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ABSTRACT 
Time-dependent system reliability is measured by the 

probability that the responses of a system do not exceed 
prescribed failure thresholds over a period of time. In this work, 
an efficient time-dependent reliability analysis method is 
developed for bivariate responses that are general functions of 
random variables and stochastic processes. The proposed 
method is based on single and joint upcrossing rates, which are 
calculated by the First Order Reliability Method (FORM). The 
method can efficiently produce accurate upcrossing rates for the 
systems with two responses. The upcrossing rates can then be 
used for system reliability predictions with two responses. As 
the general system reliability may be approximated with the 
results from reliability analyses for individual responses and 
bivariate responses, the proposed method can be extended to 
reliability analysis for general systems with more than two 
responses. Two examples, including a parallel system and a 
series system, are presented.  

1. INTRODUCTION 
Reliability is the ability that a component or system 

performs its intended function in routine circumstances for a 
given period of time. System reliability analysis is much more 
difficult than component reliability analysis. Many progresses 
have been made in system reliability analysis. For example, 
Ditlevsen [1] approximated the system reliability using a 
bounding formulas. Song and Kang [2] developed a matrix-
based system reliability (MSR) method, which can calculate the 
system reliability and system parameter sensitivities by a 

convenient matrix-based framework. Nguyen [3] later 
developed a reliability-based system design optimization 
method by using the MSR method. Mahadevan [4] and 
Ambartzumian [5] proposed a system reliability method using a 
standard normal multivariate cumulative distribution function 
(CDF); by employing the Morgan’s laws [6], the method 
expresses the system probability of failure as the intersection of 
a set of unions of subsystems. More system reliability analysis 
methods have been reported in [7]. 

Although reliability is defined for a period of time and is 
also a function of time, most of the aforementioned reliability 
methods are for time-invariant reliability which does not change 
over time. In many engineering applications, however, the limit-
state function changes over time, because time appears 
explicitly in the function or stochastic processes are part of the 
input variables, or both. Examples include function generator 
mechanisms [8, 9], bridges under stochastic loading [10, 11], 
hydrokinetic turbine system subjected to wave or river flow 
loading [12, 13], and vehicles running on stochastic road 
surfaces [14].  

Time-dependent reliability analysis is much more 
challenging than its time-independent counterpart. The most 
common time-dependent reliability method is the Rice formula 
[15, 16] developed in 1944 and is still widely used nowadays. 
There are many developments in time-dependent reliability in 
recent years. For instance, for component reliability problems, 
Mourelatos [17] employed the time-series modeling and 
importance sampling method to approximate the time-
dependent reliability. Andrieu et al. [18] proposed a PHI2 
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method for the time-dependent component reliability analysis 
for general problems with both random variables and stochastic 
processes. By using the Rice’s formula [15, 16], Du and Hu [12, 
19] developed a time-dependent reliability model for 
hydrokinetic turbine blades. Singh et al. [14] proposed the 
concept of composite limit-state function for time-dependent 
reliability analysis for a special group of problems. To improve 
the accuracy of time-dependent component reliability analysis, 
Du and Hu [20] proposed a joint upcrossing method based on 
the work of Madsen [21].  

Studies on time-dependent system reliability have also been 
reported. For example, a method was developed to estimate the 
joint first-passage probability of failure for systems under 
stochastic excitation [22]. An approximation method was 
reported for estimating the conditional first passage probability 
of systems under modulated white noise excitation [23]. By 
combining Monte Carlo simulations with the asymptotic 
extreme value theory, Radhika [24] proposed a reliability 
analysis method for nonlinear vibrating systems. Some of the 
above methods have been verified to have good accuracy for 
systems subjected to multiple Gaussian stationary stochastic 
processes. These methods, however, cannot be directly applied 
to general problems where the input variables of a limit-state 
function contain time, random variables, and non-stationary 
stochastic processes.  

In this work, a new time-dependent system reliability 
analysis method for bivariate responses is proposed for 
problems with nonlinear limit-state functions of time, random 
variables, and stochastic processes. The new method is an 
extension of the work in [22] and is based on the FORM and the 
Rice’s formula. The major development is the derivations of 
bivariate joint upcrossing rates, which can be used for 
estimating time-dependent system reliability for bivariate 
responses. Since the bivariate joint probabilities are the basis 
for general system reliability analysis when the reliability bound 
method is used, the proposed method can also be applied to 
general time-dependent system reliability analysis for general 
systems with more than two components. 

In Section 2, the background of time-dependent reliability 
is given. In Section 3, the upcrossing rate method is first 
introduced; equations are then derived for the bivariate joint 
upcrossing rates. The numerical procedure is summarized in 
Section 4, followed by two demonstration examples in Section 
5. Conclusions are presented in Section 6. 

2. TIME-DEPENDENT SYSTEM RELIABILITY  
In this work a component corresponds to a failure mode. 

Suppose there are r failure modes or r components. For 
component i, where 1,2, ,i r= … , let its limit-state function be 

( , ) )( ,i iG g t t= X Y , where 1 2[ , , , ]nX X X=X ⋯  is a vector of 

random variables, 1 2) [ ( ), ( ),( , ( )]mY t t Y tt Y=Y ⋯  is a vector of 

stochastic processes, and iG  is the response variable. t stands 

for time. 

The time-dependent probability of failure , 0( , )i sfp t t of 

component i over the time interval 0[ , ]st t
 
is defined by  

     { }0 0, ( , ) Pr ( , ( ), ) , [ , ]s i if i sp t t g t et t t tX Y= ∃> ∈     (1) 

in which ie  is the failure threshold, and Pr{ }⋅  stands for a 

probability.  
Let sΩ  be the safe region for a system. For a series 

system, 

  { }01
[ , ( ( ,)] ),( , , ]) [

r

s i i si
tt g t e t t t

=
Ω = ∩ ∀ ∈<X Y X Y    (2) 

in which “∩ ” stands for an intersection.  
For a parallel system, 

     { }01
[( , ( ( ,)] )( [ ]) , ,,

r

s i i si
tt g t e t t t

=
Ω = ∈<∪ ∀X Y X Y    (3) 

in which “∪ ” stands for a union.  
With above definitions, the time-dependent system 

reliability 0( , )s sR t t  is given by          

        0 0( , ) Pr{[ , ( , [ , ])] }s s s sR t t t t t t= ∈Ω ∀ ∈X Y      (4) 

The system reliability requires not only the component 
reliability but also joint probabilities up to an order of r. 
Evaluating a joint probability with a high order is extremely 
difficult. To make the system reliability easier, Ditlevsen [1] 
proposed a bound formula for a series system. In the bound 
formula, the system probability of failure is bounded by 
functions of component probability of failure , 0( , )f i sp t t  and  

bivariate probability of failure , 0( , )f ij sp t t . 

