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ABSTRACT

Time-dependent system reliability is measured bg th
probability that the responses of a system do nateed
prescribed failure thresholds over a period of timethis work,
an efficient time-dependent reliability analysis thoal is
developed for bivariate responses that are gemanations of
random variables and stochastic processes. Theogedp
method is based on single and joint upcrossingsrathich are
calculated by the First Order Reliability MethodO[RM). The
method can efficiently produce accurate upcrossitegs for the
systems with two responses. The upcrossing rateshea be
used for system reliability predictions with twospenses. As
the general system reliability may be approximatath the
results from reliability analyses for individualsponses and
bivariate responses, the proposed method can lemded to
reliability analysis for general systems with mdifean two
responses. Two examples, including a parallel syséad a
series system, are presented.

1. INTRODUCTION

Reliability is the ability that a component or st
performs its intended function in routine circunmst@s for a
given period of time. System reliability analysssmuch more
difficult than component reliability analysis. Mamrogresses
have been made in system reliability analysis. &xample,
Ditlevsen [1] approximated the system reliabilitging a
bounding formulas. Song and Kang [2] developed drima
based system reliability (MSR) method, which calcdate the
system reliability and system parameter sensiisitby a

convenient matrix-based framework. Nguyen [3] later
developed a reliability-based system design op#tion
method by using the MSR method. Mahadevan [4] and
Ambartzumian [5] proposed a system reliability nogttusing a
standard normal multivariate cumulative distribatifunction
(CDF); by employing the Morgan's laws [6], the nmdh
expresses the system probability of failure adgntersection of

a set of unions of subsystems. More system relfatzhalysis
methods have been reported in [7].

Although reliability is defined for a period of tamand is
also a function of time, most of the aforementiomelibility
methods are for time-invariant reliability whichedonot change
over time. In many engineering applications, howgethe limit-
state function changes over time, because time aappe
explicitly in the function or stochastic processes part of the
input variables, or both. Examples include functigenerator
mechanisms [8, 9], bridges under stochastic loaflffy 11],
hydrokinetic turbine system subjected to wave eoerriflow
loading [12, 13], and vehicles running on stocliastiad
surfaces [14].

Time-dependent reliability analysis is much more
challenging than its time-independent counterp@tte most
common time-dependent reliability method is theeRiormula
[15, 16] developed in 1944 and is still widely ussalvadays.
There are many developments in time-dependentbifitjain
recent years. For instance, for component religbflroblems,
Mourelatos [17] employed the time-series modelingd a
importance sampling method to approximate the time-
dependent reliability. Andrieu et al. [18] proposadPHI2
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method for the time-dependent component reliabaibalysis
for general problems with both random variables stoghastic
processes. By using the Rice’s formula [15, 16],dbd Hu [12,
19] developed a time-dependent reliability modelr fo
hydrokinetic turbine blades. Singh et al. [14] peed the
concept of composite limit-state function for timiependent
reliability analysis for a special group of probkenio improve
the accuracy of time-dependent component relighditalysis,
Du and Hu [20] proposed a joint upcrossing methasgel on
the work of Madsen [21].

Studies on time-dependent system reliability hdse been
reported. For example, a method was developedtinats the
joint first-passage probability of failure for sgsis under
stochastic excitation [22]. An approximation metheds
reported for estimating the conditional first pagsarobability
of systems under modulated white noise excitati®8].[ By
combining Monte Carlo simulations with the asymigtot
extreme value theory, Radhika [24] proposed a biiig
analysis method for nonlinear vibrating systemsm&mf the
above methods have been verified to have good acgor
systems subjected to multiple Gaussian stationtoghastic
processes. These methods, however, cannot belyliaggtied
to general problems where the input variables difnit-state
function contain time, random variables, and natichary
stochastic processes.

In this work, a new time-dependent system religbili
analysis method for bivariate responses is propoked
problems with nonlinear limit-state functions ofm#, random
variables, and stochastic processes. The new methath
extension of the work in [22] and is based on tB&kM and the
Rice’s formula. The major development is the ddidres of
bivariate joint upcrossing rates, which can be uded
estimating time-dependent system reliability forvaviate
responses. Since the bivariate joint probabilites the basis
for general system reliability analysis when thigatslity bound
method is used, the proposed method can also bleecgp
general time-dependent system reliability analysisgeneral
systems with more than two components.

