluating the original limit-state function.
114 Based on the time-instantaneous MPPs, the uncertainty in time-
115 dependent reliability analysis is quantified. The developed method
116 improves the efficiency of UQ of time-dependent reliability analysis
117 significantly. In addition, this paper also investigates the time-
118 dependent reliability analysis method by using the data-driven
119 time-series models instead of the common practice of using stochas-
120 tic process models with exact mean, variance, and correlation func-
121 tions. The contributions of this paper are therefore summarized
122 as (1) a new method to reduce the computational effort of UQ in
123 time-dependent reliability analysis, and (2) development of a UQ
124 framework for time-dependent reliability analysis.
125 In Sec. 2, backgrounds of time-dependent reliability, commonly
126 used time-dependent reliability analysis methods, and a sampling
127 approach are briefly reviewed. Section 3 proposes the developed
128 UQ framework for time-dependent reliability analysis. Two numeri-
129 cal examples are given in Sec. 4. Conclusions are made in Sec. 5.

130 2 Background

131 2.1 Time-Dependent Reliability. LetGðtÞ ¼ gðX;YðtÞ; tÞ be
132 a time-dependent response function, where X ¼ ½X1;X2; : : : ;Xn�
133 is a vector of random variables; YðtÞ ¼ ½Y1ðtÞ;Y2ðtÞ; : : : ;YmðtÞ� is
134 a vector of stochastic processes; and gð·Þ is a response function,
135 and t stands for time. The time-dependent probability of failure
136 is given by Ref. [26]

pfðt0; teÞ ¼ PrfGðτÞ ¼ gðX;YðτÞ; τÞ > e; ∃τ ∈ ½t0; te�g ð1Þ
137 in which e is a specific failure threshold; Prf·g stands for probabil-
138 ity; “∃” means “there exists”; and t0 and te are the initial and final
139 time instants, respectively.

140 2.2 Time-Dependent Reliability Analysis Methods. As
141 reviewed in Sec. 1, many approaches have been proposed to effi-
142 ciently estimate the time-dependent reliability analysis in past dec-
143 ades. Currently available methods can be roughly classified into
144 three groups: upcrossing rate methods, sampling-based approaches,
145 and surrogate model-based methods. The upcrossing rate methods
146 based on the Poisson assumption [9], such as the PHI2 method, are
147 commonly used due to their simplicity of implementation. How-
148 ever, these methods could result in significant errors for problems
149 that have both random processes and random variables [27,28]. The
150 error can be several orders of magnitude, depending on the mean
151 number of upcrossings in the time interval of interest and the rel-
152 ative magnitude between the variances of load processes and ran-
153 dom variables [29–31]. In order to release the Poisson assumption,
154 corrections have been suggested in computing the upcrossing rate
155 [30,32,33]. Efforts have also been made to remove the Poisson

156assumption, in sampling-based [34,35] and surrogate model-based
157[36,37] methods.
158This paper focuses on quantifying the uncertainty in time-
159dependent reliability analysis due to the presence of data uncer-
160tainty. It is illustrated with currently available time-dependent
161reliability analysis methods. However, the proposed UQ approach
162is general and can be applied with any preferred time-dependent
163reliability analysis method. In this work, the first-order sampling
164approach (FOSA) [34] is used to illustrate the proposed framework
165of UQ in time-dependent reliability analysis. The presented frame-
166work in the following sections, however, is not limited to the FOSA
167method. It is applicable to the upcrossing rate method and other
168methods as well. Before discussing the proposed UQ framework,
169the FOSA method is briefly reviewed as follows.

1702.2.1 Review of the First-Order Sampling Approach. Since
171time-dependent reliability analysis for nonstationary loading is
172computationally expensive, UQ in this case is even more computa-
173tionally intensive. In this paper, we focus only on weakly stationary
174loading. For stationary problems with random variables and weakly
175stationary stochastic loading, the time-dependent probability of fail-
176ure becomes

pfðt0; teÞ ¼ PrfGðτÞ ¼ gðX;YðτÞÞ > e; ∃τ ∈ ½t0; te�g ð2Þ

177178Even for the stationary Gaussian loading process, the response
179GðτÞ is a stationary non-Gaussian process if the response function
180gðX;YðτÞÞ is a nonlinear function. The basic principle of FOSA
181is to model the response stochastic process GðτÞ directly at the out-
182put level. A weakly stationary stochastic process has the following
183properties: (1) the statistical properties (mean and standard
184deviation) do not change with time; and (2) the autocorrelation is
185only dependent on the distance between two time instants. Even
186though GðtÞ has these special properties, directly modeling GðtÞ
187is still difficult because the statistical properties of GðtÞ are un-
188known. In order to overcome this difficulty, FOSAmodels an equiv-
189alent stochastic process LGðtÞ based on the following probability
190equivalency [34]:

PrfGðτÞ ¼ gðX;YðτÞÞ > e; ∃τ ∈ ½t0; te�g ¼ PrfLGðτÞ
¼ αXUT

X þ αYUT
YðτÞ > β; ∃τ ∈ ½t0; te�g ð3Þ

191where β is the reliability index; LGðtÞ is the equivalent stochastic
192process; αX ¼ u�

X=ku�ðt0Þk; αY ¼ u�
Yðt0Þ=ku�ðt0Þk; UX and

193UYðtÞ are the standard normal variables and standard Gaussian sto-
194chastic processes corresponding to X and YðtÞ, respectively; and
195u�ðt0Þ ¼ ½u�

X;u
�
Yðt0Þ� is the time-instantaneous MPP identified

196from the following optimization model:

8<
:

min βðt0Þ ¼ kuðt0Þk
uðt0Þ ¼ ½uX;uYðt0Þ�
Gðt0Þ ¼ gðTðuXÞ;TðuYðt0ÞÞÞ ≤ e

ð4Þ

197in which k · k is the determinant of a vector and Tð·Þ is an operator,
198which transforms uX and uYðt0Þ into original random variables X
199and Yðt0Þ.
200The equivalent stochastic process LGðtÞ has the following
201properties:

2021. LGðtÞ is weakly stationary, since GðtÞ is weakly stationary;
2032. LGðtÞ is a weakly stationary Gaussian process with zero mean
204and unit standard deviation;
2053. The autocorrelation function of LGðtÞ is given by [38]

ρLðt1; t2Þ ¼ αXαT
X þ αYρðt1; t2ÞαT

Y ð5Þ

206where
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ρðt1; t2Þ ¼

2
6666664

ρY1
ðt1; t2Þ 0 · · · 0

0 . .
.