 As reviewed previously, many time-dependent reliability 
methods are available for , 0( , )f i sp t t . In this work, we develop 

a new method for the bivariate probability of failure 

, 0( , )f ij sp t t .  

3. TIME-DEPENDENT RELIABILITY FOR BIVARIATE 
RESPONSES 
For limit-state functions ( , ) )( ,i iG g t t= X Y  and 

( , ) )( ,j jG g t t= X Y , the joint time-dependent probability of 

failure is given by  

    
, 0

0

( , ) Pr{ ( ) )

) ) ,  and

, ( ,

( , ( , , [ ]}
f ij s i

j

i

j s

p t t g

g t t

e

eτ τ χ
χ χ

τ
>= ∩

> ∃ ∃ ∈

X Y

X Y
 (5) 

Eq. (5) is further transformed into [22] 

     

, 0 0

0

0

) ) ,

) ) ,

( , ) Pr{ ( , ( , [ , ]}

) )

) ) , an

Pr{ ( , ( , [ , ]}

Pr{ ( , ( ,

( , ( , [ ]d , }

f i i

j

i

j s i s

j s

i

j sj

p t t g t t

g t t

g

g t

e

e

e

te

X Y

X Y

X Y

X Y

χ χ χ
τ τ τ
χ χ

τ τ χ τ

> ∃

> ∃

> ∪
∈> ∃

= ∈

+ ∈

−
  (6) 

The first two terms on the right-hand side of Eq. (6) are 
component probabilities of failure, and Eq. (6) can be rewritten 
as 

    , 0 , 0 , 0 , 0( , ) ( , ) ( , ) ( , )f ij s f i s f j s f i j sp t t p t t p t t p t t∪= + −   (7) 

where 



 3 Copyright © 2015 by ASME 

   
, 0

0

( , ) Pr{ ( , ( ) )

) ) , an

,

( , ( , [ , ]}d
f i j s i

j

i

sj

p t t g

g t t

e

e

χ χ
τ χτ τ

∪ > ∪

∈> ∃

= X Y

X Y
 (8) 

which can be considered as the time-dependent probability of 
failure for a series system with components i and j. In the 
following sections, we first discuss the time-dependent 
component reliability. We then derive equations for time-
dependent joint probability, , 0( , )f i j sp t t∪ . 

3.1 Time-dependent component reliability analysis 
In this work, we employ the upcrossing rate method [18] to 

evaluate the time-dependent component probability of failure.  

3.1.1 Upcrossing rate method for time-dependent component 
reliability analysis 
For a general limit-state function 

)( ),( , ,k kG t k i jg rt o== X Y  with threshold ke , the time-

dependent probability of failure , 0( , )f k sp t t  is given by the 

upcrossing rate method as follows: 

      { }
0

, 0 0, ( )]( , ) 1 [1 exp ( )
st

f k s kf k t
p t t p t v t dt+= − − −∫     (9) 

in which ( )kv t+

 is the upcrossing rate of component k at time 

instant t, and 0, ( )f kp t  is the instantaneous probability of failure 

at 0t , given by 

           0 0, 0Pr{ ( , (( ) , }) )f kk kp t g t t e= >X Y         (10) 

An upcrossing event happens when the response variable 
Gk passes the threshold ek at time instant t from the safe region 

( )k kG t e<  to the failure region ( )k kG t t e+ ∆ > , where t∆  is 

an infinitesimally small time interval. ( )kv t+  is defined by 

0

),Pr{[ ( , ( ] [ ( , ( ]}
( ) lim

) ), )k k k k
k t

g t e g t t t e
v t

t t

t

X Y X Y+

∆ →

< ∆+ >∩ +∆
=

∆
    

(11) 
Eq. (9) is derived based on the assumption that all the 

upcrossings over 0[ , ]st t   are independent. Knowing ( )kv t+ , 

the component probability of failure, one can easily obtain 

, 0( , )f k sp t t  using Eq. (9).  

The other commonly used method is FORM. Next, we will 
discuss the linearization in FORM and its use in estimating 

( )kv t+ . We will also discuss how to derive equations for 

, 0( , )f i j sp t t∪  by using the linearization.  

3.1.2 Transformation of limit-state functions 
FORM transforms random variables X  and stochastic 

processes )(tY  into standard normal random variables 

( ) ( ), ( )t t= X YU U U . Then the limit-state function becomes 

       
( , ( , ( ( ), ( ( ),

( ( ,

) ) ) )

) ),
k k k

k

G g t t g T T t

k i or j

t

g t t

=
= =

= X YX Y U U

U
   (12) 

where ( )T ⋅  stands for the transforming operator.  

Then the MPP * * *( ) ( , ( ,))k t k i ort j== X Yu u u  is found with 

the following optimization model 

           
min ( )

subject to ( ) ,( , )k k

t

g t t e k i or j




= =

u
u

u
      (13) 

in which ⋅  stands for the determinant of a vector.  

After the limit-state function is linearized at the MPP, the 
failure event ( , ( ), ) ,k k kG g t t i oe k r j= > =X Y  becomes 

equivalent to the following event 
( ) ( ) ( ) ( ),T

k k kL k i ort t t t jβ == >Uα        (14) 

in which 

   *( ) ( ) ,k kt it k or jβ = =u             (15) 

* *( ) ( ) ( ) ,k k k k i o jt t t ru u == −α            (16) 

),(k kt i or jβ =
 
is called the Hasofer-Lind reliability index.  

