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Abstract Model-based reliability analysis is affected by dif-
ferent types of epistemic uncertainty, due to inadequate data
and modeling errors. When the physics-based simulation
model is computationally expensive, a surrogate has often
been used in reliability analysis, introducing additional uncer-
tainty due to the surrogate. This paper proposes a framework
to include statistical uncertainty and model uncertainty in
surrogate-based reliability analysis. Two types of surrogates
have been considered: (1) general-purpose surrogate models
that compute the system model output over the desired ranges
of the random variables; and (2) limit-state surrogates. A uni-
fied approach to connect the model calibration analysis using
the Kennedy and O’Hagan (KOH) framework to the construc-
tion of limit state surrogate and to estimating the uncertainty in
reliability analysis is developed. The Gaussian Process (GP)
general-purpose surrogate of the physics-based simulation
model obtained from the KOH calibration analysis is further
refined at the limit state (local refinement) to construct the
limit state surrogate, which is used for reliability analysis.
An efficient single-loop sampling approach using the proba-
bility integral transform is used for sampling the input vari-
ables with statistical uncertainty. The variability in the GP
prediction (surrogate uncertainty) is included in reliability
analysis through correlated sampling of the model predictions
at different inputs. The Monte Carlo sampling (MCS) error,
which represents the error due to limited Monte Carlo sam-
ples, is quantified by constructing a probability density func-
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tion. All the different sources of epistemic uncertainty are
quantified and aggregated to estimate the uncertainty in the
reliability analysis. Two examples are used to demonstrate the
proposed techniques.

Keywords Reliability - Epistemic - Surrogate - Gaussian
process - Uncertainty Quantification

Nomenclature

X A vector of input random variables in a system

g(Xx) Physics model

Dy Failure probability of a component (single limit
state)

1) Indicator function for identifying samples in a
failure region

Py Failure probability of a system (with multiple

limit states)

nycs Number of Monte Carlo samples for reliability
analysis

8(X) Surrogate model built for the simulation model

X A realization of the vector of input random
variables

2o X) Limit state function (either a component or a
system limit state)

So4(X) A surrogate for the limit state (component or
system)

EFF Expected Feasibility Function

X A single input random variable

X A realization of an input random variable

()] A vector of distribution parameters

0 A realization of the vector of distribution
parameters

BMA Bayesian model averaging

BHT Bayesian hypothesis testing
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Wy Weight corresponding to the &A™ distribution type
in BMA

D Data available on an input random variable

v Parameters of a simulation model

6X) True model discrepancy for the simulation model

Zons(X) Experimental observations
Y Output of the physics model (Y=g(X))

Fy(y) True CDF of model output

Fy(y) Estimated CDF of model output

ZmodeAX)  Simulation model to the physics model

5(X) An estimate for the model discrepancy

Uvp Auxiliary variable to represent the uncertainty in
model discrepancy estimate

Upp A realization of the auxiliary variable for model
discrepancy

Uy Auxiliary variable for aleatory uncertainty in an
input random variable

Uy A realization of the auxiliary variable for aleatory
uncertainty in an input

P A variable used to represent the set of input ran-
dom variables, uncertain model parameters and
uncertainty in model discrepancy prediction

Uk Coefficient of variation of surrogate prediction

p}” o Failure probability after inclusion of Monte Carlo
simulation error

Urics Auxiliary variable for the epistemic uncertainty

in reliability estimate

1 Introduction

Optimization under uncertainty has been studied in two
directions — (1) Reliability-based Design Optimization
(RBDO), and (2) Robust Design Optimization (RDO).
One of the crucial elements in an RBDO problem is reli-
ability analysis. Techniques for reliability analysis can be
categorized into analytical methods and simulation-based
methods (Du 2010). Analytical methods such as First
Order Reliability Method (FORM) and Second Order
Reliability Method (SORM) approaches employ first or-
der and second order approximations of the limit state
(Haldar and Mahadevan 2000a). First-order and second-
order bounds for system reliability estimates have been
proposed based on first-order and second-order approxi-
mations of the limit states (Mahadevan et al. 2001; Song
and Der Kiureghian 2003). The FORM and SORM-based
methods become inaccurate when the limit-states are
highly nonlinear. Monte Carlo sampling (MCS) ap-
proaches can be accurate but computationally expensive.
To reduce the computational effort, surrogate-based reli-
ability analysis methods have been developed (Hu and Du
2015; Wang and Wang 2015; Youn and Choi 2004). For
illustration, consider a performance function represented
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as g(X) and let g(X) =0 represent the limit state. If the
computational model for g(X) is expensive, two catego-
ries of surrogates have been used in the reliability analysis
literature — surrogates that estimate the output for any
given input i.e. g(X), and surrogates that particularly
model the failure limit state i.e. g(X) =0. For conve-
nience, the surrogates that replace g(X) and g(X) - g,=0
are termed in this paper as general-purpose surrogates and
limit state surrogates, respectively.

In the context of general purpose surrogate (commonly
known as response surface), Faravelli (1989), Choi et al.
(2004) used a polynomial expansion response surface model,
Papadrakikis et al. (1996) used a neural network based surro-
gate, Dubourg et al. (2013), Kaymaz (2005) used a Kriging (or
Gaussian process) surrogate. In the case of limit state surro-
gates (which are basically classifiers), Bichon et al. (2008,
2011) and Echard et al. (2011) used a Gaussian process (GP)
surrogate while Song et al. (2013) used a support vector ma-
chine (SVM)-based surrogate. In this paper, the limit state
surrogates (classifiers) are considered. The surrogate-based
reliability methods have mainly considered only aleatory un-
certainty (natural variability) so far. However, practical reli-
ability analysis is affected by many sources of epistemic un-
certainty (lack of knowledge); therefore, this paper investi-
gates approaches to include such uncertainty in surrogate-
based reliability analysis.

Epistemic uncertainty can be divided into two categories —
statistical uncertainty and model uncertainty. Statistical uncer-
tainty stems from inadequacies in the available data (e.g.,
sparse, imprecise, qualitative, missing, or erroneous)
(Sankararaman and Mahadevan 2011; Wang et al. 2009;
Youn and Wang 2006) which results in uncertainty regarding
the probability distributions of the input random variables.
Model uncertainty is due to uncertainty in model parameters,
numerical solution errors, and model form error. The model
form error and numerical solution errors together are referred
to in this paper as model discrepancy. In recent years, efforts
have been made to account for both aleatory and epistemic
uncertainty within reliability analysis, such as the auxiliary
variable approach (Der Kiureghian and Ditlevsen 2009;
Nannapaneni and Mahadevan 2015; Sankararaman and
Mahadevan 2013a), the conditional reliability index method
(Hu et al. 2015), and the Bayesian network approach
(Mahadevan et al. 2001; Straub and Der Kiureghian 2010).
These methods have only concentrated on component reliabil-
ity analysis (i.e. a single limit state) considering a few sources
of epistemic uncertainty.

Uncertainty due to the use of a surrogate, also called surro-
gate uncertainty, is an important source of uncertainty when
using a surrogate for reliability analysis. In this paper, we are
using the term surrogate uncertainty to represent the variance in
the surrogate prediction and not the bias. For instance, when a
GP surrogate is used, the prediction at any input is a Gaussian
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distribution. Another source of uncertainty that is often ignored
is the Monte Carlo sampling (MCS) error, which is the uncer-
tainty due to the use of limited Monte Carlo samples in reliabil-
ity analysis. As the number of Monte Carlo samples increases,
the MCS error decreases and as the number of samples reaches
infinity, the MCS error tends to zero. Since an infinite number
of samples is not possible, there exists some residual MCS error
that needs to be quantified and included in the reliability anal-
ysis. Techniques for systematic incorporation of various episte-
mic uncertainty sources, along with surrogate uncertainty and
MCS error in limit state surrogate-based reliability analysis are
not available yet. Therefore, this paper seeks to incorporate all
the above stated sources of uncertainty in limit state surrogate-
based reliability analysis. Here, “all” refers to all the uncer-
tainties discussed up to and including that paragraph, which
include aleatory and statistical uncertainty in input random var-
iables (distribution parameter, distribution type), uncertain
model parameters, model discrepancy, surrogate uncertainty
and Monte Carlo sampling errors. Both component and system
reliability analyses are considered. For the sake of convenience,
reliability analysis based on a limit state surrogate is termed as
surrogate-based reliability analysis in the rest of the paper.