In Section 2, the background of time-dependenaldlty
is given. In Section 3, the upcrossing rate metlodirst
introduced; equations are then derived for the riat@ joint
upcrossing rates. The numerical procedure is suirethiin
Section 4, followed by two demonstration example&ection
5. Conclusions are presented in Section 6.

2. TIME-DEPENDENT SYSTEM RELIABILITY

In this work a component corresponds to a failuden
Suppose there are failure modes orr components. For
component, where i =1,2,... r, let its limit-state function be

G =g,(X,Y(t),t), where X =[X,, X,,---, X,] is a vector of
random variables,Y (t) =[Y,(1), Y,(t),---,Y,,(t)] is a vector of
stochastic processes, arfg is the response variablestands
for time.

The time-dependent probability of failurg, (t,,t) of
component over the time intervallt,, t.] is defined by

Pt t)=P{g XY O).t)>e, 00 L]} ()
in which ¢ is the failure threshold, andPr{j stands for a
probability.
Let Q. be the safe region for a system. For a series
system,

Qs=[[x,Y<t)]|irjlgi<x,v(t),t)<q.DtD[to,ts]} ()

in which “n " stands for an intersection.
For a parallel system,

Qs={[(x,Y(t)]|iélgi<x,v(t),t)<e.DtD[to,ts]} 3)

in which “0O" stands for a union.
With above definitions, the
reliability R(t,,t;) is given by
Ri(t,, t) = Pr{[X, Y(D] O Q,, Ot O[t,, t] } 4)
The system reliability requires not only the comgoin
reliability but also joint probabilities up to anrder of r.
Evaluating a joint probability with a high order éxtremely
difficult. To make the system reliability easierjtlBvsen [1]
proposed a bound formula for a series system. énbibund
formula, the system probability of failure is boedd by
functions of component probability of failurg, ;(t,,t,) and

time-dependent system

bivariate probability of failure p ; (t,, t) -

As reviewed previously, many time-dependent rdligb
methods are available fop (t,, t,). In this work, we develop

a new method for the bivariate probability of fadu
pf,ij (to* ts) .

3. TIME-DEPENDENT RELIABILITY FOR BIVARIATE
RESPONSES
For limit-state  functions G =g;(X,Y(t),t) and

G, =g;(X,Y(t),t) , the joint time-dependent probability of
failure is given by
pf,ij (t01 ts) = Pr{gi (er()()v)() > Q n

9;,(X,Y(7),7)>e;, Oy andlr O[t,, t.]} ®)
Eq. (5) is further transformed into [22]
P ;i (t, t) = Pr{g, (X, Y (), x) > &, Oy O[t,, .1}
+Pr{g,(X,Y(7),7) > e, Or O[t,, t.]} ®)

_Pr{g|(X!Y(/Y)!/Y) > q D
g,(X,Y(1),7) > e, Oy ad 7 O[t,, t.]}
The first two terms on the right-hand side of E@) ére

component probabilities of failure, and Eq. (6) tenrewritten
as

P (toyt) = P (to, t)+ s i (tots)— Py ioj tot) (7)
where
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Pt t) =Pr{g (X,Y(x), x)>e U (8)
g,(X,Y(7),r)>e;, Oy and 7 U[t,, t. ]}
which can be considered as the time-dependent pildpaof
failure for a series system with componentand j. In the
following sections, we first discuss the time-degemt
component reliability. We then derive equations time-
dependent joint probability,p; ;  ; (t,, t,) -

3.1 Time-dependent component reliability analysis
In this work, we employ the upcrossing rate metfi@] to
evaluate the time-dependent component probabfitsiture.