Therefore, failure events given in Eqs. (1) and (8) become 

, 0 0,( , ) Pr{ ( ) ( ) ( ) ( ) [ , ]}T
f i s i i i sp t t L t tχ χ χ χβ χ= = > ∃ ∈Uα (17) 

and 

 
0

, 0

0

( ) ( ) ( ) [ , ]
( , ) Pr

( ) ( ) ( ) [

,

, , ]

T
i i s

f i j s T
j j s

t t
p t t

t t

χ χ β χ χ
τ τ β τ τ∪

 > ∈ =  ∪ > ∈ 

∃

 ∃ 

U

U

α

α

 (18) 

In the next section, we will discuss the method for the 
approximation of the bivariate probability , 0( , )f i j sp t t∪ . 

3.2 Time-dependent joint probability , 0( , )f i j sp t t∪    

3.2.1 Outcrossing rate method for time-dependent joint 
probability analysis 

We now derive equations for the bivariate joint probability 

, 0( , )f i j sp t t∪ . With the same strategy of upcrossing rate in Eq. 

(9), , 0( , )f i j sp t t∪  is given by 

{ }
0

, 0 0( , ) 1 exp( () )
st

f i j s ij i jt
p t t R t v t dt+

∪ ∪= − −∫      (19) 

in which 0( )ijR t is the probability that both components are safe 

at the initial time and is given by 

0 0 0 0 0Pr{ ( , ( ,( ) ) ( ,) ) )( , }ij i ji jeR t g t t g t t e= ≤ ∩ ≤X Y X Y  (20) 

( )i jv t+
∪  

is the outcrossing rate of a series system with 

components i and j at time instant t. An outcrossing event 
occurs when the system outcrosses its bounds at time instant t 
from the safe region to the failure region. Fig. 1 shows three 
representative outcrossing events of the series system. For the 
outcrossing events, both components i and j are in the safe 
region at time instants tm, m=1, 2, and 3. The system then 
outcrosses into the failure region as a result of the upcrossing of 
Gi, or upcorring of Gj, or both the upcrossings of Gi and Gj at 
the following time instants, tm+△t, m=1, 2, and 3.  Given in 
mathematical form, the outcrossing rate ( )i jv t+

∪  is given by 

the following limit: 
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0

( ) ( )
Pr

( ) ( )
( ) lim

i i j j

i i j j

i j
t

G t e G t e

G t t e G t t e
v t

t
+
∪ ∆ →

  ∩ ∩  
 
 + ∆ > ∪ + ∆ >  

<

 

<

=
∆

  (21) 

where t∆  is an infinitesimally small time interval. 

 
t1 t1+△t 

ei 

Outcrossings 

G(t) 

t2 t2+△t t3 

ej 

Gi(t) 

Gj(t) 

t  
Fig. 1 Outcrossing events of a system with bivariate responses 

 
The probability in Eq. (21) can be decomposed into three 

components. 

( ) ( )
Pr

( ) ( )

( ) ( ) ( )

i i j j

i i j j

ij ij ij

G t e G t e

G t t e G t t

p p

e

p t t t+− −+ ++

  ∩  
 

 ∩ + ∆ > ∪ + ∆ >  

+


=

< <

+

     (22) 

where 

( ) ( )
( ) Pr

( ) ( )

i i j j

ij

i i j j

G t e G t e
p t

G t t e G t t e

+−
  < ∩ <  =  

 ∩ + ∆ > ∩ + ∆ <   

   (23) 

( ) ( )
( ) Pr

( ) ( )

i i j j

ij

i i j j

G t e G t e
p t

G t t e G t t e

−+
  < ∩ <  =  

 ∩ + ∆ < ∩ + ∆ >   

   (24) 

( ) ( )
( ) Pr

( ) ( )

i i j j

ij

i i j j

G t e G t e
p t

G t t e G t t e

++
  < ∩ <  =  

 ∩ + ∆ > ∩ + ∆ >   

   (25) 

( )ijp t+− is the probability that ( )iG t
 
upcrosses its barrier 

ie  while ( )jG t  remains below its barrier je  at t , ( )ijp t−+ is 

the probability that ( )jG t
 
upcrosses its barrier je while 

( )iG t  remains below its barrier ie  at t , and ( )ijp t++ is the 

probability that both ( )iG t
 
and ( )jG t

 
upcross their barriers 

at t .  
Three corresponding joint upcrossing rates are then defined 

by 

           ( )
0

( ) lim ( )ij ij
t

v t p t t+− +−

∆ →
= ∆               (26) 

            ( )
0

( ) lim ( ) /ij ij
t

v t p t t−+ −+

∆ →
= ∆               (27) 

    ( )
0

( ) lim ( )ij ij
t

v t p t t++ ++

∆ →
= ∆               (28) 

Then 
             ( ) ( ) ( ) ( )i j ij ij ijv t v t v t v t+ +− −+ ++

∪ = + +        (29) 

Equations for ( )ijv t+− are available for special limit-state 

functions with stationary Gaussian vector processes [22]. In the 

subsequent subsections, we will derive equations for ( )ijv t+−  

and other two joint upcrossing rates for general limit-state 
functions. The derivations are based on the approximation 
discussed in Sec. 3.1.2. 

3.2.2 ( )ijv t+−  

Substituting Eqs. (17) into Eq. (23) yields 

( ) ( ) ( ) ( )
( ) Pr

( ) ( ) ( ) ( )

i i j j

ij

i i j j

L t t L t t
p t

L t t t t L t t t t

β β

β β
+−

  < ∩ <  =  
 ∩ +∆ > + ∆ ∩ + ∆ < + ∆   

(30) 

It is the probability that ( )iL t
 
upcrosses its barrier ( )i tβ  

while ( )jL t  remains below its barrier ( )j tβ
 
at t . With the 

Rice’s formula [15, 16], 
0

( ) lim ( )ij ij
t

v t p t t+− +−

∆ →
= ∆  can be 

calculated by the following integral: 
( )

( )
( ) [ ( )] ( ( ), , )

j

i j ii

t

ij i i i j i i jL L Lt
v t l t f t l l dl dl

β

β
β β

∞+−

−∞
= −∫ ∫ ɺ

ɺ

ɺ ɺ ɺ ɺ    (31) 

where ( , , )
i j iL L L

f ⋅ ⋅ ⋅ɺ  is the joint PDF of ( )iL t , ( )jL t , and 

( )iL tɺ .  