For the construction of limit state surrogate, the
physics-based simulation model is assumed to be avail-
able. Along with the simulation model, the model dis-
crepancy associated with it is assumed to be quantified
using calibration experiments and available. If the
Kennedy and O’Hagan calibration framework (Kennedy
and O’Hagan 2001) is used, then the model discrepancy
is represented using a GP model. Kennedy and
O’Hagan, in their paper (Kennedy and O’Hagan 2001)
have proposed two approaches for model calibration —
(1) fully Bayesian, and (2) modular Bayesian. A good
overview of both fully and marginal Bayesian ap-
proaches is available in (Arendt et al. 2012). In the
fully Bayesian approach, the model parameters of sim-
ulation model and the hyper parameters are calibrated
together by obtaining joint posterior distributions.
Using the joint posterior distributions, marginal distribu-
tions can be obtained.

The model calibration using the modular Bayesian
approach can be summarized in the following steps
(Arendt et al. 2012): (1) Estimation of MLE (maximum
likelihood estimates) of the hyper parameters of the sim-
ulation model GP surrogate using the simulation data,
(2) Estimation of MLE of hyper parameters of the mod-
el discrepancy GP surrogate using the experimental da-
ta, simulation data, and hyper parameters of the simula-
tion model GP surrogate, (3) Calibration of model pa-
rameters based on the estimated hyper parameters of the
GP surrogates, and (4) Prediction, where the overall
prediction is marginalized over the model parameters.
The model prediction at any input, when conditioned

on the model parameters and MLE of hyper parameters
of GP surrogates, follows a Gaussian distribution.
However, the unconditional prediction at any input is
obtained by marginalizing over the posterior distribu-
tions of the model parameters; in this case, the model
prediction is not Gaussian. When the overall prediction
is marginalized over the model parameters, an expected
value for the reliability estimate is obtained. The above
marginalization results in the overall prediction to not
being Gaussian. However, since the goal in this paper
is to quantify the uncertainty in the reliability estimate
(as opposed to an expected value), marginalization over
model parameters is not performed and the model pa-
rameters (with their posterior distributions) are treated
just like any stochastic inputs. In this case, the predic-
tion (for a given realization of system input and model
parameter) will be Gaussian. As stated in (Arendt et al.
2012), the separation of both the GP models for cali-
bration is intuitive and therefore, the modular Bayesian
approach for calibration is adopted.

The outputs of the model calibration analysis using KOH
framework are — (1) data on the inputs, simulation output and
observations, which are used for model calibration, (2) a GP
model for the simulation model, (3) a GP model for the model
discrepancy, and (4) Posterior distribution of the model pa-
rameters. The above four elements are later used in the con-
struction of a limit-state surrogate for reliability analysis.

Earlier studies such as (Dubourg et al. 2013; Kaymaz 2005;
Bichon et al. 2008, 2011; Echard et al. 2011) considered con-
struction of the limit state surrogate for the physics-based sim-
ulation model without any model discrepancy. In this paper,
the model discrepancy is also considered in constructing the
limit state surrogate. However, construction of any surrogate
requires point values of paired input—output data whereas in
the presence of model discrepancy, the output at any input is a
PDF. This problem is overcome in this paper by using an
auxiliary approach, which allows for a one-to-one relationship
between input and output.

Several types of surrogates are available in the literature
such as polynomial chaos, Gaussian process (GP), support
vector machines, neural networks etc. This paper uses a GP
surrogate to model the limit state following the Efficient
Global Reliability Analysis (EGRA) approach proposed by
Bichon et al. (2008, 2011). However, the techniques proposed
in this paper are not limited to GP models and can be extended
to any surrogate. The GP surrogate of the simulation model
obtained from the KOH framework-based calibration analysis
is further refined to construct the limit state surrogate by
adding more training points close to the limit state. The train-
ing points are adaptively selected by maximizing a learning
function called the Expected Feasibility Function (EFF). More
details about the EFF and selection of training points are pro-
vided in Section 2.1.2.
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In the presence of statistical uncertainty, an input
variable can be represented through a family of PDFs,
where each PDF corresponds to a realization of the
distribution parameters and a distribution type. The sam-
pling of the input variable can be done through a nested
sampling approach where the distribution type and pa-
rameters are sampled in the outer loop, and the samples
of the input variable are generated in the inner loop.
This nested-loop procedure is computationally expen-
sive; therefore a faster single loop sampling approach
using the probability integral transform (Sankararaman
and Mahadevan 2011) is used here.

The major contribution through this paper is a unified
framework connecting the model calibration analysis to
constructing a limit state surrogate and estimating the
uncertainty in reliability analysis by incorporating differ-
ent sources of epistemic uncertainty. The basic contribu-
tions include: (1) The use of the auxiliary variable ap-
proach to represent the model discrepancy for its inclu-
sion in limit state surrogate refinement, and (2)
Quantification of different types of epistemic uncertainty
and their incorporation in reliability analysis to quantify
the uncertainty in the reliability estimate.

The remainder of this paper is organized as follows:
In Section 2, brief backgrounds on component and sys-
tem reliability analysis in the presence of aleatory un-
certainty, and on the quantification of different sources
of epistemic uncertainty are provided. Section 3 presents
the proposed methodology for component and system
reliability analysis in the presence of various sources
of epistemic uncertainty. Two numerical examples are
used to demonstrate the proposed methodology in
Section 4. Concluding remarks are provided in
Section 5.

2 Background

2.1 Reliability analysis with a limit state surrogate

Here, the definitions for component and system reliability, and
an introduction to Efficient Global Reliability Analysis

(EGRA) are provided.

2.1.1 Component and system reliability estimation using
a surrogate

Component reliability Consider a single limit state g(X)=0,
where X=[X;, X5, ", X,]is a vector of input random vari-
ables. The component failure probability (pf) is given as

Py = Pr{g(X)=0} (1)
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In surrogate-based reliability analysis using MCS, the com-
ponent failure probability can be calculated as

nycs

Py = Z ](g (X(j)) 50) /nucs (2)

j=1

where x is a realization of random variables X, n,,cs is the
number of MCS samples, g(x) is the surrogate, g(x) is the
surrogate prediction at the ;™ sampling point x’, and
I@i(xm)f 0) is a failure indicator function defined as

1,if anevent is true
0, otherwise

I(event) = { (3)

System reliability System failure events may be defined
through a series, parallel or a mixed series/parallel combina-
tion of component failures (Wang et al. 2011). Let g,(X),
i=1, 2, -, m be the limit-state functions. The failure prob-
ability of a series combination of individual failures is given
by

sy =e{ 8 e0=0} @

where pj is the system failure probability, Pr{-} is probability,
and “vU” is union. The system failure probability, using a sur-
rogate and MCS, can be calculated as

nycs

> I(i’—61 gi(x<j))50) /nucs ()

J=1

Py =

where g(x") is the surrogate prediction of the /™ limit-state
function at the /™ sampling point x?. Equation (5) can be re-
written as

=3 (o {5 69) 20 e

=
= jznzml (gmm (X(j)) SO) /nucs (6)

The failure probability of a parallel combination of individ-
ual failures is given by

py = flax<o} )

where “N” is intersection. Similar to the series system, the
failure probability of a parallel system can be calculated as

nyes

pr=> I(ﬁgi (X(j)) 50) /nucs (8)

j=1 i=1
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Fig. 1 Composite limit state of
three individual limit states

! ,,' K ) ‘/ 2 (X)*O YA Composite
L &)=

Composite
limit state

A

] o
f 1<
X<
! ’
/o

limit state ' 2,(X)=0

(a) Series system

The above equation can be written as

5= 1 (man fa()}=0) s

= znfml (gmax (x(j)> SO) /nucs 9)
=

Figure 1 provides graphical illustrations of composite limit
states for series and parallel combinations of three individual
limit states g(X)=0, i=1, 2, 3. When a system failure is
defined through a mixture of series and parallel combination
of component failures, the system reliability can be estimated
by the following steps (Haldar and Mahadevan 2000b): (1)
decompose the combined system into a set of mutually exclu-
sive series combinations, (2) compute the reliability of each
series combination, and (3) compute the system reliability
using the reliabilities of each of the series combinations.