3.1.1 Upcrossing rate method for time-dependent component
reliability analysis
For a general limit-state function
G, =g, (X,Y(t),t),k=ior j with threshold g , the time-
dependent probability of failurep; (t,,t;) is given by the

upcrossing rate method as follows:
t .,
Pl t) =1l py (ol ex{ [ v €3 (@)

in which v, (t) is the upcrossing rate of componédnat time

instantt, andp, ,(t,) is the instantaneous probability of failure

at t,, given by
Pr i (t) = Pr{g, (X, Y (t;).t) > &} (10)

An upcrossing event happens when the responsebiaria

Gk passes the threshodd at time instant from the safe region
G, (t) <g,  to the failure regionG,(t+At) > e , where At is

an infinitesimally small time intervaly; (t) is defined by

Prlg(X Y(1).) <&] n[g(X Y(t+A0), t+At) >&]}
M

v (1) = lim

(11)

Eq. (9) is derived based on the assumption thathell

upcrossings oveft, t] are independent. Knowing, (t),

the component probability of failure, one can easibtain
Pr i (to, ;) using Eq. (9)

The other commonly used method is FORM. Next, wé wi

discuss the linearization in FORM and its use itimeging

Vv, (t) . We will also discuss how to derive equations for

Ps.in; (o, ts) by using the linearization.

3.1.2 Transformation of limit-state functions
FORM transforms random variableX and stochastic

processes Y(t) into standard normal random variables

U(t) = (Uy,U, (1)) . Then the limit-state function becomes
G, =9, (X, Y(1).)) =g, (T(Uy ). T(U, ©).)
=g (U(t),t).k=ior j
where T(] stands for the transforming operator.

(12)

Then the MPPu, (t) = (U}, U, (t)),k=ior j is found with
the following optimization model
muin||u(t)||
{subject tog, G(t t)=¢ k=ior j
in which ||fl stands for the determinant of a vector.

(13)

After the limit-state function is linearized at tMPP, the
failure event G, =g, (X,Y(t),t)>¢g k=ior j becomes
equivalent to the following event

L (1) = o QU > B (1), k=i or | (14)

in which
B =|u, @] k=ior | (15)
o () =~ U () /Ju @ k=i or | (16)

B.(t),k=ior j is called the Hasofer-Lind reliability index.

Therefore, failure events given in Egs. (1) andb@ome

Pr,i (G, ) = Pr{L (X) = (U (X) > B0, Dy Oltg, L]} (17)

and

o (NUT (N > B (x), Ox Olty, t]

Prin(tot) = Pr ; T (18)
DO‘] (U (7) > ﬂj (7), Or O[t,, t]

In the next section, we will discuss the method tloe
approximation of the bivariate probability; ; ;; (t;, t,) -

3.2 Time-dependent joint probability Ps ot ts)

3.21 Outcrossing rate method for time-dependent joint
probability analysis

We now derive equations for the bivariate jointhability
Ps ot ts) . With the same strategy of upcrossing rate in Eg.

9), Piin;(to,ty) is given by
Pic (o ) =L-R G exd - Vi, 0} 19)

in which R, (t,) is the probability that both components are safe
at the initial time and is given by

Ri(t) =Pr{g (X, Y(t,) t) <6 n g, (X, Y (t)t) <€} (20)
vi*Dj(t) is the outcrossing rate of a series system with

componentsi andj at time instantt. An outcrossing event
occurs when the systeoutcrosses its bounds at time instant
from the safe region to the failure region. FigsHows three
representative outcrossing events of the seriggersyd-or the
outcrossing events, both componentandj are in the safe
region at time instants,, m=1, 2, and 3. The system then
outcrosses into the failure region as a resulhefupcrossing of
Gi, or upcorring ofG;, or both the upcrossings & andG; at
the following time instantst,+At, m=1, 2, and 3. Given in

mathematical form, the outcrossing rawﬁjj(t) is given by
the following limit:
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[G(<enG(t)<e|n

G(t+At)>e OG (t+At)>e }

I i 11
At

where At is an infinitesimally small time interval.