As no close form expression of ( )ijv t+−  is available, 

transformations for Eq. (31) are required. Based on the 
transformation, Eq. (31) is rewritten as below [22]: 

( ) ( )( ),

( ) ( )

( ) ( ( ))
j j i ii i i j j

j i i j i i

jt L L tL L t L l

ij i j

L L t L L t

l
v t t Hdl

β ββ

β β

µσ
φ β φ

σ σ
== =+−

−∞
= =

 −
 =
 
 

∫
ɺ

(32) 

where 

 

( ),

( ),

( ), ( ),

( ), ( ),

( )

( ) ( )

i i i j j

i i i j j

i i i j j i i i j j

i i i j j i i i j j

i L L t L l

L L t L l

i iL L t L l L L t L l

L L t L l L L t L l

t
H

t t

β

β

β β

β β

β µ
φ

σ

β µ β µ

σ σ

= =

= =

= = = =

= = = =

 −
 =
 
 

 − −
 − Φ
 
 

ɺ

ɺ

ɺ ɺ

ɺ ɺ

ɺ

ɺ ɺ
   (33) 

 
The above equations indicate that 

iLj Li βµ = , 
Lj Li iβ

σ
=

, 

( ),i i i j jL L t L lβµ = =ɺ
, and 

( ),i i i j jL L t L lβσ = =ɺ
 are required to solve for 

( )ijv t+− ,  for which the mean and covariance of ( )iL tɺ

 
and 

[ ( ), ( )]i jL t L t=L  must be obtained.  

Since ( ) ( ) )( ) ( ) ( ) (T T T
i i i iL t t t t t t= = +X X Y YU U Uα α α , 

( )iL tɺ  is given by 

)( ) ( ) ( ) ( ) (T T
i i iL t t t t tY YU U+=ɺ ɺɺα α     (34) 

With Eqs. (17) and (34), the covariance matrix of Lɺ  and 
L  are given as below. 

2( )

1

1

i i j i

i i i

i ji i

i

i jj i

i L L L L

L L L

L LL L
L

L LL L

t c c

c c

c c

ω 
  
 = = 
   
  

L

L
LLL

c c
c

c c

ɺ ɺ

ɺ ɺ ɺ

ɺ ɺ

ɺ

ɺ

       (35) 
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in which 2
12( ) ( ) ( ) ( ) ( , ) ( )T T

i i i i it t t t t t tCω = + ɺɺɺ ɺα α α α  is provided 

in Ref. [20], 12Cɺɺ  is the second order partial derivative of 

covariance matrix of ( )tU , and the other components of the 

matrix are given below.  
( ) ( )

i i

T
i iL L

c t t=ɺ
ɺα α                 (36) 

( ) ( )
i j

T
L L i jc t t= α α                 (37) 

( ) ( )
j i

T
i jL L

c t t=ɺ
ɺα α                 (38) 

With the covariance matrix Lc
ɺ

, the conditional means and 

standard deviations are now available. They are given by 
1

( ), ii i i j j LL L t L lβµ −
= = = LLLc c l

ɺɺ
              (39) 

2 1

( ), i i i ii i i j j L L L LL L t L lβσ −
= = = − LLL Lc c c c

ɺ ɺ ɺ ɺɺ
         (40) 

in which [ ( ); ]i jt lβ=l . 

Substituting Eq. (35) into Eqs. (39) and (40) yields  

2( ),

( )( ) ( )

1
i j i jj i i i i i j i

i i i j j

i j

i L L j L LL L L L L L L L

L L t L l
L L

t c c c l c c c

cβ

β
µ = =

− + −
=

−
ɺ ɺ ɺ ɺ

ɺ
 (41) 

2

( ),

2
2

( ) ( )
( )

1

i i i j j

i j i ji i j i i i j i i i j i

i j

L L t L l

L L L LL L L L L L L L L L L L

i
L L

c c c c c c c c
t

c

βσ

ω

= =

− + −
= −

−

ɺ

ɺ ɺ ɺ ɺ ɺ ɺ
  (42) 

Since ( ) ( ) 1T
i it t =α α , we obtain that 

( ) ( ) 0
i i

T
i iL L

c t t= =ɺ
ɺα α . Eqs. (41) and (42) are then simplified as 

     2

( ),
( ( ) ) ( 1)

i j i jj i j ii i i j j
i L L j L LL L L LL L t L l

t c c l c cβµ β= = = − −
ɺ ɺɺ

   (43) 

and 
2 2 2 2

( ),
( ) ( 1)

i jj ii i i j j
i L LL LL L t L l

t c cβσ ω= = = + −
ɺɺ

           (44) 

Similarly,  

( ) ( )
i ji L L iLj Li t c tβµ β= =              (45) 

2 2

( )
1

i jj i i
L LL L t

cβσ
=

= −               (46) 

So far all the equations needed to calculate ( )ijv t+−  are 

derived. They can be solved by substituting Eqs. (41) through 
(46) into Eq. (32).  

3.2.3 ( )ijv t−+  

After obtaining the first joint upcrossing rate ( )ijv t+− , we 

can easily obtain the second upcrossing rate ( )ijv t−+ . We just 

simply switch the subscripts i and j in Eqs. (30) through (46). 