2.1.2 Efficient global reliability analysis (EGRA)

In EGRA, a GP surrogate is constructed to approximate limit
state function g.(X)=0, i.c., we are building a surrogate for
the classifier or boundary between failure and safety. (Note that
2o(X)=g(X) for a component, g..(X)=gmin(X) for a series
system; and g,,(X) =gmax(X) for a parallel system). Using the
idea of the Expected Improvement (EI) (Jones et al. 1998),
EGRA adaptively selects training points close to the limit state
to accurately model g,,(X). The selection of training points is
based on a learing function called the Expected Feasibility
Function (EFF) defined as (Bichon et al. 2008)

errn = (uiore) o T8 2 (o ()
oo ()T ()]
(

)

where e is the failure threshold (=0 in this paper), e”=e+e¢,
d=e—¢, Hg(X), 04(X) are the mean and standard deviation of
the GP prediction at point X=x, ¢ is usually chosen as
€=20,(x) (Bichon et al. 2008), and &(-) and ¢(-) are the CDF

(10)

S &X)=0 g(X)=0
'g,(X)=0 2.(X)=0

(b) Parallel system

and PDF of a standard Gaussian variable, respectively. In
EGRA, a new training point is identified by maximizing the
EFF as X" = argmax, {EFF(x)}. More details about EGRA
are available in (Bichon et al. 2011). EGRA and other similar
methods that focus on limit state surrogates such as META-IS
(Dubourg et al. 2013) and AK-MCS (Echard et al. 2011) have
so far concentrated on reliability analysis with only aleatory
uncertainty. In practical applications, several sources of episte-
mic uncertainty may be involved in the reliability analysis. The
next section discusses several sources of epistemic uncertainty
and their quantification.

2.2 Quantification of epistemic uncertainty
2.2.1 Statistical uncertainty regarding the inputs

In practical applications, it is common to have only data on an
input variable X, which could be sparse, and/or interval data
causing uncertainty in its PDF. Both parametric and non-
parametric approaches have been developed to address the
issue of statistical uncertainty.

(a) Parametric approach
In a parametric approach, an input variable is repre-
sented using a distribution type and distribution parame-
ters. The presence of limited data causes uncertainty re-
garding the distribution type and its parameters, which
are expressed as probability distributions in a Bayesian
approach.

Distribution parameter uncertainty Let a dataset D for a
variable X consist of # point data p{i=1 to n) and m interval
data [a;, b;] (=1 to m). The likelihood function for the distri-
bution parameters © can be constructed as

L(8) = [lz[le(X =) ,-E[l [Px(x =bjje)-Fx(x =ale)] (11)

where fy(x) and Fx(x) represent the PDF and CDF of X respec-
tively. From the likelihood function, the PDFs of the distribu-
tion parameters can be obtained using Bayes’ theorem.
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Distribution type uncertainty Two approaches are available
to handle distribution type uncertainty - (1) Composite distri-
bution of possible distribution types using Bayesian Model
Averaging (BMA) (Hoeting et al. 1999), or (2) Single distri-
bution type that best describes the data using Bayesian
Hypothesis Testing (BHT) (Bernardo and Rueda 2002; Ling
and Mahadevan 2013). BMA is used here and the composite

N
distribution is formulated as f(x]0) = Y wify(x|6k)
k=1

where fi(x|0,) is the &A™ distribution type with wy and 0,
representing its weight and distribution parameters. The
weights can be computed by comparing the posterior proba-
bilities of the distribution types as

Pr(fy(x]|8c)[D) _ Pr(D|fy(x[6c)) Pr(/x(x[6))
Pr(fy(x]04)|D)  Pr(D|fy(x[04)) Pr(fy(x|0a))

(12)

where Pr(fy(x|0.)) and Pr(fy(x|0©,)) are the prior probabilities
of the two distribution types and Pr(f(x|0.)|D)/Pr(f«(x|6,) D)
is the ratio of their likelihoods. In the presence of multiple
plausible distributions, weights for all the distributions can
be computed with respect to a particular distribution. In the
presence of multiple plausible distributions, weights for all the
distributions can be computed with respect to a particular dis-
tribution. If My, M, ... M,, are plausible distributions, then ra-
tios of posterior weights can be computed between (M;, M,,),
(M>,M,)... (M,,—1,M,). After obtaining the ratio of weights
computed using Eq. (12), weights can be normalized. Using
the normalized weights and the plausible distribution types,
the composite distribution can be constructed. Please refer to
(Sankararaman and Mahadevan 2013b) for more details.

(b) Non-parametric approach

As opposed to the parametric approach, the non-
parametric approach does not assume any particular dis-
tribution type or distribution parameters but the PDF is
constructed using interpolation techniques.

Let a dataset D for a variable X consist of # point data
p{i=1 to n) and m interval data [a;,b;] (j=1 to m); the
domain of X is discretized into Q points to model the
non-parametric distribution. Let the PDF values at these
discretized points be equal to¢; (i=1, 2, -, Q). Since
q=¢; (i=1, 2, ---, Q) is unknown, they can be esti-
mated by solving the following optimization problem:

maxL(a) = 11 72(X = pfa) T [F2(x = ) (x = afa)]

J=1

s.it. q=0; fy(x)=0; /fx(x)dle
(13)

After obtaining the PDF values at these discretized points,
interpolation techniques are used to estimate the PDF values at
any other input values. More details on the likelihood-based

@ Springer

non-parametric method are provided in (Sankararaman and
Mahadevan 2011).

2.2.2 Model uncertainty

This section discusses the quantification of different types of
model uncertainty such as model parameter uncertainty and
model discrepancy. In addition, surrogate uncertainty and
MCS error are discussed in the context of surrogate-based
reliability analysis.

(a) Model parameter uncertainty

Model parameter uncertainty represents the uncertain-
ty in the model parameters due to either natural variabil-
ity or limited data or both. The three possible scenarios of
model parameter uncertainty are — (1) model parameter is
deterministic but unknown (epistemic uncertainty), (2)
model parameter is stochastic with known distribution
parameters (aleatory uncertainty), and (3) model param-
eter is stochastic with unknown distribution parameters
(aleatory and epistemic uncertainty). If a model parame-
ter is deterministic but unknown, it can be estimated
using available data using least squares, maximum like-
lihood or Bayesian calibration.

Model parameters (W) that are associated with
aleatory uncertainty (probability distributions) and
with fixed distribution parameters, can be treated
similar to input variables for reliability analysis
and the techniques used for quantification of uncer-
tainty in the inputs (parametric and non-parametric
approaches, described in Section 2.2.1) can also be
used for model parameters. If the distribution pa-
rameters of ¥ are unknown (both aleatory and ep-
istemic uncertainty), then one of the aforementioned
calibration techniques can be used to estimate the
distribution parameters using available data. Here,
Bayesian calibration is used to explicitly quantify
the uncertainty in the model parameters or their
distribution parameters.

(b) Model discrepancy

Model discrepancy, in this discussion, represents
the combined error introduced due to the assump-
tions and simplifications made in building a model
(model form error) as well as the errors that arise
in the methodology adopted in solving the model
equations (numerical solution errors). Different
types of numerical solution errors exist such as
discretization error, round-off error, and truncation
error. Suppose gops(X), Zmod(X), and §(X) repre-
sent the observations, simulation model prediction
and model discrepancy respectively. For a given
X =x, the three quantities are related as
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gohs(x):gmodel(X)Jr6(X)+€ohs(x)' Here, Eobs(x) re-
fers to the observation (or experimental) error.
When following the KOH framework, the quantifi-
cation of the model discrepancy can be performed
together with the calibration of model parameters.
Note that in this paper, as stated in Section I, we
adopt the modular Bayesian approach of the KOH
framework.
(¢) Reliability analysis errors

Different types of errors that arise in carrying out re-
liability analysis such as surrogate uncertainty and uncer-
tainty quantification (UQ) error are discussed below.