Outcrossings Gi(t) —

Sl \\‘ Gi(t) -

r{
o=l

o

Fig. 1 Outcrossing events of a system with bivariate rasps

The probability in Eq. (21) can be decomposed thtee
components.

o [G(<enG(t)<e]
r n[G(t+a)>g OG (t+A1)>e | (22)
=p; (O+p O+ P (1)
where
G G ,
p.?(t):pr{[ W<enG<e] } 23)
n[G(t+At) > n G (t+At) < |
n[G(t+at)<egnG(t+At)>e |
[G(h<gnG(t)<e] } 5)
n[G(t+at) > n G (t+At)>e |

p(t) = Pr{

P ()= Pr{

p,j+'(t) is the probability thatG (t) upcrosses its barrier
g while G,(t) remains below its barriee; at t, piJT*(t) is
the probability that G;(t) upcrosses its barriere; while
G (t) remains below its barrieg at t, and p;"(t)is the
probability that bothG (t) and G,(t) upcross their barriers

at t.
Three corresponding joint upcrossing rates are tledimed
by

v (0= lim (n" (/1) (26
V" = lim (p(0)/ At) 27)
v =lim (b} 0/2¢) (28)
Then
V(0 =0+ 1)+ ) (29)

Equations for v”f'(t) are available for special limit-state
functions with stationary Gaussian vector procef22k In the

subsequent subsections, we will derive equatiomsvgd(t)

and other two joint upcrossing rates for generalitistate
functions. The derivations are based on the appration
discussed in Sec. 3.1.2.

322 v/ (1)

Substituting Egs. (17) into Eq. (23) yields
. [LO<BONLO<B®]

N[ Lt+a)>Bt+00) 0 L (t+At) < B (t+A1) |

It is the probability thatL, (t) upcrosses its barriefs (t)
while L;(t) remains below its barriep3 (t) at t. With the
Rice’s formula [15, 16], v (t) =IAitr1q0 p”.*’(t)/At can be

P ()

calculated by the following integral:

v O=[""[" =BT, (AW 1, Ddid,
where fL‘LJLi(DDm is the joint PDF of Li(t), L,(t), and
L.

As no close form expression of/i}'(t) is available,

(31)

transformations for Eq. (31) are required. Based tha
transformation, Eq. (31) is rewritten as below [22]

1) P =4 ), L= lJ_ L|L=a(t
O =g v[ S ‘”’]Hdu (32

) Llu=A I lh=80
where

BO~H g
H = LlL =4, L=,
Uu\u=/3.(t>,L,=u
_'Bi(t)_ﬂl;\u:ﬁ.(t),tj:u q{'g(t)_ﬂuu-ﬁ.(t),u-u J

Uu\wf. (.=,

(33)

UL\\L=A .11,

The above equations indicate that,;_, . T s
d LjjLi=,

and o.

LL=awme, € required to solve for

Hiju=am.,=,
v”f'(t), for which the mean and covariance bf(t) and
L =[L (1), L;(t)] must be obtained.
Since L (t) = o (U7 (1) = ey (DU, +exy, (U (1)
L (t) is given by
L (1) = &, ()UT (1) + oy, (U (1) (34)

With Egs. (17) and (34), the covariance matrix lof and
L are given as below.

o) o, ©

C c
| ThL n |
CL—L c ]— CuL, 1 Cu, (35)
! LL
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in which a?(t) =&, (t)&] (t) + o, (1)Coo(t, ) (t) is provided
in Ref. [20], ("312 is the second order partial derivative of

covariance matrix ofU(t), and the other components of the
matrix are given below.

c = (O] () (36)
G, =oy (t)o‘T (t) (37)
¢, =6, (el () (38)

With the covariance matrix; , the conditional means and
standard deviations are now available. They arergby