3.2.4 ( )ijv t++  

Substituting Eqs. (17) into Eq. (25) yields 

( )
0

( ) limij ij
t

v t M t++ ++

∆ →
= ∆                (47) 

where 

Pr[ ( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]
ij i i j j

i i j j

M L t t L t t

L t t t t L t t t t

β β
β β

++ = < ∩ <

∩ + ∆ > + ∆ ∩ + ∆ > + ∆
(48) 

Defining ( ) ( ) ( )i i iZ t L t tβ= − , we have 
0 0

0 0
( , , , )

i j i jij i j i j i j i jZ Z Z Z
M f z z z z dz dz dz dz

+∞ +∞++

−∞ −∞
= ∫ ∫ ∫ ∫ ɺ ɺ

ɺ ɺ ɺ ɺ  (49) 

t is omitted in Eq. (49) for brevity; for example iz  stands for 

( )iz t
 
now. Appendix A shows that ( )ijv t++  is zero when t∆  

becomes infinitely small. Therefore, ( ) 0ijv t++ = .  

Having obtained all the three joint upcrossing rates, we 
obtain the outcrossing rate in Eq. (29) as follows: 

( ) ( ) ( )i j ij ijv t v t v t+ +− −+
∪ = +               (50) 

3.2.5 0( )ijR t  

0( )ijR t
 
is another component needed for the system 

reliability analysis. After the MPPs of components i and j are 
found at 0t , 0( )ijR t  is calculated by [4] 

0 0 0 0( ) ( ( ), ( ), )i jijR t t tβ β ρ= Φ            (51) 

in which ( , , )Φ ⋅ ⋅ ⋅  is the CDF of a bivariate normal random 

variable, and 0ρ  is the coefficient of correlation between the 

two components. 0ρ
 
is given by  

0 0 0( ) ( )T
i jt tρ = α α               (52) 

With Eqs. (19) through (52), , 0( , )f i j sp t t∪  can be 

estimated. Then, the time-dependent probability of failure for 
bivariate responses, , 0( , )f ij sp t t , can be computed. 

3.3 System reliability analysis 
With the availability of the outcrossing rate ( )i jv t+

∪ , we 

now summarize the proposed system reliability analysis method 
for bivariate responses.  

For a series system with component i and j, the system 
probability of failure is given by  

{ }
0

, 0 , 0 0( , ) (( , ) 1 exp ( ))
st

f s s f i j s ij i jt
p t t p t t R t v t dt+

∪ ∪= = − −∫ (53) 

For a parallel system,  

{ }
{ } { }

0

0 0

, 0 0

0 0

( , ) 1 exp ( )

exp ( ) exp ( )

( )

( ) ( )

s

s s

t

f s s i it

t t

j j ij i jt t

p t t R t v t dt

R t v t dt R t v t dt

+

+ +
∪

= − −

− − + −

∫

∫ ∫
(54) 

Until now all the equations needed for the time-dependent 
system reliability analysis for bivariate responses are available.  

4. NUMERICAL PROCEDURE 
A flowchart for the proposed method is provided in Fig. 2; 

The main steps are summarized as below.  
• Step 1: Initialization of parameters - Transform uncertain 

variables into standard Gaussian random variables and 
stochastic processes.  

• Step 2: FORM - Perform the MPP search at time instant t 
using Eq. (13); obtain the associated reliability indexes, 
and the derivative of reliability indexes.  
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• Step 3: Initial reliability - Calculate the initial component 
reliability using Eq. (9) and initial system reliability using 
Eqs. (51) and (52). 

• Step 4: Upcrossing rates and outcrossing rate - 
Compute ( )ijv t+−  and ( )ijv t−+  using Eq.(32); then obtain the 

joint upcrossing rate ( )i jv t+
∪ .  

• Step 5: Integration - Integrate the upcrossing rates over 

0[ , ]st t .  

• Step 6: System reliability - Obtain the system probability of 
failure , 0( , )f s sp t t  using Eq. (53) or (54).  

 

 

Step 1: Parameter Initialization 

Step 2: First Order Reliability Method (FORM) 
( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )i i i i j j j jt t t t t t t tβ β β βα α α α

ɺ ɺɺ ɺ  

Step 4: Solve for 
component upcrossing 

rates and joint 
upcrossing rate 

( )iv t+ , ( )iv t+ , ( )ijv t+− , 

and ( )ijv t−+  

( )i jv t+
∪

Step 5: Integrate the 
upcrossing rates and 

outcrossing rate 

 
Step 3: Solve for 
initial component 
reliabilities 0( )iR t

and 0( )jR t , and 

system reliability 

0( )ijR t  

Step 6: Solve for 

, 0( , )f s sp t t  

 
Fig. 2 Flowchart of the proposed method 

5. NUMERICAL EXAMPLES 
 In this section, we use two examples to demonstrate the 

proposed method. They are a Daniels system [25] and a 
function generator mechanism system.  

5.1 Example 1 – A Daniels System 
Fig. 3 shows a structural system under stochastic loading. 

The system consists of two bars. Due to different manufacturing 
precisions, the two bars have different standard deviations in 
their dimensions. As the two bars are exposed to corrosions, 
their widths and heights decrease at the rates of k1 and k2, 
respectively. Each of the two bars resists a load of ( ) / 2P t  

until both of the two bars yield. The task is to determine the 
time-dependent system probabilities of failure over different 
time intervals up to [0, 20] years.  

P(t) 

2 1 

A-A 

a1 

k1t 

k1t 

b1 

B-B 

a2 

k2t 

k2t 

b2 

A A B B 

 
Fig. 3 A two-bar system 

Since the system is parallel, the time-dependent system 
probability of failure is given by  

1, 0 1

2 2 0

( , ) Pr{ ( , ( ,

( , ( , [ , ]

) )

) ) , and }
f s s

s

p t t g

g

e

te t

χ χ
τ τ τχ

>

∩ > ∃

=

∈

X Y

X Y
(55) 

where 
( , ( ), ) ( ) / 2 ( 2 )( 2 )i i i i i big t t P t a k t b k tX Y σ= − − −     (56) 

and 1, 2i = , 1k =5×10-4 in/year, 2k =3×10-4 in/year, 1e =0, 

2e =0, 1 1 2 2 1 2[ , , , , , ]b ba b a b σ σ=X , and ( ) [ ( )]t P t=Y ; 1bσ  

and 2bσ  are the yield strengths of bars 1 and 2, respectively. 

The parameters in Eqs. (55) and (56) are presented in Table 1.  
 