Surrogate uncertainty In this paper, the variance (and
not bias) associated with the prediction of a surrogate
is called surrogate uncertainty. For example, the predic-
tion of a GP model is a Gaussian distribution with pa-
rameters dependent on the input. Since a surrogate (GP
model) is employed in this paper for reliability analysis,
the details about surrogate uncertainty and its impact on
the reliability estimate are discussed later, in
Section. 3.2.2.

Monte Carlo Simulation (MCS) error MCS error represents
the error due to the use of limited number of Monte Carlo
samples for uncertainty propagation. The MCS error is quan-
tified as the difference between the empirical CDF (construct-
ed using Monte Carlo samples after uncertainty propagation)
and the true CDF of the output quantity of interest
(Sankararaman and Mahadevan 2013b).

Consider the model Y=g(X) and let N; samples be gener-
ated from the input and propagated through the model to ob-
tain the samples of the output Y. Let Fy(y) represent the em-
pirical CDF constructed from N, samples and F'y(y) be the true
CDF. If n, samples are less than a value of Y=y*, then n,
follows a binomial distribution 1, ~ B(N,, F'{y)) considering
the value of each sample as the result of a Bernoulli trial
(Haldar and Mahadevan 2000a). As N; becomes larger, the
binomial distribution can be approximated with a Gaussian
distribution. A review of several empirical rules that have
been proposed in the literature for approximating a binomial
distribution with a Gaussian distribution is provided in (Emura
and Lin 2015). The most commonly used rule, as stated in
(Emura and Lin 2015), is NJFyW(y)>5 and N(1—Fyy))>5.
Let us consider this case. A large of Monte Carlo samples
are generally used in surrogate-based methods since it is com-
putationally inexpensive. Even if we use about 100,000 sam-
ples (which is a common number in surrogate-based
methods), the threshold Fy(y) value is 1555 = 0.00005,
which covers more than 99.99 % of the domain.

Since the CDF value from the Monte Carlo output samples
is given by Fy(y) = n,/N,, we have

Fr) N (Fy (), VFYG)-Fy0))/N;) (14)

Therefore, the MCS error associated with Fy(y) can
be expressed as a Gaussian random variable with mean
and standard deviation as given in Eq. (14). Since the
true CDF Fy(y) is unknown, Eq. (14) cannot be used
directly. However, confidence intervals for Fy(y) can be
estimated given the empirical CDF Fy(y), the number
of samples used Ny and the degree of accuracy 1—+ as

(Fy )

to the 1—7 quantile of the standard normal distribution
(Agresti and Coull 1998). It should be noted that the
true CDF Fy(y) is a fixed quantity but unknown; there-
fore, it is an epistemic source of uncertainty and quan-
tified using confidence intervals. For given values of

+4NZ) -, where z,, refers
)z

Fy(y) and N,, we can estimate the percentile values of
Fy(y) by varying the accuracy parameter . From the
percentile values, the entire CDF can be numerically
constructed which can then be used to obtain a PDF.

For illustration, let /,u represent the lower and upper bounds
of confidence intervals corresponding to accuracy parameter -.
Therefore, Pr(Fy(y) < u) =1-3 and Pr(Fy(y) < I) =3.
Hence, the CDF values at F(y)=1/,u are 3 and 1—7 respectively.
Following the same procedure at multiple values of ~, the CDF
values at the corresponding lower and upper bounds of the con-
fidence intervals can be obtained which can be used to construct
the CDF of Fy(y).

The next section presents techniques for the inclusion of
different types of epistemic uncertainty discussed in this sec-
tion in surrogate-based reliability analysis.

3 Proposed methodology

An overview of the proposed methodology for surrogate-
based reliability estimation including different types of episte-
mic uncertainty is presented in Fig. 2.

The overall approach can be divided into two stages as
shown in Fig. 2 — (1) construction of a surrogate, and (2) use
of the surrogate for reliability analysis. Uncertainty sources
such as statistical uncertainty in the inputs, uncertain model
parameters, and model discrepancy influence the surrogate
construction, thereby affecting the reliability estimate, where-
as the surrogate uncertainty and MCS error do not influence
the surrogate construction but only affect the reliability esti-
mate. Details regarding the handling of different sources of
epistemic uncertainty in these two stages are discussed below.
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Fig. 2 Flow chart of proposed
method for reliability analysis
under uncertainty
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3.1 Stage 1: surrogate construction including epistemic
uncertainty

First, the different inputs to be included in the surrogate are
discussed which is followed by the surrogate construction.

3.1.1 Inputs to the surrogate

In this paper, the inputs for the surrogate model include
the inputs for the simulation model (X), the uncertain
model parameters (W) and the model discrepancy.
Consider a system with m limit state functions given by g;
(quj):gmodel, i(leII)"i'(si(X)a i=1,2 -, m
where gmoder, X, ¥) and &(X) are the simulation model
and the model discrepancy of the /™ limit state function
respectively. Since KOH calibration framework is used,
the model discrepancy is not modeled as a function of
model parameters. However, including the model parame-
ters in the model discrepancy term might be a more rig-
orous. The quantification of the model discrepancy is by
using the simulation model. The performance of the over-
all model (simulation model and model discrepancy) might
be satisfactory over the entire range of the inputs but the
main idea of the limit state surrogate is to model the limit
state perfectly and is not concerned about the its perfor-
mance in the interior domain of the inputs (away from
limit state). Since the limit state model governs the reli-
ability estimate (and its uncertainty), we wish to model it
as precisely as possible. In system reliability, it is possible
in some cases that we may have some calibration data on
a few limit states but not a lot of data on the remaining
limit states. Therefore, the construction of the limit state surro-
gate refines the system limit state by obtaining training points
considering all the individual limit states. The focus of this work
is to quantify the uncertainty in the reliability prediction by
investigating various sources of epistemic uncertainty. It is based
on the assumption that the model calibration has already been
performed. We obtain a GP surrogate for the model discrepancy
from calibration analysis.

@ Springer

The key idea is to include the model discrepancy terms in
the construction of the limit state surrogate and then use the
surrogate for reliability analysis. The limit-state function
Zed X, W) for surrogate-based reliability analysis is formulat-
ed as

Zinoder(X, @) + 6(X), for a component
e (X, 0) =4 1§1ir.1._ i {gmde,_ (X, W) -5—5,'(X)}7 fora series system

max {gmode,‘ (X, W) JrSi(X)}7 fora parallel system

R .

Note that the model discrepancy, 6;(X), i=1, 2, ---, m,is
random at any given point X =x, which results in uncertainty
in the response g..(X, ¥). Directly constructing a surrogate
for the implicit response given in Eq. (15) is not practical due
to randomness in 0; (X). An explicit representation of variabil-
ity in B #(X) is required to formulate Eq. (15) as a deterministic
function; this challenge is addressed using the auxiliary vari-
able method.

The “auxiliary variable” was introduced by
Sankararaman and Mahadevan (2013a, b) in the context
of random variables whose distribution types and parame-
ters are uncertain. Such variables are associated with both
aleatory and epistemic uncertainty. The auxiliary variable
is used to represent the aleatory part of the overall uncer-
tainty. Mathematically, an auxiliary variable u, based on
the probability integral transform, is defined as

u=Fx(x|©=0)= [ fy(w|©=0) dw, where 6 is a re-

alization of the distribution parameter ©, w is a dummy
variable used for integration, and Fy(x|©@=0) denotes the
CDF value of variable X for a realization of ©. For a
given realization of ©, and a realization of the auxiliary
variable u gives a unique value of X. This gives a deter-
ministic relationship between (©,u) and X. In this work,
we have extended the concept of the auxiliary variable
further, to represent the epistemic uncertainty in the pre-
diction of model discrepancy and in the reliability esti-
mate. In general, whenever there is a stochastic mapping,
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i.e., mapping of a single value to a probability distribu-
tion, the auxiliary variable can be used to convert the
stochastic mapping to a deterministic mapping.