Hy=pon=, = GGl (39)
Uzg\g:g .41, =Cu _CL,LCLLichL‘ (40)
in which I=[5(1);1,] .
Substituting Eg. (35) into Egs. (39) and (40) yseld
_AOE e ma ) GGy TG
/-IL‘\L‘:/;,(K),LJ:|J - CZL‘LI -1 (41)
2
T =m0,
— af(t) _ CL‘L‘ (CLiL‘CL‘LJ - CLiLi ) + CLJL,» (CLiLiCLiLj - CLJL‘ ) (42)
¢, -1
L
Since o, () () =1 we obtain that
C =y (t)éLiT (t) =0. Egs. (41) and (42) are then simplified as
'L[lﬂ‘l_|=/3‘(l), L=l = (Bl (t)(-':|_l|_| CI_‘Li _IjCLjLi )/(CELl _1) (43)
and
O epom, = @O+ /(€ D) (44)
Similarly,
Hiji=gm = Cuy, B(t) (45)
U:"-F/B\ o =17 (46)

So far all the equations needed to calculsqé(t) are
derived. They can be solved by substituting Eq%) (4rough
(46) into Eq. (32).

323 v, (1)

After obtaining the first joint upcrossing ram;j*’(t), we
can easily obtain the second upcrossing r\all*e(t). We just
simply switch the subscriptsandj in Eqgs. (30) through (46).

324 v/'(t)
Substituting Egs. (17) into Eq. (25) yields
Y = fim (M /o) (47)
where
Mi"=PriLO)<B M) n L;t)<B,1)]

(48)
AL (t+AY) > B(t+At) L (t+A8) > B,(t+A)]

Defining Z(t) =L (t) - A (t), we have

; +00 p+o0 0 0 . . . .
My =0T fnas (202,22 )dzdz d2d2, (49)
t is omitted in Eq. (49) for brevity; for example stands for
z(t) now. Appendix A shows that;"(t) is zero whenAt

becomes infinitely small. Thereforey; ™ (t) = 0.

Having obtained all the three joint upcrossing satee
obtain the outcrossing rate in Eq. (29) as follows:

Vio (O =V (O +v;" (1) (50)

325 Ri(t)
R;(t,) is another component needed for the system

reliability analysis. After the MPPs of componentandj are
found at t,, R;(t,) is calculated by [4]

R (t) = P(5 (L), B; (to), 25) (51)
in which ®(LI1) is the CDF of a bivariate normal random
variable, and g, is the coefficient of correlation between the
two components.p, is given by
Po =y (to)OLT (to) (52)
With Egs. (19) through (52),p; 5;(t,t) can be

estimated. Then, the time-dependent probabilitfadtire for
bivariate responsesp ; (t,, t,) , can be computed.

3.3 System reliability analysis
With the availability of the outcrossing rate’, (1), we

now summarize the proposed system reliability asislynethod
for bivariate responses.

For a series system with componénand j, the system
probability of failure is given by

te .
pf,s(tO' ts) = Prio i (tO’ ts) =1- Rj (to) eXF{ _-[% Vig j ( )jt} (53)
For a parallel system,

pr (1) = 1R () exi{ [ v (]
-R (to)exp{ —J.;S A (t)dt} +R; (t,) exp[ —J': Vi € }dt}

Until now all the equations needed for the timeeatetent
system reliability analysis for bivariate responaesavailable.

(54)

4. NUMERICAL PROCEDURE
A flowchart for the proposed method is provided-ig. 2;

The main steps are summarized as below.

e Step 1: Initialization of parameters - Transforncemain
variables into standard Gaussian random variables a
stochastic processes.

e Step 2: FORM - Perform the MPP search at time iigta
using Eq. (13); obtain the associated reliabilitgexes,
and the derivative of reliability indexes.
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« Step 3: Initial reliability - Calculate the initisbmponent
reliability using Eq. (9) and initial system relity using
Egs. (51) and (52).

» Step 4: Upcrossing rates and outcrossing rate -
Computey; ™ (t) and v;"(t) using Eq.(32); then obtain the
joint upcrossing ratev, (0.

e Step 5: Integration - Integrate the upcrossingsrater
[t ] -

e Step 6: System reliability - Obtain the system pitulity of
failure p; ((t,,t;) using Eq. (53) or (54).