Table 1 Variables in Example 1 

Variable Mean 
Standard 
deviation 

Distribution 
Autocorr
elation 

1a  1.3 in 0.01 in Gaussian N/A 

1b  1.2 in 0.01 in Gaussian N/A 

2a  1.3 in 0.05 in Gaussian N/A 

2b  1.2 in 0.05 in Gaussian N/A 

1bσ  36 kpsi 0.36 kpsi Gaussian N/A 

2bσ  36 kpsi 0.36 kpsi Gaussian N/A 

( )P t  90 kpsi 9 kpsi 
Gaussian 
Process 

Eq. (57) 

The auto-correlation function of the stochastic process ( )P t  

is given by 
2 2

1 2 2 1( , ) exp ( )P t t t tρ ζ = − −           (57) 

where 2 yearsζ = is the correlation length. The longer is the 

time interval 2 1t t− , the weaker is the auto-correlation.  

To evaluate the accuracy of the new method, Monte Carlo 
simulation (MCS) is performed using a large sample size of 107. 
The upcrossing rates 12 ( )v t+− , 12 ( )v t−+ , and 1 2( )v t+

∪  obtained 

from the proposed method are also compared with MCS.  
Figs. 4 through 6 depict the upcrossing rates 12 ( )v t+− , 

12 ( )v t−+ , and outcrossing rate 1 2( )v t+
∪  

from both the new 

method and MCS.  
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Fig. 4 12 ( )v t+−  over time interval [0, 20] years 
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Fig. 5 12 ( )v t−+ over time interval [0, 20] years 
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0.014

0.015

0.016
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0.023

0.024
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 v
1 ∪

2
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MCS
New Method

 
Fig. 6 1 2( )v t+

∪  over time interval [0, 20] years 

Note that the curves of upcrossing rates and outcrossing 
rate from MCS are not smooth. The noise comes from the 
numerical discretization of stochastic process. Nevertheless, the 
results show the good consistency between the MCS results and 
those from the proposed method. This example indicates that 
the proposed method can produce accurate joint upcrossing 

rates and outcrossing rate that are needed for time-dependent 
system reliability analysis. 

Using the outcrossing rate 1 2( )v t+
∪ , the system reliability 

analysis result is obtained. The time-dependent system 
probability of failure , 0( , )f s sp t t  is depicted in Figs. 7 and 

given in Table 2. 
As shown in Fig. 7, the error of the new method becomes 

larger with a longer period of time or with a larger probability 
of failure. The error resource is mainly the assumption of 
independent crossings. It is the intrinsic drawback of the 
upcrossing and outcrossing rate method [21].  

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time interval [0,  t] years

 p
f, 

s 
( 

t 0, t
s)

 

 

MCS
New Method

 

Fig. 7 , 0( , )f s sp t t  time interval [0, 20] years 

Table 2 Time-dependent system probability of failure  

Time 
interval 

New Method MCS 

, 0( , )f s sp t t  ε (%) , 0( , )f s sp t t

 

95% confidence 
interval 

[0, 2] 0.0126 2.64 0.0123 [0.0121, 0.0125] 
[0, 5] 0.0261 4.46 0.0250 [0.0247, 0.0253] 
[0, 8] 0.0416 5.31 0.0395 [0.0391, 0.0398] 
[0, 11] 0.0591 7.08 0.0552 [0.0547, 0.0556] 
[0, 14] 0.0789 8.21 0.0729 [0.0724, 0.734] 
[0, 17] 0.1010 10.03 0.0918 [0.0912, 0.0924] 
[0, 20] 0.1256 11.98 0.1122 [0.1116, 0.1128] 

 

5.2 Example 2 – A function generator mechanism 
system 

A function generator mechanism is a mechanism used to 
realize a desired motion [8, 9]. Such a system is shown in Fig. 
8. This system consists of two function generator mechanisms. 
Mechanism 1, a four-bar linkage mechanism with links 1B , 

2B , 3B  and 4B , generates a sine function while mechanism 2, 

the other four-bar linkage mechanism with links 1B , 5B , 6B  

and 7B , generates a logarithm function. 
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For the sine function generator (Mechanism 1), the motion 
input and motion output are γ  and ( , )aκ κ γ= B , 

respectively. The required motion output is given by 
3

( ) 60 60 sin ( 97 )
4dκ γ γ = + −  

� � �           (58) 

For the logarithm function generator (Mechanism 2), the 
motion input and motion output are θ  and ( , )aη η θ= B , 

respectively. The required motion output is given by 

( )10 10( ) 60 log [( 15 ) / 60 ] / log (2)dη θ θ= +� � �            (59) 

A motion error is the difference between the actual motion 
output and the required motion output. For the two mechanisms, 
their motion errors are  

( , ) ( , ) ( )a dκε γ κ γ κ γ= −B B            (60) 

and 
( , ) ( , ) ( )a dηε θ η θ η θ= −B B            (61) 

where 1 2 7[ , , , ]B B B=B ⋯ . 

Links B2 and B5 are welded together, the two input angles 
satisfy 

62γ θ= +�                   (62) 

From the mechanism analysis, the following equations can 
be obtained: 

2 2 2

( , ) 2arctan( )a

E E D F

F D
κ κ κ κ

κ κ

κ γ
− ± + −

=
−

B       (63) 

where 4 1 22 ( cos )D B B Bκ γ= − , 2 42 sinE B Bκ γ= − , and 
2 2 2 2
1 2 4 3 1 22 cosF B B B B B Bκ γ= + + − − .  

2 2 2

( , ) 2arctan( )a

E E D F

F D
η η η η

η η

η θ
− ± + −

=
−

B        (64) 

10 10( ) 60 log [( 15 ) / 60 ] / log (2)dη θ θ= +� � �        (65) 

where 7 1 52 ( cos )D B B Bη θ= − , 5 72 sinE B Bη θ= − , and 
2 2 2 2
1 5 7 6 1 52 cosF B B B B B Bη θ= + + − − . 