· · · 0

..

. ..
. . .

. ..
.

0 0 · · · ρYm
ðt1; t2Þ

3
7777775
m×m

ð6Þ

207 in which ρYi
ðt1; t2Þ, i ¼ 1; 2; : : : ;m, is the autocorrelation

208 coefficient of UYi
ðtÞ between time instants t1 and t2.209

210 The above analyses indicate that through only one MPP search,
211 the statistical properties of the equivalent stochastic process LGðtÞ
212 can be obtained. With the above statistical information, the equiv-
213 alent stochastic process LGðtÞ can be modeled directly without
214 evaluating the original limit-state function. Here, the expansion op-
215 timal linear estimation method (EOLE) method [39] is employed to
216 model LGðtÞ. In EOLE, ½t0; te� is first discretized into h time in-
217 stants, ti, i ¼ 1; 2; : : : ; h. EOLE then expands LGðtÞ into a finite
218 series of random variables based on the eigenvalue and eigenvector
219 analysis of the covariance matrix ρL given as follows:

ρL ¼

2
666664

1 ρLðt1; t2Þ · · · ρLðt1; thÞ
ρLðt2; t1Þ . .

.
· · · ρLðt2; thÞ

..

. ..
. . .

. ..
.

ρLðth; t1Þ ρLðth; t2Þ · · · 1

3
777775
h×h

ð7Þ

220 where ρLðti; tjÞ, i; j ¼ 1; 2; : : : ; h, are computed using Eq. (5).
221 Let ηi and φT

i be the eigenvalues and eigenvectors of the corre-
222 lation matrix ρL, LGðtÞ is then modeled using the EOLE method as
223 below

LG ≈ Xr

i¼1

ξiffiffiffiffi
ηi

p φT
i ρLtðtÞ; ∀t ∈ ½t0; te� ð8Þ

224 where ξi, i ¼ 1; 2; : : : ; r, is a vector of independent standard
225 normal variables; ρLtðtÞ ¼ ½ρLðt; t1Þ; ρLðt; t2Þ; : : : ; ρLðt; thÞ�T ;
226 and r ≤ h is the number of terms of expansion. Note that the eigen-
227 values ηi are sorted in a decreasing order.
228 With the expression given in Eq. (8), samples of LGðtÞ are gen-
229 erated by discretizing ½t0; ts� into W time instants and generating N
230 samples for each random variable of ξi. The number of N can be
231 very large, since it will not evaluate the original limit-state function.
232 In this paper, N ¼ 2 × 106 is used. After that, the time-dependent
233 probability of failure is estimated using Eq. (3) based on the samples
234 of LGðtÞ over ½t0; ts�. Note that two main approximations are made
235 in FOSA for stationary problems: (1) linearization of the limit state
236 using the first-order reliability method (FORM) (Eq. (3)), and
237 (2) modeling of the equivalent stochastic process using the expan-
238 sion method (Eq. (8)). The method is therefore applicable only to
239 problems in which FORM is accurate for time-instantaneous reli-
240 ability analysis. As mentioned earlier, the developed method is
241 not limited to FOSA. It can also be applied to other time-dependent
242 reliability analysis methods.

243 3 UQ in Time-Dependent Reliability Analysis
244 In the above reviewed reliability analysis method, all the random
245 variables and stochastic processes are assumed to be accurately
246 modeled. Only aleatory uncertainty (natural variability) is consid-
247 ered in the evaluation of the time-dependent reliability. In reality,
248 there are other sources of epistemic uncertainty present due to lim-
249 ited information (i.e., data uncertainty and model uncertainty). Due
250 to such epistemic uncertainty sources, the obtained time-dependent
251 reliability analysis result is also uncertain. In this section, the epi-
252 stemic uncertainty sources in time-dependent reliability analysis are
253 analyzed first. After that, the effects of these uncertainties on the
254 time-dependent probability of failure are quantified.

2553.1 Uncertainty Sources. The uncertainty sources that affect
256the results of time-dependent reliability analysis can be roughly
257classified into two categories:

258• Data uncertainty: In practical applications, parameters of
259random variables are modeled based on the collected data.
260Due to noise and measurement limitations, uncertainties
261are inherent in the collected data. Sensor degradation and
262measurement conditions also cause uncertainty in the data.
263• Model uncertainty: In reliability analysis, the response
264function needs to be evaluated at given design points. The
265response function can be a finite element analysis (FEA)
266model or other simulation models. These simulation models
267will inevitably have some errors due to model form assump-
268tion and numerical approximations. There are also model un-
269certainties in the models of random variables and stochastic
270processes.
271

272The data uncertainty and model uncertainties in random varia-
273bles and stochastic processes are the focus of this paper.

2743.2 Uncertainty Modeling of Random Variables. For some
275random variables, the collected data are too limited to precisely de-
276termine the distribution type or parameters of the random variables.
277In this situation, the Bayesian approach can be used to represent
278the epistemic uncertainty in both the random variable parameters
279and distribution-type. For a random variable X, the joint probability
280density function (PDF) of its parameters θ under given observations
281x ¼ ½x1; x2; : : : ; xob� is updated with the Bayes’ theorem as
282follows:

pðθjxÞ ¼ LðxjθÞπðθÞR
LðxjθÞπðθÞdθ ð9Þ

283where θ ¼ ½θ1; θ2; : : : ; θnr� is a vector of parameters of the random
284variable; LðxjθÞ is the likelihood function of observations x given
285parameters θ; πðθÞ is the prior distribution; and pðθjxÞ is the up-
286dated posterior distribution of θ.
287Directly solving the above equation is difficult due to the
288involvement of the multidimensional integration. Instead, Markov
289chain Monte Carlo (MCMC) sampling is commonly employed to
290evaluate Eq. (9).