Step 1: Parameter Initializati
v

Step 2: First Order Reliability Method (FORMb

v

Step 4: Solve for

v component upcrossing
rates and joint
upcrossing rate

Vi, v, v,
andv; " (t)
v Vo O
Step 5: Integrate the
upcrossing rates and
outcrossing rate
| I

v

Step 6: Solve for
Pr (Lo, ts)

Step 3: Solve for
initial component

reliabilities R (t,)
andR (t;), and

system reliability

R ()

Fig. 2 Flowchart of the proposed method

5. NUMERICAL EXAMPLES

In this section, we use two examples to demorestita
proposed method. They are a Daniels system [25] and
function generator mechanism system.

5.1 Example 1 — A Daniels System

Fig. 3 shows a structural system under stochaséidihg.
The system consists of two bars. Due to differemhufiacturing
precisions, the two bars have different standandatiens in
their dimensions. As the two bars are exposed toosmns,
their widths and heights decrease at the ratek; aind k,
respectively. Each of the two bars resists a loadP@)/2

until both of the two bars yield. The task is taetmine the
time-dependent system probabilities of failure odifferent
time intervals up to [0, 20] years.

= l P()

Fig. 3 Atwo-bar system

Since the system is parallel, the time-dependestery

probability of failure is given by
Pr st &) = PG, (X, Y (X). X) > & (55)
n g,(X,Y(7),7) >e,, Oy andr O[t,, t.]}

where

g (X, Y(®).1)=P(t)/2- (& - Kt)Q - XKt ), (56)
and i=1,2, k =5x10" in/year, k, =3x10* in/year, g =0,
e =0, X=[a,b,a,b,0,,0,,], and Y(t)=[P(1)] ; 0y
and o,, are the yield strengths of bars 1 and 2, respagtiv
The parameters in Eqgs. (55) and (56) are presémfEable 1.

Table 1 Variables in Example 1

Variable  Mean (?é?/?zis)rr? Distribution Aeul';;:oor:r
a 1.3in 0.01in Gaussian N/A

b, 1.2in 0.01in Gaussian N/A

a, 1.3in 0.05in Gaussian N/A

b, 1.2in 0.05in Gaussian N/A
Oy 36 kpsi  0.36 kpsi Gaussian N/A
Oy, 36 kpsi  0.36 kpsi Gaussian N/A
P()  90kpsi 9 kpsi %?gigfsn Eq. (57)

The auto-correlation function of the stochasticoass P(t)
is given by
P (1) =exp - ¢, ~t,F/{?] (57)
where ¢ =2 yearsis the correlation length. The longer is the
time interval t, —t,, the weaker is the auto-correlation.

To evaluate the accuracy of the new method, MoradoC
simulation (MCS) is performed using a large sansjzte of 10.

The upcrossing rates;, (t), v, (t), and v/ ,(t) obtained
from the proposed method are also compared with MCS

Figs. 4 through 6 depict the upcrossing rates (t) ,
v, (t), and outcrossing ratev;,,(t) from both the new
method and MCS.
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-3
x 10
10

— MCS
9H —+— New Method

Q]

v
12

0 é iO i5 20
t year
Fig. 4 v}, (t) over time interval [0, 20] years

0.01

——MCS
0.015- | —+— New Method|

0.014-

0.012r

0.01

0 5 10 15 20
t year

Fig.5 v, (t) over time interval [0, 20] years

0.023| ——MCS
—+— New Method

V+
102

0 5 10 15 20
tyear

Fig.6 V;,,(t) over time interval [0, 20] years

Note that the curves of upcrossing rates and ossorg
rate from MCS are not smooth. The noise comes ftben
numerical discretization of stochastic process.é¥heless, the
results show the good consistency between the M&dts and
those from the proposed method. This example itecthat
the proposed method can produce accurate jointoapicry

rates and outcrossing rate that are needed fordapendent
system reliability analysis.

Using the outcrossing rate],(t), the system reliability

analysis result is obtained. The time-dependenttesys
probability of failure p; ((t,,t,) is depicted in Figs. 7 and

given in Table 2.

As shown in Fig. 7, the error of the new methoddees
larger with a longer period of time or with a largeobability
of failure. The error resource is mainly the asstimnp of
independent crossings. It is the intrinsic drawbaxfk the
upcrossing and outcrossing rate method [21].