An auxiliary variable is used to represent the variability in
the prediction of model discrepancy in order to build the limit

state surrogate. Since a GP is used to model &(X), for any
given X =x, the model discrepancy follows a Gaussian distri-

bution given by &;(x) N (,uéi(x), 05 x )) The PDF of 6;(x) is
fs (6,-(x)\u = g O = a(;,(x)) and the CDF value is given by

upp,i = Fo(é(xwlu s, (x,1) 0 UZU&(X)) (16)
5y

/ w|,u = Hs(x)) 0 = (75,(x)>dw

where w is a dummy variable for integration. The auxiliary
variable follows a uniform distribution between 0 and 1 (since
the CDF values range from 0 to 1). Using the auxiliary vari-
able, a realization of Sl-(x, ) for a given Upp=ump,
1= fi5,y), and 0 = 05(x) Can be computed by

0;(x) = FE:(X) (UMD,i = uypi|n = Ko (x)» O = 06,-(x)) (17)

where FE,I(X)() is the inverse Gaussian CDF of 0;(x).

More details about the auxiliary variable approach are
available in (Song et al. 2013). Combining Eqgs. (15)
and (17), we have

Zimoder X, ¥) + F6 (UMD|/L Hsx)s O = 05(x>), for a component

gext(Xa ‘I’7 U) = i=1, %nn’

i=1, 2,

. {gmodel" (X, ) + F(S,(x) (UMD:,-}M = 5 x)s O = Ulgi(x)) }, for a series system (18)

max {gmode,_ (X, W) + nglm (UMD_,-}M = Hsx)) 0= 05,.(,‘)) }7 for aparallel system

Thus, the original model with stochastic output is
mapped to a deterministic model, which can then be
used to build a surrogate for reliability analysis. Initial
GP surrogates (for simulation model and model discrep-
ancy) are obtained from the KOH calibration framework
as shown in Stage 1 of Fig. 2. These surrogates can
directly be used for reliability analysis. However, if bet-
ter accuracy is desired, then the GP surrogate of the
simulation model can be further refined around the limit
state (Stage 2 in Fig. 2). This local refinement requires addi-
tional training points and these are obtained by evaluating the
simulation model Eq. (18). After constructing the limit state
surrogate, it is directly used for reliability analysis without any
further runs of the original model.

3.1.2 Including epistemic uncertainty in surrogate
construction

As stated in Section 2.1.2, the training points for the construc-
tion of the limit state surrogate are adaptively selected by max-
imizing a learning function called the Expected Feasibility
Function (EFF). Several optimization techniques (gradient-
based, sampling-based) are available for maximizing the EFF.
In this paper, a Monte Carlo sampling-based technique is im-
plemented, as demonstrated in the Adaptive-Kriging Monte
Carlo Simulation (AK-MCS) method (Echard et al. 2011).
The key idea in MCS-based optimization is to generate a pool
of samples of the inputs from their corresponding PDFs and
choose the sample from the pool that maximizes the EFF. The

epistemic uncertainty in the inputs of the limit state surrogate
can be included in the surrogate modeling construction through
the sampling of input variables, which is discussed below.

Inputs to the simulation model (X) Quantification of uncer-
tainty in the distribution parameters and distribution type of
random input variables was discussed in Section 2.2. For a
realization of distribution parameters and distribution type, the
input variable is represented by a PDF; therefore, for multiple
realizations of distribution parameters and type, the input var-
iable is represented through a family of PDFs. The traditional
approach for sampling of an input variable with uncertain
distribution parameters and distribution type is through a
nested double-loop procedure where the distribution parame-
ters and distribution type are sampled in the outer loop and
samples of the input random variable are generated in the
inner loop. The double-loop sampling procedure is computa-
tionally expensive; therefore, a single-loop sampling proce-
dure using an auxiliary variable based on the probability inte-
gral transform is used. An auxiliary variable Uy is defined to
represent the aleatory uncertainty in a random variable and
represented using the probability integral transform as

X

"y = F)((X‘@X — 0y, dy = dX*) - / f‘X(w)@X — 0y, dy = dX*)dw
J (19)

where @y, dy represent the uncertain distribution parameters
and distribution type; their realizations are represented by 0y,
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dy, w is a dummy variable for integration, Fy(x) and fi(x)
represent the CDF and PDF of X respectively. Thus, for a
realization of auxiliary variable Uy=uy, distribution parame-
ters 0 and distribution type dy generated from their corre-
sponding PDFs, one realization of the input variable can be
obtained as x=Fy'(u | ®x= 0y, dy=dx*) using the inverse
CDF method. Following this procedure, several realizations
of the input can be obtained.

If a non-parametric approach is used for the representation
of statistical uncertainty (i.e. no distribution type or parame-
ters), its CDF is constructed using numerical techniques which
is then used for generating samples using inverse CDF tech-
nique. If an input variable is not associated with any statistical
uncertainty (i.e. only known distribution type and distribution
parameters), then the conventional inverse CDF technique
(Haldar and Mahadevan 2000b) can be used for generating
samples.

To perform sampling of correlated variables, the correlated
variables are first transformed into an uncorrelated space using
orthogonal transformation or Cholesky decomposition.
Samples are then generated individually in the uncorrelated
space and transformed into the correlated space. Please refer to
Chapter 9 in (Haldar and Mahadevan 2000b) for more details.

Uncertain model parameters (¥) Since we are adopting the
modular Bayesian approach, the obtained posterior distribu-
tions of the model parameters are conditioned on the MLE of
hyper parameters, and correlations are not calculated between
the model parameters and the model discrepancy. Correlations
would be calculated when the fully Bayesian approach of
KOH framework is implemented. As stated in Section 2.2.2,
the uncertain model parameters (W) can be treated similar to
the inputs; therefore the sampling techniques presented above
for the inputs can also be used for sampling the uncertain
model parameters.

Model discrepancy (Uyip) Section 3.1.1 proposed an aux-
iliary variable approach to explicitly represent the uncer-
tainty in the model discrepancy. Since the auxiliary var-
iables follow a uniform distribution between 0 and 1,
their sampling can be carried out through random uni-
form sampling between 0 and 1.

From the model calibration analysis, as stated in
Section 1, we have data on the inputs, model parameters
and simulation model output that was used for calibration.
If we have k samples, then k£ random samples of the model
discrepancy (Uyp) are generated and these data can be
used as initial training points to construct the limit state
surrogate. Then, more training points are adaptively added
by maximizing the EFF until a convergence criterion is
satisfied. In this paper, convergence is assumed to be
achieved when the maximum EFF is less than a threshold
value (EFF™ <EFF *).
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3.2 Stage 2: uncertainty quantification in reliability
analysis

3.2.1 Reliability analysis

In Stage 1, several Monte Carlo samples of the inputs (X, ¥,
Ump) were generated to carry out the maximization of EFF for
adaptive selection of training points for limit state surrogate
construction. Since these samples are generated from their
corresponding PDFs, these samples can also be used to carry
out reliability analysis. Using these samples, the failure prob-
ability can be calculated as

nycs

Py = I(gm (x<f), uyp, \If(j)) SO) /nucs (20)

j=1
where X7, upp?, ¥V are the j-th sample of X, UMD, ¥,
which are input variables to the simulation model, auxiliary
variables for model discrepancy and uncertain model param-
eters, respectively. g..(.) represents the surrogate built to ap-
proximate the true limit state g,,(.) and /(.) is the failure indi-
cator function as defined in Section 2.1.1

3.2.2 Inclusion of surrogate uncertainty in the reliability
estimate

Since a GP surrogate is used, the prediction at any input is a
Gaussian distribution with parameters dependent on the input.
In most cases, only the mean predictions p,
(xY), ump", 'Il(j)) are used to estimate g,(x", ump”,
W), The failure probability is therefore estimated as

nycs

=3 I(Mg (Xm, up ), q;(ﬂ)g()) /nucs (21)

where fa} is the estimate of the failure probability obtained by
using the mean predictions. If our purpose is only to estimate
the expected failure probability, we may ignore the correlation
between the uncertain responses (Jiang et al. 2013). However,
the focus of this paper is to quantify the uncertainty in the
reliability estimate. Therefore, the uncertainty due the surro-
gate prediction is also considered to quantify the overall un-
certainty in reliability estimate. When the accuracy of the sur-
rogate is high (i.e. the uncertainty of prediction is low), the
above treatment of using the mean predictions works well, and
results in a single value of the reliability estimate. If the accu-
racy of the model prediction is low, it becomes necessary to
also include the prediction uncertainty for reliability estima-
tion. In order to quantify the effects of surrogate uncertainty
on reliability analysis, an uncertainty quantification problem is
therefore formulated as shown in Fig. 3.
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Fig. 3 Effects of surrogate

uncertainty on reliability analysis M M
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(a) Correlation analysis of surrogate predictions
For any input @ =[x, uyp?, 9], the prediction
from the surrogate follows a Gaussian distribution given

by &ui(0) N (i (), 02 (0)). Also,
gex,(@(f)), j=1, 2, -, nycs, are correlated due to the
covariance function assumed in a GP.