2913.3 Uncertainty Modeling of Stochastic Process Loads

2923.3.1 Time-Series Model for Stochastic Loading. The com-
293monly used approaches for the stochastic modeling of loading time
294histories assume that the mean, standard deviation, and correlation
295functions or frequency spectrum of the loading are exactly known.
296With the known information, the stochastic loads are simulated us-
297ing spectral representation methods, such as the Karhunen–Loeve
298(KL) expansion method, polynomial chaos expansion (PCE), the
299orthogonal series expansion (OSE) method, and the EOLE method.
300In engineering applications, it is quite common that we have
301only one trajectory or just a few trajectories of the stochastic loads.
302With limited data, the KL-expansion-based method may not be
303applicable since KL expansion is based on exact correlation, mean,
304and variance functions. In this situation, the data-driven approach is
305more promising. As a data driven approach, the time series analysis
306has been widely used in many areas for the modeling of stochastic
307loading and perform prediction based on currently available data.
308The commonly used regression techniques for time series model
309include autoregressive (AR) model, moving average (MA) model,
310and autoregressive moving average (ARMA) model, which are suit-
311able for stationary stochastic processes. When the stochastic process
312is nonstationary, the autoregressive integrated moving average
313(ARIMA) model is employed [40]. In this work, we mainly focus
314on stationary stochastic processes and use the ARMA model. An
315ARMA (p, q) time series model is given by
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YjðtiÞ ¼ φð0Þ
j þ φð1Þ

j Yjðti−1Þ þ φð2Þ
j Yjðti−2Þþ · · · þφðpÞ

j Yjðti−pÞ
þ εðtiÞ − ωð1Þ

j εðti−1Þ− · · · −ωðqÞ
j εðti−qÞ ð10Þ

316 in which εðtiÞ; εðti−1Þ; : : : ; εðti−qÞ is a sequence of independent and
317 identically distributed random variables with zero mean and finite

318 standard deviation σε; φ
ð0Þ
j , φð1Þ

j ; : : : ;φðpÞ
j , and ωð1Þ

j ; : : : ;ωðqÞ
j are

319 the coefficients of the time-series model YjðtÞ, p is the order of
320 the AR model, and q is the order of the MA model. The random
321 variables, εðtiÞ; εðti−1Þ; : : : ; εðti−qÞ, can follow Weibull, normal, or
322 other distributions. In the following discussion, unless otherwise
323 mentioned, εðtiÞ; εðti−1Þ; : : : ; εðti−qÞ are assumed to follow normal
324 distributions.
325 In order to predict the future realization of a stochastic process

326 based on available data, the coefficients φð0Þ
j , φð1Þ

j ; : : : ;φðpÞ
j , and

327 ωð1Þ
j ; : : : ;ωðqÞ

j must be identified first. There are many methods
328 available to estimate these coefficients, such as the Yule–Walker

329method, Burg method, covariance method, and the maximum-
330likelihood estimation method [40]. Next, we will discuss how
331the time-series model is applied in time-dependent reliability
332analysis.

3333.3.2 Application of Time-Series Model in Time-Dependent
334Reliability Analysis. In order to perform time-dependent reliability
335analysis for problems with time-series models using the method re-
336viewed in Sec. 2.2, the mean, standard deviation, and the autocor-
337relation function of time-series models need to be obtained first.
338The mean value of the ARMA (p, q) model is given by

μYj
¼ φð0Þ

j

1 − φð1Þ
j − · · · −φðpÞ

j

ð11Þ

339340After subtracting the mean of YjðtÞ at every time instant, YjðtÞ is
341transformed into a zero-mean time-series model. The autocovar-
342iance of the zero mean YjðtÞ is computed based on the coefficients
343as follows [41]:

γk − φð1Þ
j γk−1− · · · −φðpÞ

j γk−p ¼

8>>><
>>>:

ð1 − ωð1Þ
j ψ1− · · · −ωðqÞ

j ψqÞσ2
ε for k ¼ 0

−ðωðkÞ
j þ ωðkþ1Þ

j ψ1þ · · · þωðqÞ
j ψq−kÞσ2

ε for k ¼ 1; : : : ; q

0 for k ≥ qþ 1

ð12Þ

344 where γi, i ¼ 0; 1; : : : ;∞ are the autocovariance of YjðtÞ between
345 time instant t and tþ i; ψ1; : : : ;ψq are obtained from φð1Þ

j ; : : : ;φðpÞ
j

346 and ωð1Þ
j ; : : : ;ωðqÞ

j by equating the coefficients of Bi in the following
347 equation [41]:

ωqðBÞ
φpðBÞ

¼ 1 − ωð1Þ
j B − ωð2Þ

j B2 − ωðqÞ
j Bq

1 − φð1Þ
j B − φð2Þ

j B2 − φðpÞ
j Bp

¼ ψðBÞ ¼ ð1þ ψ1Bþ ψ2B2þ · · · Þ ð13Þ
348349 Based on Eq. (12), the autocorrelation ρYj

ðt; tþ kÞ of YjðtÞ can
350 be obtained by dividing the autocovariance function by γ0. In the
351 following part, for the sake of illustration, we use ρYj

ðkÞ to denote
352 ρYj

ðt; tþ kÞ. For k ≤ q, the autocorrelation ρYj
ðkÞ is estimated

353 based on Eq. (12). For k > q, the autocorrelation ρYj
ðkÞ is estimated

354 iteratively as follows:

ρYj
ðkÞ ¼ φð1Þ

j ρYj
ðk − 1Þ þ φð2Þ

j ρYj
ðk − 2Þþ · · · þφðpÞ

j ρYj
ðk − pÞ

ð14Þ
355356 With the mean (Eq. (11)), standard deviation (Eq. (12)), and au-
357 tocorrelation (Eqs. (12) and (14)), the stochastic loading modeled
358 by the ARMA model can then be applied in Sec. 2.2 for time-
359 dependent reliability analysis.