0.14

—+— MCS
0.127 | —e— New Method

0 5 10 15 20
Time interval [0,t] years

Fig. 7 p; ((t,, t;) time interval [0, 20] years

Table 2 Time-dependent system probability of failure

Time New Method MCS

. t,t 0 i

interval | P; ((tot))  £(%) Prs(lat) 95 /(i)n(;(e)x;jlence
[0,2] | 00126  2.64] 00123 [0.0121, 0.0125]
[0,5] | 00261  4.46] 0.0250 [0.0247, 0.0253]
[0,8 | 00416  531] 0.0395 [0.0391, 0.0398]
[0, 11] 0.0591 7.08 0.0552 [0.0547, 0.0556]
[0,14] | 00789  821| 00729  [0.0724, 0.734]
[0, 17] 0.1010 10.03 0.0918 [0.0912, 0.0924]
[0, 20] 0.1256 11.98 0.1122 [0.1116, 0.1128]

5.2 Example 2 — A function generator mechanism
system

A function generator mechanism is a mechanism used
realize a desired motion [8, 9]. Such a systenh@wva in Fig.
8. This system consists of two function generatecimanisms.
Mechanism 1, a four-bar linkage mechanism with ding,,
B,, B, and B,, generates a sine function while mechanism 2,
the other four-bar linkage mechanism with linkg, B,, B

and B,, generates a logarithm function.

7 Copyright © 2015 by ASME



For the sine function generator (Mechanism 1),ntimion
input and motion output arey and k=k,(B,y) .
respectively. The required motion output is givgn b

K4(y) =60 + 60 sir'[?1 {— 97%

For the logarithm function generator (Mechanism tBg
motion input and motion output aré and n7=7,(B,8),
respectively. The required motion output is givgn b

14(6) =60 (log, [@+15 ) /60 ]/ log, (2) (59)

A motion error is the difference between the actuation

output and the required motion output. For the mechanisms,
their motion errors are

£ (B, y)=k,(B,y)-k,; ()

(58)

(60)
and

£,(B,6)=1,(B,6)-1,(6)
where B=[B,B,,---,B,].

Links B, andBs are welded together, the two input angles
satisfy

(61)

y=62+6 (62)
From the mechanism analysis, the following equatican

be obtained:
E, iJEK2 + DKZ—FK2 .

K, (B,y)= 2arctan(_ F -D, (63)

where D, =2B,(B,-B,cosy) , E, =-2B,B,siny , and
F =B?+B’+B;-B2-2BB,cosy.

n.(B,8) = 2arctan(_ 5 * “Ff'?_;?; ] j (64)

n,(6) =60 log,[(6+15)/60]/log, (2, (65)

where D, =2B,(B,-B,cos¥) , E, =-2B;B;sind , and

F,=B?+B2+B?-B2-2BB,c0d.

Fig. 8 A function generator mechanism system

In this problem, the time factor is the input angfe There
are no stochastic processes in the input variables.vector of

random variables is therefor& =B =[B,, B,,---,B,], and the
vector of stochastic processes is empty. Since the time
factor @ appears in both functions of the motion errorg th
motion errors are still stochastic processes. Th&om errors
should not be large, and their allowable valuesdameoted by

g =1.4 and e, =1.4’. All the parameters are given in Table
3.

Table 3 Parameters in Example 2

Variable Mean dsé?/?adts)rr? Distribution
B, 100 mm 0.3 mm Normal
B, 55.5 mm 0.05 mm Normal
B, 144.1 mm 0.05 mm Normal
B, 72.5 mm 0.05 mm Normal
B, 79.5 mm 0.05 mm Normal
B, 203 mm 0.05 mm Normal
B, 150.8 mm 0.05 mm Normal

The mechanism system is designed to perform iended
functions over an interval ofé), 6] =[45°,105]. If either
motion error is greater than its allowable valueerov
[6,, 6] =[45",105], a failure is considered. As a result, the
system is a series system, and the system prdigadifilfailure
is

P.-(6,6.) =P, B.x)>e0¢ B .7)>e, Ox.7006,.6.}
(66)