As indicated in Fig. 3, the uncertainty of the system
failure probability estimate (the unconditional failure
probability estimate given in Eq. (20)) due to surrogate
uncertainty can be quantified by propagating the uncer-
tainty in gex,((p "), j=1, 2, -, mycs, through Eq. (20).
Since gm,(@ ) j=1, 2, =, nypcs, are nycs correlated
random variables, their correlations are analyzed based
on which a sampling-based method is developed for un-
certainty quantification.

In MCS-based reliability analysis, 7;,cs is usually
large. Performing the correlation analysis for the 7;,cs
random variables is computationally expensive. In order
to reduce the number of random variables (..(@"),
J=12, 0 myes)s el @), j=1, 2, . nycs are
partitioned into two groups based on the probability that
they may result in the error of failure probability esti-
mate. The first group includes responses g, (%),
j=1, 2, -+, ng, for which the probability of making
an error in the sign of /(.. (")) is very low (i.c.,
0.001). Therefore, the mean predictions /,Lgm((p(ﬂ) are
used to substitute for g..(¢@") in Eq. (20). The remaining
responses in g (@), j=1, 2, -, nycs form the sec-
ond group, which are treated as random variables. The
system failure probability given in Eq. (21) then becomes
(Hu and Mahadevan 2015)

= (3510 (0)) 1 (ea(09)) ) e

i=1

(22)

where ng; and ng, are the number of samples in the first
and second groups respectively. The partition of
g”ex,((p(’)), j=1, 2, -, mycs is achieved based on the
following function (Echard et al. 2011)

n (q,(j))’/q ((pm
8ext 8ext

U @?) represents the coefficient of variation of the mod-
el prediction, which can be used to estimate the probability of

U (@) = (23)

v

Bq.20) +—» Py
y

LN

v

making an error in the sign of g..(@"). The first group of
responses correspond to U(@)>3.1 and the rest of the
responses fall into the second group. Defining the training
points in the current GP model as ¢* and g..(¢”), the covari-
ance matrix of gm((p(k)), k=1, 2, -**, ng conditioned on the
training points is given by

Zope = ZppEp Xy, 2;, (24)

where %, 2., and X, are the covariance matrixes between
o @) 20 80 @), 0l @) a0 g0l @), Lurl@®) and
Zex@”), respectively. Based on the covariance matrix 2, the
conditional correlation matrix p,, of gex,((p(k)), k=1, 2,
ng is equal to p;, which represents the correlation between
g”m(@(”) and g‘ex,(@U)), i, j=1, 2, =, ng, conditioned on
current training points. Thus, the correlation matrix is an ng,
X ngy square matrix with diagonal elements as 1.
(b) Propagation of surrogate prediction uncertainty
After obtaining the correlation matrix, the sampling-
based method can be used to propagate the surrogate
prediction uncertainty of g..(@?) to the uncertainty in
py based on Eq. (22). To do this, samples of gex,((p(k)),
k=1, 2, ***, ng, are generated using the following ex-
pression (Hu and Mahadevan 2015):

(o) =n_ (o) (o) c0lo /i (25)
ext =1

where §;, j=1, 2, ', ng, are independent standard
Gaussian variables; and 7; and ¢/ are the eigenvalues and

T
eigenvectors of py, and p. ; = [Pna Pi2s ..'?p[ng2i| .
Since the surrogate prediction at each input is a random
variable, N, samples are generated for each gext(x(k)),

k=1, 2, ***, ng, resulting in the following sampling ma-

trix:

ENyuxng = {gext(iaj)}vvi =1, Ngm;j = 1, Tty g, (26)
Using the samples of gm(x(k)), k=1, 2, -, ng and

Eq. (22), samples of pj are obtained as

i) = {310 () + 3t

i=1

}/"MCSv/l 2 stm

(27)

where pj(j) is the ™ sample of py due to the surrogate predic-
tion uncertainty. Using the samples of pj(j), j=1, 2,
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Nyim» @ PDF can be constructed for the system failure proba-
bility pj. This distribution represents the uncertainty in pj due
to surrogate uncertainty.

3.2.3 Inclusion of MCS error in reliability estimate

Using Eq. (27), several samples of pj are obtained through
correlated sampling of the model predictions at several inputs.
As discussed in Sec. 2.2.2 (c), there exists an uncertainty in the
estimation of each failure probability sample, p/(), /=1, 2,
=+, N, due to the limited number of Monte Carlo samples
(referred to here as MCS error), which results in each pj(y)
being a random variable. To avoid any confusion in the nota-
tion, the failure probability when MCS error is also considered
is denoted as p_jVCS(]’). Following the discussion on MCS
error in Section 2.2.2 (c), we can construct the PDF of
ijCS (/) by estimating its quantiles using py(j), number
of samples n,,cs and degree of accuracy 1—+ as

z s (120)) 2
(P}UH = izn,,p«’m( pfm)Jr «/z) 12
1

2nycs Ny 4”/2\/1cs N )

nycs

(28)

where z.,, represents the 1—7 quantile of a standard
normal distribution. After including surrogate uncertain-
ty and MCS error, pj is represented by a family of
PDFs (Fig. 4b).

After the inclusion of surrogate uncertainty, the failure
probability is represented using a PDF as shown in Fig. 4a. pj
is a sample from this PDF (shown as a red dot in Fig. 4a).
When MCS error is also considered, pj is not a single value
but a PDF denoted as p}‘-/lcs (shown as a continuous red curve
in Fig. 4b). Similarly, each sample from the PDF in Fig. 4a
corresponds to a different PDF in Fig. 4b. Thus, the failure
probability is represented as a family of PDFs in the presence
of surrogate uncertainty and MCS error. This family of PDFs
can then be integrated to an unconditional PDF (bold broken
red curve in Fig. 4b) using the auxiliary variable approach
described in Section 3.1.

The family of PDFs for the failure probability esti-
mate (Fig. 4b) can be treated similar to the family of
PDFs for an input variable and uncertain distribution

Fig. 4 Uncertainty in failure PDF
probability due to surrogate
uncertainty and MCS error

p;(J)

parameters. Note that in the case of an input variable,
the auxiliary variable represents its aleatory uncertain-
ty whereas in the case of the failure probability esti-
mate, it represents the epistemic uncertainty due to
limited Monte Carlo samples. The single loop sam-
pling approach used for sampling the input variables
can also be used for sampling the failure probability
estimates.

Assume that there are N;,, PDFs of the failure probability
(i.e., Ny, samples of py), Ny, samples of the auxiliary variable
Uy cs are generated in the interval [0, 1]. Here, the auxiliary
variable is used to represent the contribution of epistemic un-
certainty of MCS error to the overall uncertainty in the reli-
ability estimate. The reliability estimate without the inclusion
of surrogate uncertainty and MCS errors is a point-value (sin-
gle-value). However, when surrogate uncertainty and MCS
errors are included, the reliability estimate is represented
through a family of PDFs as shown in Fig. 4b. As discussed
in Section 2.2.2 (c), the reliability estimate is represented
through a PDF with some distribution parameters. Here, these
parameters are calculated after incorporating aleatory uncer-
tainty, statistical uncertainty in input variables, uncertain mod-
el parameters, model discrepancy and surrogate uncertainty.
Therefore, for each realization of distribution parameters, the
reliability estimate follows a PDF.

For one realization of the auxiliary variable and py,
one realization of the failure probability estimate from
its unconditional PDF is obtained. For a given value
of py, there exists an associated PDF due to MCS
error which is numerically estimated after obtaining
the quantiles as stated above. Denoting the generated

1 Nisim .
samples as ”/(14)057 e uﬁm), the samples of uncondi-

tional failure probability estimate can be obtained as

P 0) = Fajes (ulfes|py ()i = 1.2, Naw - (29)
where F;,IICS(-) is the inverse CDF of the MCS error.
Based on the generated samples of p7“"(j), the uncon-
ditional PDF of the failure probability can be estimat-
ed. This PDF represents the uncertainty in the failure
probability estimate due to both surrogate prediction

uncertainty and MCS error.