360 3.3.3 Bayesian Time-Series Model. The commonly used ap-
361 proach to model the stochastic process based on the available data
362 is to construct a time-series model (such as ARMA) with determin-
363 istic coefficients and a noise term. This approach does not capture
364 the epistemic uncertainty due to limited data. By incorporating the
365 Bayesian framework into time-series modeling, a Bayesian time-
366 series modeling technique was developed by Ling and Mahadevan
367 [42]. In the Bayesian time-series model, both model coefficients and
368 noise terms are assumed to be uncertain instead of deterministic.
369 Assume that we have nts trajectories of a stochastic loading YkðtÞ
370 available, denote these trajectories as Di

k, i ¼ 1; 2; : : : ; nts, where
371 Di

k ¼ ½Yi
kðt1Þ;Yi

kðt2Þ; : : : ;Yi
kðtntÞ� and Yi

kðtjÞ, j ¼ 1; 2; : : : ; nt,
372 are the ith trajectory of the stochastic loading YkðtÞ at time instant
373 tj. For the given values of φk, ωk, the standard deviation σε is com-

374puted by comparing the model prediction and the observed data Dk
375as follows [42]:

σ2
ε ¼

1

ntsðnt − p − 1Þ
Xnts
j¼1

Xnt
i¼pþ1

½Yj
kðtiÞ − ŶkðtiÞ�2 ð15Þ

376where nt is the number of observations and ŶkðtiÞ is the estimation
377of the time-series model under given coefficients of φk and ωk.
378The likelihood, LðDkjφk;ωkÞ, that we have the observed data
379Dk ¼ ½D1

k; : : : ;D
nts
k � under the condition that the coefficients of

380the time-series model are φk and ωk, which is given by

LðDkjφk;ωkÞ ¼ Π
nts

i¼1
LðDi

kjφk;ωkÞ ð16Þ

381where

LðDi
kjφk;ωkÞ ¼ LðYi

kðt1Þ;Yi
kðt2Þ; : : : ;Yi

kðtntÞjφk;ωkÞ ð17Þ
382383Equation (17) can be further written as

LðYi
kðt1Þ;Yi

kðt2Þ; : : : ;Yi
kðtntÞjφk;ωkÞ

¼ LðYi
kðtntÞjφk;ωk;Y−tntÞLðY−tnt jφk;ωkÞ

≈ ð2πσ2
εÞ

−ðnt−pÞ
2 exp

�
− Xnt

t¼pþ1

ε2t =ð2σ2
εÞ
�

ð18Þ

εt ¼ Yi
kðtntÞ −

Xp
j¼1

φðjÞ
k Yi

kðtnt−jÞ −
Xq
j¼1

ωðjÞ
k εnt−j ð19Þ

384where Y−tnt ¼ ½Yi
kðt1Þ;Yi

kðt2Þ; : : : ;Yi
kðttnt−1Þ� is the stochastic

385loading at time instants before tnt; and e1; e2; : : : ; ent are computed
386iteratively using Eq. (19).
387Note that the likelihood given in Eq. (18) is usually very small.
388To make the computation of Eq. (18) possible, a logarithm operator
389can be used. Then, the joint distribution of the coefficients φk and
390ωk under given observationsDk is updated using Bayes’ theorem as
391follows:
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pðφk;ωkjDkÞ ¼
LðDkjφk;ωkÞπðφkÞπðωkÞR

· · ·
RR
LðDkjφk;ωkÞπðφkÞπðωkÞdφkdωk

ð20Þ

392393 Similar to Eq. (9), where we obtained the posterior distributions
394 of parameters of random variables, we also use MCMC to generate
395 samples for φk and ωk based on the following proportional
396 relationship:

pðφk;ωkjDkÞ ∝ LðDkjφk;ωkÞπðφkÞπðωkÞ ð21Þ
397398 In this paper, the slice sampling approach [43] is used to perform
399 MCMC. When no information is available about the prior distribu-
400 tions of the time-series coefficients, they can be assumed to follow
401 uniform distributions. Since random samples of the integrand in
402 MCMC methods are correlated, in order to retain the correlation
403 between these parameters, samples generated from MCMC will
404 be recorded for the UQ in the following steps.
405 In the next section, the effects of uncertainty in random variables
406 and stochastic loading models on the result of time-dependent reli-
407 ability analysis will be investigated.

408 3.4 UQ of Time-Dependent Reliability Analysis.

409 3.4.1 Statement of Problem. As discussed in Sec. 3.1, limited
410 data result in epistemic uncertainty in random variable parameters θ
411 and time-series model coefficients (φ and ω). These epistemic un-
412 certainties are represented as probability distributions in the Baye-
413 sian approach, which results in two levels of uncertainty in time-
414 dependent reliability analysis. In the outer level are the epistemic
415 variables, i.e., the distribution parameters θ of the random variables
416 and the ARMA model coefficients, φ and ω, of the stochastic load-
417 ing. The inner-level uncertainties are the aleatory uncertainties. For
418 any given realization of θ, φ, and ω, the time-dependent failure
419 probability estimate pfðt0; teÞjθ;φ;ω can be obtained by consider-
420 ing the aleatory variability. Since θ, φ, and ω are all random, as
421 shown in Fig. 1, the UQ is to obtain the distribution of
422 pfðt0; teÞ by propagating the uncertainty in θ, φ, and ω through
423 time-dependent reliability analysis.
424 A straightforward way is to perform time-dependent reliability
425 analysis for each sample of θ, φ, and ω. Since time-dependent
426 reliability analysis needs to evaluate the limit-state function, this
427 straightforward way is computationally prohibitive. Another pos-
428 sible way is to build a surrogate model for pfðt0; teÞ as a function
429 of θ, φ, and ω. Figure 2 shows the general procedure for the sur-
430 rogate-model-based method.
431 However, this surrogate model method has two main limitations:
432 (1) the surrogate model can be constructed for the failure probability
433 only within a specific time interval, such as pfðt0; teÞ. If we want to
434 quantify the uncertainty in pfðt0; tÞ, where t < te, another surrogate
435 model needs to be built for pfðt0; tÞ. (2) The dimension of the
436 direct surrogate model is high. Assuming that there arem stochastic

437processes with orders of p and q (dimensions of φ and ω) for each
438process, and n random variables with nr (i.e., dimension of θ)
439parameters for each random variable, the dimension of the direct
440surrogate model, p̂fðθ;φ;ωÞ, will be m × ð1þ pþ qÞ þ n × nr.
441Accurately constructing p̂fðθ;φ;ωÞ is computationally very
442expensive, since time-dependent reliability analysis needs to be per-
443formed at each training point. In order to reduce the computational
444effort, in this paper, we propose an efficient approach for the UQ
445in time-dependent reliability analysis.