 

B1 

B2 

B3 

B4 

B5 

0θ
θ 0γ  

γ  

B6 

B7 

2χ  

1χ
 

0η  

η  
0κ  

κ  

 
Fig. 8 A function generator mechanism system 

 
In this problem, the time factor is the input angle θ . There 

are no stochastic processes in the input variables. The vector of 

random variables is therefore 1 2 7[ , , , ]B B B= =X B ⋯ , and the 

vector of stochastic processes Y  is empty. Since the time 
factor θ  appears in both functions of the motion errors, the 
motion errors are still stochastic processes. The motion errors 
should not be large, and their allowable values are denoted by 

1 1.4oe =
 
and 2 1.4oe = . All the parameters are given in Table 

3.  
 

Table 3 Parameters in Example 2 

Variable Mean 
Standard 
deviation 

Distribution 

1B  100 mm 0.3 mm Normal 

2B  55.5 mm 0.05 mm Normal 

3B  144.1 mm 0.05 mm Normal 

4B  72.5 mm 0.05 mm Normal 

5B  79.5 mm 0.05 mm Normal 

6B  203 mm 0.05 mm Normal 

7B  150.8 mm 0.05 mm Normal 

 
The mechanism system is designed to perform its intended 

functions over an interval of 0[ , ] [45 ,105 ]sθ θ = � � . If either 

motion error is greater than its allowable value over 

0[ , ] [45 ,105 ]sθ θ = � � , a failure is considered. As a result, the 

system is a series system, and the system probability of failure 
is 

{ }, 0 01 2( , ) Pr ( , ) ( , ) [ , ], ,f s s sp e eκ ηθ θ ε ε τχ θχ τ θ> ∪ ∈> ∃= B B

(66) 
Figs. 9 through 11 show the results of joint upcrossing rates 

12 ( )v θ+− , 12 ( )v θ−+ , and outcrossing rate 1 2( )v θ+
∪ , from the 

proposed method and MCS. The sample size of MCS is 107. 
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θ)

 

 

MCS
New Method

 
Fig. 9 12 ( )v θ+− over [45̊, 105̊] 
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Fig. 10 12 ( )v θ−+  over [45̊, 105̊] 
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Fig. 11 1 2( )v θ+

∪  over [45̊, 105̊] 

The results show that the proposed method is able to 
estimate the joint upcrossing rate with good accuracy. Based on 
the joint upcrossing rates, the time-dependent system 
probability of failure is obtained as presented in Fig. 12 and 
Table 4.  
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3
x 10
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 p
f, 

s (
θ 0,

 θ
)

 

 

MCS
New Method

 
Fig. 12 Time-dependent system probability of failure  

over [45 ,105 ]� �  

Table 4 System time-dependent probability of failure  

Time 
interval 

New Method MCS 

, 0( , )f sp θ θ
(10-3) 

ε (%) , 0( , )f sp θ θ  

(10-3) 

95% confidence 
interval (10-3) 

[45, 50] 0.224 13.13 0.198 [0.189, 0.206] 
[45, 55] 1.165 3.56 1.125 [1.104, 1.146] 
[45, 57] 1.701 3.85 1.638 [1.613, 1.663] 
[45, 59] 2.253 3.16 2.184 [2.155, 2.213] 
[45, 61] 2.615 2.03 2.563 [2.532, 2.595] 
[45, 63] 2.694 1.32 2.659 [2.627, 2.691] 
[45, 65] 2.695 1.35 2.659 [2.627, 2.691] 

The results show that the accuracy of the proposed method 
is good.  

6. CONCLUSIONS 
Time-dependent system reliability analysis plays a vital 

role in the system level optimization, lifecycle cost estimation, 
and decision making on maintenance and warranty. With the 
availability of computational models, predicting how the system 
reliability changes with time is possible. Making such a 
prediction both accurate and efficient is critical.  

In this paper, a time-dependent reliability method is 
proposed for a system with two response variables that are 
functions of random variables and stochastic processes. The 
method is based the First Order Reliability Method (FORM) 
and the upcrossing rate method (the Rice’s formula). The new 
method can be applied to general problems with random 
variables, stochastic processes, and time because it can be 
extended to systems with more than two response variables. 
With the use of FORM, the proposed method is also efficient. 

As an upcrossing rate method, the new method may 
produce a larger error if the probability of failure is larger. The 
reason is that when the probability of failure is large, the 
dependency between upcrossings may become strong.   

The future research based on this work may be (1) the 
improvement of the accuracy, (2) the extension of the method to 
systems with more than two response variables, and (3) the 
integration of the method with optimization so that the time-
dependent system reliability-based design can be performed. 

 

APPENDIX A: DERIVATION OF ( )ijv t++   

Since ( ) 0iZ t t+ ∆ > and ( ) 0jZ t t+ ∆ > , expanding iZ  

and jZ  at time t, it gives ( ) ( ) ( ) 0i i iZ t t z t z t t+ ∆ ≈ + ∆ >ɺ  and 

( ) ( ) ( ) 0j j jZ t t z t z t t+ ∆ ≈ + ∆ >ɺ , then Eq. (49) becomes 
0 0

0 0 ( ) ( )
( , , , )

i j i jj i
ij i j i j i j i jZ Z Z Zz t t z t t

M f z z z z dz dz dz dz
+∞ +∞++

− ∆ − ∆
= ∫ ∫ ∫ ∫ ɺ ɺ

ɺ ɺ

ɺ ɺ ɺ ɺ      (A1) 

Let ( ) / ( ( ) ) ( )i i iZ t Z t t W t− ∆ =ɺ  and ( ) / ( ( ) ) ( )j j jZ t Z t t W t− ∆ =ɺ , 

Eq. (A1) is further transformed into  
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0 0

0 0 1 1
( , , , )

i j i jij i i j j i jWW Z Z

i j i j i j

M f z tw z tw z z

z z t tdw dw dz dz

+∞ +∞++ = − ∆ − ∆

∆ ∆
∫ ∫ ∫ ∫ ɺ ɺ

ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ

  (A2) 

Plugging Eq. (A2) into (47), we have 

0 0

0 0 1 1

0

( ) ( )0

( )

(0, 0, , )
lim

lim ( , , , )( )( )

0

i j i j

i j i jj i

ij

i j i j i j i jW W Z Z

t

i j i j i i j j i jL L L Lt tt

v t

f z z z z t tdw dw dz dz

t

t f l l l l dl dl
β β

β β β β

++

+∞ +∞

∆ →

+∞ +∞

∆ →

∆ ∆
=

∆

= ∆ − −

=

∫ ∫ ∫ ∫

∫ ∫

ɺ ɺ

ɺ ɺ
ɺ ɺ

ɺ ɺ ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ ɺ ɺɺ ɺ

(A3) 

ACKNOWLEDGEMENT 
This material is based upon work supported by the National 

Science Foundation under Grant No. CMMI 1234855 and the 
Intelligent Systems Center at the Missouri University of Science 
and Technology. 