Unconditional
probability
distribution

>

(a) Only surrogate uncertainty
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3.3 Summary of the proposed methodology

To summarize, the first stage consists of the construction of a
limit state surrogate to approximate the true but unknown limit
state (component or system). From the model calibration analysis
using KOH framework, a general-purpose GP surrogate of the
simulation model is available, which is further refined by adding
more training points close to the limit state through maximization
of the Expected Feasibility Function (EFF), to obtain the limit
state surrogate. Along with the original input variables to the
simulation model and uncertain model parameters, model dis-
crepancy is also considered as an input by explicitly representing
its variability through an auxiliary variable. Monte Carlo
sampling-based maximization of the EFF is carried out which
involves generating a large pool of samples of the inputs from
their corresponding PDFs and selecting a sample, which maxi-
mizes the EFF value as a new training point.

In the second stage, reliability analysis is carried out using the
GP surrogate through Monte Carlo sampling. The Monte Carlo
samples generated during the first stage for EFF maximization
are propagated through the GP surrogate for reliability analysis.
The prediction from a GP follows a Gaussian distribution, and
outputs at different inputs are correlated; this surrogate uncer-
tainty is included in the failure probability estimate through cor-
related sampling of the model predictions at several inputs. Since
correlated sampling of all inputs is computationally expensive,
the inputs are divided into two groups depending on the proba-
bility that they affect the failure probability estimate; this proba-
bility is analyzed by obtaining the coefficient of variation (COV)
of model prediction. Only the mean values of model predictions
are used if COV > 3.1, whereas the randomness in model pre-
diction is considered for all other inputs. Several realizations of
the model predictions are obtained through correlated sampling
resulting in several samples of failure probability estimate, one
for each realization. After consideration of surrogate uncertainty,
the failure probability estimate is represented using a PDF. The
consideration of MCS error (due to limited Monte Carlo samples
for uncertainty propagation) results in each of the failure proba-
bility samples to be represented by a PDF; this results in the
failure probability estimate to be represented using a family of
PDFs. If necessary, the family of PDFs can be integrated to form
an unconditional PDF, which can be reported as the failure prob-
ability estimate after considering all sources of epistemic
uncertainty.

4 Numerical examples
4.1 A single component with multiple limit states
Consider a short cantilever beam subjected to a point load at

its free end as shown in Fig. 5. Two limit states — maximum
deflection and maximum stress are considered for the failure

\‘ p b

\ | 5
\ |
—— ol
\

¥y
Fig. 5 A cantilever beam with point-load at the free end

of the beam. The goal in this problem is to compute the reli-
ability with respect to each of the individual limit states and
the system reliability, considering both the limit states.

Assume that the free end deflection of the beam due to the
point load is modeled (according to the Euler-Bermnoulli beam
theory) as d(P)=PL*/3EI Here, E and I represent the Young’s
modulus and moment of inertia respectively. Since the beam is
short, there exists a discrepancy between the experimental obser-
vations and predicted deflections computed (because the Euler-
Bernoulli model is not accurate for short beams). This model
discrepancy is calibrated using the KOH framework. A total of
30 points were generated through Latin Hypercube Sampling
(LHS) across the domain of inputs, at which both simulation
and experimental data are available. Among them 25 points were
used for calibration (model parameters and model discrepancy
using the KOH framework) and 5 points were used for valida-
tion. The maximum COV (coefficient of variation) among the
testing points is 0.1134. Therefore, the deflection of the beam,
after accounting for model discrepancy J(P), is given as

d(P) = PL?/3EI + 6(P) (30)

The expression for the computation of maximum stress is
given as

s(P) = PLh/2I (31)

The load P is assumed to be aleatory with uncertain distribu-
tion type and distribution parameters. £ and L are aleatory fol-
lowing Gaussian distributions with known distribution parame-
ters. The cross-section parameters (b, /) are also assumed to be
aleatory with known parameters due to geometric variations in
the manufacturing process. Table 1 shows the random variables

Table 1 Example 1. Variables and their statistics
Parameters Distribution Mean Standard deviation
P up (x10° N)  Normal 35 0.3
op (x10° N)  Lognormal 4 0.1
E (x10° Nim?) Normal 210 10
L (m) Normal 2 0.01
b (m) Normal 0.18 0.005
h (m) Normal 0.75 0.005
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Table 2  Distribution types and their probabilities for Load P

Table 4 Example 1. Component failure probability results (Stress)

Distribution type Normal Type 1 EVD pr NOF e (%)
Probability 0.2 0.8 Simulation model 0.0605 1% 10°
Limit state surrogate model 0.0633 32 4.63

and their statistics used in this example, and Table 2 gives two
candidate distribution types of P and their corresponding
probabilities.

The two limit state functions corresponding to deflection
and stress are given as

8a4(P) = do=d(P) (32)
gs(P) = so=s(P) (33)

where g,(P) <0 and g,(P) <0 indicate failure, and sy, d, are the
limiting values of stress and deflection. In this example, the
threshold values for stress and deflection are assumed deter-
ministic (dy = 0.01 m, sy = 500 MPa). Let the models in
Egs. (30, 31) be known as simulation models for deflection
and stress respectively. The system fails when either g (P)<0
or g(P)<0, and the system failure probability is given by

Py = Prig,(P)=0ug (P)=0} (34)

(@) Component reliability analysis

The reliability analysis with respect to each of the
individual limit states is first performed using the pro-
posed method. Since the deflection limit state is associ-
ated with model discrepancy, the reliability analysis is
performed with and without discrepancy, in order to in-
vestigate the effectiveness of the proposed method in
handling model discrepancy during surrogate construc-
tion. Tables 3 and 4 show the reliability analysis results,
along with the number of function evaluations (NOF),
without considering the surrogate uncertainty and MCS
error, in order to compare with the simulation model
estimate. In this example, the threshold EFF value for
selection of training points in surrogate construction is
assumed to be 0.002. The results show that the proposed
method can comprehensively estimate the component
reliability in the presence of various sources of epistemic
uncertainty. The results illustrate that the reliability

Table3 Example 1. Component failure probability results (Deflection)

P NOF ¢ (%)

0.0249 1x10° —
0.0057 25+0 77.11

Simulation model

Limit state surrogate without model
discrepancy

Limit state surrogate with model discrepancy ~ 0.0248 25+2 04

The NOF include the initial number of samples from calibration (25) and
the number of added new samples

@ Springer

estimate can be improved by considering the model dis-
crepancy (Table 3). Figure 6 shows the comparison be-
tween the simulation model limit state, and the limit-state
from surrogate with and without consideration of model
discrepancy. Since it is not possible to show the limit
state contours with all the random variables, Fig. 6 shows
the contours between length and load on the X and Yaxes
respectively. The other random variables E, b, h are con-
ditioned at their mean values. It shows that the surrogate
constructed taking model discrepancy into consideration
is closer to the true limit state than the surrogate without
considering the model discrepancy. Figure 7 provide the
failure probability distribution with respect to each limit
state after considering both the surrogate uncertainty and
MCS error. The figures illustrate that the proposed meth-
od can effectively quantify the uncertainty in the reliabil-
ity analysis results.
(b) System reliability analysis

A surrogate is constructed considering both the limit
states for system reliability analysis using the method
discussed in Sec. 3.2. Figure 8 gives the PDF of failure
probability after considering both the deflection and
stress limit states. It shows that the proposed method
can effectively quantify the uncertainty in the system
failure probability estimate (Table 5).

6% 10
T
—Surrogate model with model discrepancy
—Surrogate model without model discrepancy
—Simulation model
551 b
5 |- -
<
<
=]
=)
451 b
4 |- 4
. . . . . | . . .

3.5
195 196 197 198 1.99 2 201 2.02 2.03 2.04 205
Length

Fig. 6 Comparison of limit states between the simulation model and
surrogate, with and without considering model discrepancy
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600 —— T T T
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—Expected value using simulation model
—Expected value using limit state surrogate
500 - .
—Only surrogate uncertainty
Family of PDFs
400 - g
=
2300 - 1
~
200 - 8
100 - g
- A ) N . . .