4463.4.2 UQ Based on Conditional Reliability Index. According
447to the procedure given in Sec. 2, an essential step in time-dependent
448reliability analysis is the search of time-instantaneous MPP under
449the given values of θ, φ, and ω. Since the search of MPP for all
450possible realizations of θ, φ, and ω is very computationally expen-
451sive; in the subsequent sections, we discuss how to efficiently get
452the MPP under the given values of θ, φ, and ω. Based on that, we
453quantify the uncertainty in time-dependent reliability analysis.
4543.4.2.1 MPP search under given values of θ, φ, andω We first
455classify the random variables and stochastic processes into two
456groups as follows:

457• Group one: Random variables that are exactly modeled
458(i.e., quantities with only aleatory uncertainty). We denote
459them as Xa.
460• Group two: Random variables that have uncertainty in their
461distribution parameters, and all stochastic processes (i.
462e., quantities with both aleatory and epistemic uncertainty).
463The modeling of the second group of variables has been dis-
464cussed in Secs. 3.2 and 3.3. Here, we represent them as ~X
465and Yðφ;ωÞðtÞ.
466

467In the definition of the “group two” variables, for any given
468value of θ, there is a distribution ofX. Similarly, there is a stochastic
469process model YðtÞ for any given values of φ and ω. After the clas-
470sification of random variables and stochastic processes, the time-
471instantaneous probability of failure at t0 becomes

pfðt0Þ ¼ PrfGðt0Þ ¼ gðXa; ~X;Yðφ;ωÞðt0ÞÞ > eg ð22Þ

472473For any given values ~X ¼ ~x and Yðφ;ωÞðt0Þ ¼ y, pfðt0Þj ~x; y is
474given by

pfðt0Þj ~x; y ¼ PrfGðt0Þ ¼ gðXa; ~x; yÞ > eg ð23Þ

475476The above conditional probability of failure is a time-
477independent problem with only aleatory variables Xa. The MPP
478of pfðt0Þj ~x; y is obtained by solving the following optimization
479problem:

�
min
uXa

βCð ~x; yÞ ¼ kuXak
gðTðuXaÞ; ~x; yÞ ¼ e

ð24Þ

480where βCð ~x; yÞ is the conditional reliability index and
481Φð−βCð ~x; yÞÞ ¼ pfðt0Þj ~x; y is the conditional probability of
482failure.
483Assume that the PDF of ~X is known to be fðxÞ and the PDF of
484Yðφ;ωÞðtÞ at t0 is fðyÞ, the unconditional pfðt0Þ is given by

pfðt0Þ ¼
Z Z

ðpfðt0Þjx; yÞfðxÞfðyÞdxdy ð25Þ

485486Since fðxÞ and fðyÞ vary with values of θ, φ, and ω, directly
487using the above equation to obtain the MPP under any given values
488of θ, φ, and ω is still computationally intensive. To improve the
489efficiency, following the same principle in [44], we introduce a
490new random variable Ua ∼ Nð0; 1Þ. The new random variable
491has the following property:

Φðupf
Þ ¼ PrfUa < upf

g ¼ pfðt0Þjx; y ð26Þ

F1:1 Fig. 1 UQ of time-dependent reliability analysis

F2:1 Fig. 2 General procedure of the direct surrogate-model
F2:2 method
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492 and

upf
¼ Φ−1ðpfðt0Þjx; yÞ ð27Þ

493494 Substitute Eq. (27) into Eq. (25), we have

pfðt0Þ ¼
Z Z Z

Ua≤upf
ϕðuaÞduafðxÞfðyÞdxdy ð28Þ

495496 The above equation can be rewritten as

pfðt0Þ ¼ PrfUa ≤ upf
ð ~X;Yðφ;ωÞðt0ÞÞg

¼ PrfUa − upf
ð ~X;Yðφ;ωÞðt0ÞÞ ≤ 0g ð29Þ

497498 Combining Eqs. (27) and (29) yields

pfðt0Þ ¼ PrfUa − Φ−1ðpfðt0Þj ~X;Yðφ;ωÞðt0ÞÞ ≤ 0g ð30Þ

499500 The MPP of the above equation is obtained as follows:8><
>:

min
u

βðt0Þ ¼ kuk
u ¼ ½ua;u ~X;uYðφ;ωÞðt0Þ�
ΦðuaÞ ¼ pfðt0ÞjTðu ~XÞ;TðuYðφ;ωÞðt0ÞÞ

ð31Þ

501502 Since
503 pfðt0ÞjTðu ~XÞ;TðuYðφ;ωÞðt0ÞÞ ¼ Φð−βCjTðu ~XÞ;TðuYðφ;ωÞðt0ÞÞÞ,
504 Eq. (31) is rewritten as8><

>:
min
u

βðt0Þ ¼ kuk
u ¼ ½ua;u ~X;uYðφ;ωÞðt0Þ�
ua ¼ −βCjTðu ~XÞ;TðuYðφ;ωÞðt0ÞÞ

ð32Þ

505506 Equation (32) indicates that βCjTðu ~XÞ;TðuYðφ;ωÞðt0ÞÞ ¼ βCð ~x; yÞ
507 needs to be evaluated during the MPP search. As shown in Eq. (24),
508 the evaluation of βCjTðuXðθÞ Þ;TðuYðφ;ωÞðt0ÞÞ will call the original
509 limit-state function. To reduce the function evaluations of the
510 limit-state function, we construct a surrogate model of β̂Cð ~x; yÞ.
511 In this paper, the Kriging method [45,46] is used to build the sur-
512 rogate model. After the surrogate model is constructed, solving
513 Eqs. (31) and (32) does not need to call the original limit-state func-
514 tion anymore. The advantage of building a surrogate model for the
515 conditional reliability index is that the surrogate model β̂Cð ~x; yÞ is
516 independent from the distributions of ~X and Yðφ;ωÞðt0Þ. When the
517 distributions of ~X and Yðφ;ωÞðt0Þ change, the surrogate model is still
518 applicable. Assume that there arem stochastic processes with orders
519 of p and q for each process and n random variables with nr param-
520 eters for each random variable, the dimension of the surrogate
521 model is mþ n.
522 Substituting Eq. (24) into (32), we have(