Figs. 9 through 11 show the results of joint upsiog rates
v, (8), v, (8), and outcrossing rates ,(6), from the
proposed method and MCS. The sample size of MQ§'is

4
3:X10

—+— MCS
3r —©— New Method -

40 50 60 70 80 90
6(°)
Fig.9 v, (6) over [45 105

100 110
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x10° Table 4 System time-dependent probability of failure

—+—MCS i New Method MCS

A —6— New Method| _Time p; (6,,6) P; (6,6)  95% confidence

interval 5 £(%) 5 ;
(109) (109) interval (10°%)

[45,50] | 0224  13.13 0.198 [0.189, 0.206]
[45,55] | 1.165 3.56 1.125 [1.104, 1.146]
[45,57]| 1.701 3.85 1.638 [1.613, 1.663]
[45,59] | 2.253 3.16 2.184 [2.155, 2.213]
[45,61]| 2.615 2.03 2563 [2.532, 2.595]
[45,63] | 2.694 1.32 2.659 [2.627, 2.691]
[45,65] | 2.695 1.35 2.659 [2.627, 2.691]

40 50 60 /0 8 90 100 110
6(°)

Fig. 10 v, (&) over [45 105

The results show that the accuracy of the proposettiod
is good.

6. CONCLUSIONS

3,5X104 : : : : : : Time-dependent system reliability analysis playvital
——MCS role in the system level optimization, lifecyclest@stimation,
3 O~ New Method] 1 and decision making on maintenance and warrantyh \ttfie

availability of computational models, predictingwthe system
reliability changes with time is possible. Makingichk a
prediction both accurate and efficient is critical.

In this paper, a time-dependent reliability methisd
proposed for a system with two response varialthes are
functions of random variables and stochastic preE®sThe
method is based the First Order Reliability MetH#®RM)
and the upcrossing rate method (the Rice’s formdiag new
method can be applied to general problems with gand

4 50 60 70 80 %0 100 110 variables, stochastic processes, and time becdusani be
. . oC) extended to systems with more than two responsibles.
Fig. 11 v;;,,(6) over[45 103 With the use of FORM, the proposed method is afcient.

As an upcrossing rate method, the new method may
produce a larger error if the probability of fa#uis larger. The
reason is that when the probability of failure &gk, the
dependency between upcrossings may become strong.

The future research based on this work may be Hg&) t

The results show that the proposed method is able t
estimate the joint upcrossing rate with good acourBased on
the joint upcrossing rates, the time-dependent esyst
probability of failure is obtained as presentedFig. 12 and

Table 4. 3 improvement of the accuracy, (2) the extensiorhefrhethod to
3X0 ‘ ‘ ‘ ‘ ‘ systems with more than two response variables, (8hdhe
integration of the method with optimization so thlag time-

2.5¢ j e vCs i dependent system reliability-based design can Henoeed.

—O— New Method

APPENDIX A: DERIVATION OF v (t)

Since Z(t+At)>0and Z,(t+At)>0, expanding Z
and Z; at timet, it gives Z (t+At)=z(t)+3(t)At>0 and
Z,(t+At) =z (t) +z(t)At >0, then Eq. (49) becomes

++ +oo pteo 00 0 f . = dZ d
# ‘ ‘ ‘ ‘ ‘ M‘J _J.o J.o .[—'zl(t)AtJ.—z(t)At 72,27, (2.2,2,2)dz J'd4 Z (A1)
40 50 60 706 “ 80 %0 100 110 Let Z,(t)/(=Z,()A) =W (t) and Z,(t)/(-Z,()At) =W, (1) ,
Fig. 12 Time-dependent system probability of failure Ed. (A1) is further transformed into
over [45,105]
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M= [T G, (200, = 2,000, 2, 2))

(A2)
2 7, AtAtdw,dw, dzdz,
Plugging Eq. (A2) into (47), we have
Vit
+00 p+0 0 0
. jo jo L L fawzz, (0,0,2 2, %2, AtAtdw dw, dz dz,
T at-0 At
=Im Aty [ e B8 1) =400 - A,
=0
(A3)
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