0
0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036 0.038
Failure probability

(a)

Fig. 7 Failure probability with respect to (a) deflection, and (b) stress
4.2 A system of multiple components each with a limit state

Example 1 demonstrated the proposed method for component
reliability analysis and reliability analysis of a series system.
In this example, reliability analysis of a parallel system is
demonstrated. Consider the two-bar system shown in Fig. 9.
The system consists of two bars supporting a panel on which a
load P is applied at its center.

The two bars are assumed to be made of different materials
with different failure stress characteristics. The Young’s mod-
uli of the materials (£, Ep) are assumed to be aleatory vari-
ables with known distribution types and distribution parame-
ters. For illustration, the bars are assumed to be of equal length
(L =1 m) and the area of cross-section of the two bars are
assumed to be deterministic (4, = 0.04 m%, Az = 0.0625 m?).
The forces in the bars are given by

F;=P(EA;/(E4A4 + EgAp)),i = A,B (35)

500 T o
—Unconditional PDF
450 - —Expected Value using simulation model
—Expected value using limit state surrogate
400 - —Only surrogate uncertainty
Family of PDFs
350 B
300 - B
<3
2250 - i
&~
200 - B
150 - B
100 - 7 S 1
50 / J B

0.065 0.07 0.075 0.08 0.085 0.09

System failure probability

0.055 0.06

Fig. 8 System failure probability with respect to both deflection and
stress limit states

450 — T T

—Unconditional PDF
400 - —Expected Value using simulation model
—Expected value using limit state surrogate
350 —Only surrogate uncertainty
Family of PDFs
300 8
= 250 1
a
&~
200 - 8
150 - 8
100 - 8
50 - 8
1. = A =S " L 1 L 1
0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1

Failure probability

(b)

Let 0 and o3 represent the failure stresses of the bars; the
limit state functions are given by

2:(X) = 4,0°-P(E:A;/(E444 + EgAp)),i = A, B (36)

The applied load P is assumed to aleatory, but with uncer-
tain distribution type and uncertain distribution parameters.
The failure stress is assumed to be deterministic but not known
precisely. Some point and interval data are assumed to be
available from material testing. Table 6 provides the list of
variables used in this example and their statistics.

Using the available data, non-parametric distributions are
constructed for both the threshold stresses using the likelihood
approach discussed in Section 2, and spline-based interpola-
tion is employed for the PDF modeling. The failure stress of a
material is not calibrated. We assume that data about failure
stress is directly available from material testing and we con-
struct a non-parametric distribution to represent the uncertain-
ty. After constructing the PDF, it is treated as any other input
random variable for reliability analysis.

For illustration purposes, the same candidate distribution
types for load P and their probabilities are used as in Table 2.
The system described here is a parallel system and therefore
failure occurs when both the bars fail i.e. g4(X)<0 and
25(X)<0. The system failure probability is given by

Py = Prig,(X) < 0Ngz(X) < 0} (37)

Table 5 Example 1. Failure probability estimates using MCS and
proposed method

r NOF e (%)
Simulation model 0.0625 1x10°
Limit state surrogate model 0.0648 276 3.68
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Fig. 9 A two-bar system

Table 7 gives the system failure probability analy-
sis results after consideration of statistical uncertainty,
model discrepancy and uncertain model parameters,
and without considering surrogate uncertainty and
MCS error. Similar to the previous example, the
threshold EFF value for selection of training points
in surrogate construction is assumed to be 0.002.
Figure 10 shows the system failure probability esti-
mates without considering surrogate uncertainty and
MCS error, considering only surrogate uncertainty
and considering surrogate both uncertainty and MCS
error. It can be seen that the surrogate uncertainty and
MCS error result in larger uncertainty in the reliabil-
ity estimate compared to considering only surrogate
uncertainty. In order to reduce the uncertainty in the
estimate, the surrogate needs to be further refined by
adding more training points and the number of Monte
Carlo samples need to be increased to reduce the
MCS error.

Table 6 Example 2. Variables and their statistics

Table 7  System Failure probability estimates using simulation model
and limit state surrogate

Vi NOF Error (%)
Simulation model (Euler model + 0.0048 6x10° -
model discrepancy)
Limit state surrogate model 0.0049 302 2.08

5 Conclusion

This paper proposed a unified framework connecting
the model calibration analysis to the construction of a
limit state surrogate and estimating the uncertainty in
reliability estimate due to the incorporation of different
types of epistemic uncertainty. Epistemic uncertainty
due to data (statistical uncertainty) and model (model
parameter uncertainty, model discrepancy, surrogate un-
certainty, Monte Carlo sampling error) are considered.
A parametric approach is proposed for quantification of
input variables with statistical uncertainty. Non-
parametric distributions are used to quantify uncertain
model parameters with statistical uncertainty. First,
model calibration is carried out using the KOH frame-
work, whose output include GP surrogates for simula-
tion model and model discrepancy. The general purpose
(global) GP surrogate of simulation model is further
refined by adding more training points close to the limit
state (local refinement) to obtain the limit state surro-
gate for reliability analysis; this is referred to as a hy-
brid approach (local refinement of the general purpose
GP surrogate). An auxiliary variable is used to represent
the model discrepancy, which enables the construction
of a limit state surrogate that includes the model dis-
crepancy. The inputs for the limit state surrogate are the
original input variables along with the uncertain model
parameters and the model discrepancy. The selection of
training points is carried out using a learning function

Variable Distribution Mean Standard
deviation
Load P up (x10° N) Normal 19 0.3
op (x10° N) Lognormal 1.6 0.1
Young’s Modulus £, (x10° Pa) Normal 210 20
Young’s Modulus Eg (x10° Pa) Normal 180 15

Failure stress of bar A, 0 (x107 Pa)

Point data — [24.7, 24.95,25.1,25.3]

Interval data — [(24.6, 24.62), (24.8, 24.84), (25.1, 25.15)]

Failure stress of bar B, ¢% (x107 Pa)

Point data — [21.8, 21.92,22.08,22.15]

Interval data — [(21.85, 21.88), (22.06, 22.08), (22.13, 22.16)]
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Fig. 10 System failure probability estimate using simulation model and
limit state surrogate

called the Expected Feasibility Function (EFF). The GP
model is then used to carry out reliability analysis using
Monte Carlo sampling. A single-loop sampling ap-
proach using an auxiliary variable is used for the sam-
pling of input variables with statistical uncertainty and
samples of the inputs are generated and passed through
the surrogate to obtain the reliability estimate. Note that
this results in a single value of the failure probability.

The model prediction using a GP model is a Gaussian
distribution with the parameters dependent on the input. In
addition, the model predictions at different inputs are correlat-
ed due to the covariance function in the GP model. To account
for the surrogate uncertainty (i.e., the variability in the predic-
tion), correlated sampling of model predictions at several in-
puts is carried out and used for reliability analysis. Inclusion of
surrogate uncertainty results in a probability distribution
(PDF) for the failure probability. When MCS error is incorpo-
rated, each sample in the failure probability distribution is
represented by a PDF, which results in a family of PDFs for
the failure probability.

Two examples demonstrated the effectiveness of the pro-
posed method. The proposed method is able to not only ad-
dress heterogeneous sources of epistemic uncertainty during
system reliability analysis, but also provide the uncertainty
associated with the reliability estimate.

This works considered only time-independent reliability
analysis. Future work should consider time-dependent reli-
ability analysis. Quantities with spatial variability (and asso-
ciated epistemic uncertainty) which further complicate the
problem also need to be considered.

Ultimately, the purpose of uncertainty quantification is
to inform decision making, such as resource allocation or
design optimization. The inclusion of epistemic uncer-
tainty in reliability-based design optimization (RBDO)
is still a topic of active research. The framework devel-
oped in this paper provides a systematic approach to

quantifying and including several sources of epistemic
uncertainty within reliability analysis, and therefore facil-
itates their subsequent inclusion in design optimization.
Future work may also consider the quantification of rel-
ative contributions of different sources of uncertainty on
the reliability estimate, which will facilitate resource al-
location for epistemic uncertainty reduction (e.g., addi-
tional data collection vs model refinement).
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