min βðt0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
Xa þ u2

~X
þ u2

Yðφ;ωÞðt0Þ
q

gðTðuXaÞ;Tðu ~XÞ;TðuYðφ;ωÞðt0ÞÞÞ ¼ e
ð33Þ

523524 This implies that the βðt0Þ and u�
Yðφ;ωÞðt0Þ obtained from Eq. (32)

525 are the same as those obtained from the MPP search of limit-state
526 function Gðt0Þ ¼ gðXa; ~X;Yðφ;ωÞðt0ÞÞ. We therefore can use them
527 to perform the time-dependent reliability analysis under given val-
528 ues of θ, φ, and ω. Note that solving Eq. (32) is based on the sur-
529 rogate model of conditional reliability index (i.e., β̂Cð ~x; yÞ). The
530 accuracy of the surrogate model will therefore affect the accuracy
531 of the obtained MPP point u�

Yðφ;ωÞðt0Þ. The accuracy of the surrogate
532 model can be improved by adding more training points. In order to
533 guarantee the accuracy of u�

Yðφ;ωÞðt0Þ, the mean square error (MSE) of
534 the surrogate model β̂Cð ~x; yÞ needs to be checked during the con-
535 struction of surrogate model.
536 3.4.2.2 Time-dependent reliability analysis using βðt0Þ and
537 u�

Yðφ;ωÞðt0Þ Before applying βðt0Þ and u
�
Yðφ;ωÞðt0Þ to the time-dependent

538reliability analysis, we perform the following transformation of
539Eq. (5):

ρLðt0; tÞ ¼ αXαT
X þ αYρðt0; tÞαT

Y

¼ αXαT
X þ αYαT

Y þ αYρðt0; tÞαT
Y − αYαT

Y

¼ 1þ 1

β2
ðu�

Yρðt0; tÞu�T
Y − u�

Yu
�T
Y Þ ð34Þ

540where the elements of ρðt0; tÞ are given in Eq. (6), which are ob-
541tained based on the correlation analysis of time-series models under
542given values of φ and ω.
543With βðt0Þ, u�

Yðφ;ωÞðt0Þ, and Eq. (34), the correlation matrix given
544in Eq. (7) is obtained. Using those results, the time-dependent prob-
545ability of failure is estimated using the method presented in Sec. 2.
546For each sample of θ, φ andω generated fromMCMC, based on the
547surrogate model of βC, the corresponding βðt0Þ and u�

Yðφ;ωÞðt0Þ
548are obtained from Eq. (32). The associated time-dependent proba-
549bility of failure is then computed, and the uncertainty in the time-
550dependent reliability analysis is quantified.

5513.5 Error Analysis. There are basically four approximations
552implemented in the proposed framework for UQ in time-dependent
553reliability analysis: (1) linearization of the limit state function in
554FORM, (2) the sampling approach used to estimate the probability
555of failure based on stochastic expansion, (3) the surrogate model of
556conditional reliability index, and (4) the fast integration method.
557The error in the first approximation is problem-dependent, af-
558fected by the nonlinearity of the response function at the MPP.
559It can be quantified only by comparing FORMwith the MCS result.
560The proposed method is therefore mainly for problems in which
561FORM is accurate for time-instantaneous reliability analysis. The
562error in the second approximation comes from two sources, namely,
563expansion of stochastic process and sampling statistical uncertainty.
564The error due to the expansion of stochastic process is negligible,
565since a large number of expansion terms are used. The statistical
566uncertainty is quantified by

COVpf
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − p̂fÞ=p̂f=N

q
ð35Þ

567where p̂f is the failure probability estimate obtained from the
568sampling-based method and N is the number of samples used.
569Equation (35) shows that in order to reduce the error introduced by
570the statistical uncertainty, N therefore needs to be chosen as a large
571number.
572The error of the third approximation comes from the prediction
573uncertainty of the surrogate model. As discussed in the last section,
574the accuracy of the surrogate model needs to be checked to reduce
575the effects of surrogate-model uncertainty on the final time-
576dependent reliability estimates. In terms of the fourth approximation
577(i.e., fast integration), it has been shown in Eqs. (31)–(33) that the
578MPP obtained from the fast integration is the same as that obtained
579from the original optimization model. The fast integration does not
580introduce extra error into the analysis.
581Based on the above error analysis, it is concluded that the value
582of N should be large, and the MSE of the conditional reliability
583index surrogate model needs to be checked to guarantee the accu-
584racy of the UQ in time-dependent reliability analysis.

5853.6 Numerical Procedure. The overall procedure of UQ in
586time-dependent reliability analysis due to limited data is shown
587in Fig. 3 and summarized as follows:

588• Module one: UQ of ~X and YðtÞ using the Bayesian approach.
589Posterior distributions and samples of θ, φ, and ω are
590obtained from MCMC sampling.
591• Module two: Construction of the surrogate model β̂Cð ~x; yÞ.
592Time-independent reliability analyses are performed at spe-
593cific training points of ~x and y using Eq. (24). The training
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594 points are generated using the Hammersley sampling ap-
595 proach [47]. Training points are progressively added until
596 the convergence criterion of MSE for β̂Cð ~x; yÞ is satisfied.
597 • Module three: UQ of pfðt0; teÞ. For samples generated from
598 module one, βðt0Þ and u�

Yðφ;ωÞðt0Þ are obtained using Eq. (32)
599 based on the surrogate model built in module two. pfðt0; teÞ
600 is then approximated using the method presented in Sec. 3.