REFERENCES 
[1] Ditlevsen, O., 1979, "Narrow Reliability Bounds for 
Structural Systems," J.Struct. Mech., 7(4), pp. 453-472. 
[2] Song, J., and Kang, W. H., 2009, "System reliability and 
sensitivity under statistical dependence by matrix-based system 
reliability method," Structural Safety, 31(2), pp. 148-156. 
[3] Nguyen, T. H., Song, J., and Paulino, G. H., 2010, "Single-
loop system reliability-based design optimization using matrix-
based system reliability method: Theory and applications," 
Journal of Mechanical Design, Transactions of the ASME, 
132(1), pp. 0110051-01100511. 
[4] Dey, A., and Mahadevan, S., 1998, "Ductile structural 
system reliability analysis using adaptive importance sampling," 
Structural Safety, 20(2), pp. 137-154. 
[5] Ambartzumian, R., Der Kiureghian, A., Ohanian, V., and 
Sukiasian, H., 1998, "Multinormal probability by sequential 
conditioned importance sampling: Theory and application," 
Probabilistic Engineering Mechanics, 13(4), pp. 299-308. 
[6] Vaurio, J. K., 2001, "Making systems with mutually 
exclusive events analysable by standard fault tree analysis 
tools," Reliability Engineering and System Safety, 74(1), pp. 
75-80. 
[7] Haldar, A., Mahadevan, S.,, 2000, Probability, Reliability 
and Statistical Methods in Engineering Design, Wiley, New 
York. 
[8] Shi, Z., 1997, "Synthesis of mechanical error in spatial 
linkages based on reliability concept," Mechanism and Machine 
Theory, 32(2), pp. 255-259. 
[9] Zhang, J., and Du, X., 2011, "Time-dependent reliability 
analysis for function generator mechanisms," Journal of 
Mechanical Design, Transactions of the ASME, 133(3). 
[10] Caprani, C. C., and Obrien, E. J., 2010, "The use of 
predictive likelihood to estimate the distribution of extreme 
bridge traffic load effect," Structural Safety, 32(2), pp. 138-144. 

[11] Tao, Z., Corotis, R. B., and Ellis, J. H., 1994, "Reliability-
based bridge design and life cycle management with Markov 
decision processes," Structural Safety, 16(1-2), pp. 111-132. 
[12] Hu, Z., and Du, X., 2012, "Reliability analysis for 
hydrokinetic turbine blades," Renewable Energy, 48, pp. 251-
262. 
[13] Nortier, B. P., Voormeeren, S. N., and Rixen, D. J., 2012, 
"Application of residual vectors to superelement modeling of an 
offshore wind turbine foundation," Conference Proceedings of 
the Society for Experimental Mechanics Series, Springer, pp. 
149-163. 
[14] Singh, A., Mourelatos, Z. P., and Li, J., 2010, "Design for 
lifecycle cost using time-dependent reliability," Journal of 
Mechanical Design, Transactions of the ASME, 132(9), pp. 
0910081-09100811. 
[15] Rice, S. O., 1944, "Mathematical Analysis of Random 
Noise," Bell System Technical Journal, , 23, pp. 282–332. 
[16] Rice, S. O., 1945, "Mathematical analysis of random 
noise," Bell Syst.Tech. J.,, 24, pp. 146-156. 
[17] Singh, A., Mourelatos, Z., and Nikolaidis, E., 2011, "Time-
Dependent Reliability of Random Dynamic Systems Using 
Time-Series Modeling and Importance Sampling," SAE 
International Journal of Materials and Manufacturing, 4(1), pp. 
929-946. 
[18] Andrieu-Renaud, C., Sudret, B., and Lemaire, M., 2004, 
"The PHI2 method: A way to compute time-variant reliability," 
Reliability Engineering and System Safety, 84(1), pp. 75-86. 
[19] Hu, Z., and Du, X., 2015, "Mixed Efficient Global 
Optimization for Time-Dependent Reliability Analysis," Journal 
of Mechanical Design, 137(5), p. 051401. 
[20] Hu, Z., and Du, X., 2011, "Time-Dependent Reliability 
Analysis with Joint Upcrossing Rates," Submitted to Structural 
and Multidisciplinary Optimization. 
[21] Madsen, P. H., and Krenk, S., 1984, "Integral Equation 
Method for the First-Passage Problem in Random Vibration," 
Journal of Applied Mechanics, Transactions ASME, 51(3), pp. 
674-679. 
[22] Song, J., and Der Kiureghian, A., 2006, "Joint first-passage 
probability and reliability of systems under stochastic 
excitation," Journal of Engineering Mechanics, 132(1), pp. 65-
77. 
[23] He, J., 2009, "An approximation of the first passage 
probability of systems under nonstationary random excitation," 
Applied Mathematics and Mechanics (English Edition), 30(2), 
pp. 255-262. 
[24] Radhika, B., Panda, S. S., and Manohar, C. S., 2008, 
"Time variant reliability analysis of nonlinear structural 
dynamical systems using combined Monte Carlo simulations 
and asymptotic extreme value theory," CMES - Computer 
Modeling in Engineering and Sciences, 27(1-2), pp. 79-109. 
[25] McDonald, M., and Mahadevan, S., 2008, "Design 
optimization with system-level reliability constraints," Journal 
of Mechanical Design, Transactions of the ASME, 130(2). 
 