601 4 Numerical Examples
602 In this section, two examples, which include a mathematical ex-
603 ample and an engineering application example, are used to demon-
604 strate the proposed UQ framework. Each example is solved using
605 three methods given as follows:

606 • “True” pf: The probability of failure obtained from Monte
607 Carlo simulation (MCS), which is performed based on the
608 assumed “true” random variable distributions and time-series
609 models of stochastic loadings.
610 • Only aleatory: Random variables and time-series models are
611 reconstructed from observations. Based on the constructed
612 deterministic time-series models and random variables, the
613 time-dependent probability of failure is estimated without
614 considering epistemic uncertainty.
615 • Aleatory + epistemic: The proposed UQ framework for time-
616 dependent reliability analysis is used to consider the effect of
617 limited data.

618 4.1 Mathematical Example. Consider the function

gðtÞ ¼ X1 þ X2 − Y1ðtÞ ð36Þ
619 where X1 ∼ Nð70; 102Þ and X2 ∼ Nð65; 52Þ are random variables
620 and Y1ðtÞ is a stochastic process given by

Y1ðtiÞ ¼ φð0Þ þ φð1ÞYðti−1Þ þ φð2ÞYðti−2Þ þ φð3ÞYðti−3Þ
þ εðtiÞ þ ωð1Þεðti−1Þ þ ωð2Þεðti−2Þ ð37Þ

621where φð0Þ ¼ 60; φð1Þ ¼ 0.7231; φð2Þ ¼ −0.1256; φð3Þ ¼ 0.0262;
622ωð1Þ ¼ 0.3; ωð2Þ ¼ 0.12; and ε ∼ Nð0; 102Þ.
623The following time-dependent probability of failure needs to be
624evaluated:

pfðt0; teÞ ¼ PrfgðτÞ ¼ X1 þ X2 − Y1ðτÞ > 0; ∃τ ∈ ½t0; te�g ð38Þ
625where t0 ¼ 0 and te ¼ 30.
626Suppose that we do not know the exact models of Y1ðtÞ and X2.
627Instead, they are reconstructed based on available experimental data
628as shown in Fig. 4. One hundred cycles of Y1ðtÞ and 100 samples
629of X2 are assumed to be collected and plotted, based on which Y1ðtÞ
630and X2 are reconstructed. When the data of Y1ðtÞ and X2 are
631collected, to account for noise in the sensors and variability in
632the experimental conditions, noise terms εY ∼ Nð0; 12Þ and εX ∼
633Nð0; 0.52Þ are added to the data of Y1ðtÞ and X2, respectively.
634We then perform time-dependent reliability analysis using MCS;
635the method considers only aleatory uncertainty, and the proposed
636method. In the proposed method, N ¼ 2 × 106. It means that the
637COVpf

is less than 0.005, since the probability of failure is close
638to 0.1. We also checked the MSE of the conditional reliability index
639surrogate model as shown in Fig. 5. It shows that the uncertainty in
640the surrogate model prediction is negligible with six training points.
641Figure 6(a) presents the updated posterior distributions of pfðt0; teÞ
642up to 30 cycles obtained from the proposed method. Figure 6(b)
643shows the comparison of pfð0; 30Þ obtained from the three meth-
644ods. The results show that the proposed method is able to effectively
645quantify the uncertainty in pfðt0; teÞ. With limited experimental
646data, there exists significant uncertainty in the result of time-
647dependent reliability analysis.
648In order to investigate how the number of experimental data
649affects the uncertainty in the time-dependent reliability prediction
650as well as the ability of the proposed method to update the results
651of time-dependent reliability analysis, we increase the number of
652cycles of stochastic load history data from 100 to 200 and 500.
653We then update the time-dependent probability of failure distribu-
654tion using the proposed UQ framework. Figure 7 shows the com-
655parison of posterior distributions of pfð0; 30Þ.

F3:1 Fig. 3 Overall framework of UQ in time-dependent reliability analysis
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656 The results show that the uncertainty of time-dependent reliabil-
657 ity analysis is reduced when new observations are collected. The
658 effectiveness of the proposed method in quantifying the uncertainty
659 in reliability prediction is thus demonstrated. Table 1 presents the
660 number of function (NOF) evaluations of the original limit-state
661 function for the case of 100 cycles of stochastic load history
662 and 100 samples of random variables. It shows that the NOF
663 evaluations of the proposed method is slightly larger than the only
664 aleatory method (which considers only aleatory uncertainty). This
665 phenomenon is partly due to the linear property of the problem,
666 since the surrogate modeling is easier for the linear problem. Con-
667 sidering that the proposed UQ method is able to account for both
668 epistemic and aleatory uncertainty, the proposed method is still very
669 efficient. In the reliability analysis part, the MPP is obtained using
670 the fmincon in matlab to solve the optimization model given
671 in Eq. (24).

672 4.2 Beam Subjected to Stochastic Loading History. A
673 beam subjected to a stochastic loading history FðtÞ is shown in
674 Fig. 8. This example is modified from [11].
675 The limit-state function of the beam example is given by

gðX;YðtÞÞ ¼
�
FðtÞLb

4
þ ρsta0b0L2

b

8

�
− 1

4
a0b20σu ð39Þ

676 where σu is the ultimate strength; ρst is the density; and L is the
677 length of the beam. Table 2 gives the parameters and random var-
678 iables of this example.

679The historical data of FðtÞ over the past 200 cycles are assumed
680to be available. We want to predict the reliability of the beam in the
681future 50 cycles. The time-dependent probability of failure in the
682future 50 cycles is given by

pfðt0; teÞ ¼ PrfgðX;YðτÞÞ > 0; ∃τ ∈ ½t0; te�g ð40Þ

683in which t0 ¼ 0 and te ¼ 50.
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684Assume that the historical data of FðtÞ in the past 200 cycles are
685generated from an underlying time-series model YðtÞ and
686FðtÞ ¼ 43Y1ðtÞ. Y1ðtÞ is then given by

Y1ðtiÞ ¼ φð0Þ þ φð1ÞYðti−1Þ þ φð2ÞYðti−2Þ þ φð3ÞYðti−3Þ
þ εðtiÞ þ ωð1Þεðti−1Þ þ ωð2Þεðti−2Þ ð41Þ

687inwhichφð0Þ ¼ 70;φð1Þ ¼ 0.7315;φð2Þ ¼ −0.1421;φð3Þ ¼ 0.0612;
688ωð1Þ ¼ 0.34; ωð2Þ ¼ 0.13; and ε ∼ Nð0; 122Þ.
689Similarly, we assume that the parameters of σu are unknown and
690they need to be estimated from the experimental data. Assume that
691200 samples of σu are collected. The noise terms from sensor
692and experimental variability for YðtÞ and σu are εY ∼ Nð0; 1.22Þ
693and εσ ∼ Nð0; ð1.1 × 106Þ2Þ. Figure 9 shows the historical and ex-
694perimental data of FðtÞ and σu.
695We then perform time-dependent reliability analysis for the
696beam based on the available data. Similar to Example 1, we checked
697the COVpf

and the MSE (as shown in Fig. 10) of the conditional
698reliability-index surrogate model. The COVpf

is also less than
6990.005, and the MSE of the surrogate model prediction is negligible
700(less than 0.2% of the mean prediction) with six training points.
701Figure 11(a) shows the updated posterior distributions
702of pfðt0; teÞ obtained from the proposed method up to 50 cycles.
703Figure 11(b) presents the comparison of pfð0; 50Þ obtained from
704MCS, the proposed method, and the only aleatory method. Table 3
705gives the NOF evaluations of the original limit-state function for the
706case of 200 cycles of stochastic load and 200 samples of random
707variables. It requires around 69 function evaluations per training
708point in average.
709The results indicate that there is a large uncertainty in the pre-
710diction of time-dependent probability of failure with limited data
711on the stochastic loading. The NOF evaluations of the proposed
712method is about twice that of the method, which considers only
713the aleatory uncertainty. Since the proposed method accounts for
714both epistemic and aleatory uncertainties while the aleatory method
715considers only the aleatory uncertainty, the proposed method is still
716very efficient. To investigate the effects of the number of experimen-
717tal data, similar to Example 1, we increase the numbers of cycles of
718collected data from 200 to 1000 and 2000 for FðtÞ.
719With more observations collected, we update the posterior dis-
720tributions of pfðt0; teÞ using the proposed method. Figure 12 shows
721the updated posterior distributions of pfð0; 50Þ.
722The results imply that the uncertainty of time-dependent prob-
723ability of failure prediction has been reduced slightly with more
724observations of the stochastic load history. The improvement, how-
725ever, is not significant. We then collect more experimental data for
726the ultimate strength σu. The number of observations of σu is in-
727creased from 200 to 2000. The number of observations of FðtÞ
728is still 2000. Figure 13 shows the updated posterior distribution
729of time-dependent probability of failure.
730Figure 13 shows that the uncertainty in the reliability prediction
731is reduced with more observations. Other conclusions similar to the

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

30

35

40

45

Time-dependent probability of failure

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n 

(P
D

F)

100 Cycles
200 Cycles
500 Cycles
"True"  pf

0.098 0.1 0.102
0

20

40

60

Only aleatory
 (200 Cycles)

Only aleatory (100 Cycles)

Only aleatory
 (500 Cycles)

F7:1 Fig. 7 Comparison of posterior distributions of pf �0;30�

Table 1 Comparison of the NOF evaluations

T1:1 Method Only aleatory Aleatory + epistemic

T1:2 NOF 70 106

A

Lb/2
F

A-A 

a0

b0

Lb

F8:1 Fig. 8 Beam subjected to a concentrated stochastic load

Table 2 Variables and parameters of the beam example

T2:1 Variable Mean Standard deviation Distribution

T2:2 a0 0.2 m 0.005 m Normal
T2:3 b0 0.042 m 2 × 10−3 m Normal
T2:4 σu 2.4 × 108 Pa 1.1 × 107 Pa Normal
T2:5 FðtÞ Stochastic loading constructed from historical data
T2:6 Lb 6 m 0 Deterministic
T2:7 ρst 78.5 kN=m3 0 Deterministic

0 50 100 150 200
7500

8000

8500

9000

9500

Cycles

 F
(t

)

2.1 2.2

σ
2.3 2.4 2.5 2.6 2.7

x 108

0

2

4

6

8

10

12

u

F
re

qu
en

cy

F9:1 Fig. 9 Historical and experimental data of F �t� and σu

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems
Part B: Mechanical Engineering

Vol. 0 / XXXXXX-9



732first example can also be drawn. Thus, the proposed method
733can quantify the uncertainty in time-dependent reliability analysis
734effectively.

7355 Conclusion
736Time-dependent reliability gives the degradation of reliability
737over time. It is directly related to safety inspection, maintenance
738scheduling, and lifecycle-cost optimization. The stochastic loads
739and random variables are assumed to be exactly known in the tradi-
740tional analysis methods, i.e., only aleatory uncertainty (natural vari-
741ability) is considered. In practical applications, it is common that the
742collected data or observations are too limited to accurately model
743the stochastic loads and random variables. Accounting for both un-
744certainties due to limited data and natural variability is a challenging
745and meaningful issue in time-dependent reliability analysis.
746A UQ framework is proposed in this paper for time-dependent
747reliability analysis by incorporating both epistemic uncertainty
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748 (due to limited data) and aleatory uncertainty. The random variable
749 distributions and stochastic loading history models are constructed
750 based on collected observations. The Bayesian approach is used to
751 quantify the epistemic uncertainty in the modeling of stochastic
752 loading and random variables due to limited data. Through the
753 construction of a surrogate model for the time-instantaneous condi-
754 tional reliability index, the effects of epistemic uncertainty due to
755 limited data on the time-dependent reliability analysis are efficiently
756 quantified. A mathematical example and an engineering application
757 example demonstrated the effectiveness of the proposed method.
758 Since the time-dependent probability of failure is presented as a
759 probability distribution in the proposed method, how to guide de-
760 cision such as design optimization and inspection scheduling using
761 the obtained probability distribution is one of our future investiga-
762 tions. The proposed method currently focuses only on problems
763 with stationary stochastic process loadings. In the future, we will
764 also investigate Bayesian time-dependent reliability analysis
765 method for problems with nonstationary loading history. Applica-
766 tion of the proposed method to more complicated and sophisticated
767 engineering systems needs to be studied as well in the future.
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