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Surrogate models often provide an effective tradeoff between accuracy and efficiency during reliability analysis

with expensive physics models. In snap-through buckling reliability analysis, a surrogatemodel could be built for the

critical buckling load, as a function of loading, material properties, geometry, and boundary conditions. However, in

the presence of spatiotemporal variability, the response surface of the critical buckling load is often highly nonlinear

and irregular, thus rendering commonly used response surface-type surrogate modeling strategies ineffective. This

paper proposes a newbuckling reliability analysismethod based on support vectormachines for structures subjected

to spatiotemporal variability and in the presence of epistemic uncertainty regarding model inputs and parameters.

Bayesian calibration is first used to quantify the epistemic uncertainty in the modeling of spatiotemporal variability

under limited data. Upon the modeling of spatiotemporal variability and epistemic uncertainty, a time-dependent

reliability analysis method is developed for the snap-through buckling failure by constructing a nonlinear support

vector machine classifier. Considering that the computer simulation is computationally expensive and the support

vectormachine classifiermaynot bewell traineddue to limited computational resources, amethod is also developed to

quantify the uncertainty in the reliability estimate due to classification uncertainty. A curved beamwith an uncertain

boundary condition, spatially varying cross-section geometry, and spatiotemporally varying loading is used to

demonstrate the effectiveness of the proposed method.

I. Introduction

S NAP-THROUGH buckling is an important failure mode of

concern during the analysis and design of supersonic/hypersonic

vehicle panels under extreme load and temperature conditions [1,2].

Hypersonic aircraft are subject to multiphysics loads such as aero-

dynamic, thermal, and acoustic loads [3]. This results in a coupled,

nonlinear interaction with the structure that could, under extreme

conditions, fail through one of the several different failure modes

possible (e.g., snap-through, flutter, and thermal fatigue). The current

paper focuses on methods to estimate snap-through buckling under

various sources of uncertainty.

A system is said to have snapped through if it changes from one

stable configuration to another stable configuration [4]. Snap-

through buckling is of two kinds (as shown in Fig. 1): postbuckled

snap-through and limit-point buckling [5]. In postbuckled snap-

through, after the system has buckled, it would snap from one stable

configuration to another in the presence of perturbations [6]. Limit-

point buckling corresponds to the stiffness of the structure decreasing

to zero as the load is increased and the structure snaps through to a

high-deflection stable limit state [6]. Among the these two types of

snap-through buckling, limit-point buckling is the focus of this paper

since it is important from the point of view of structural design.

Snap-through buckling analysis has been extensively investigated

in the literature. For example, Haftka and Mallett [4] derived

analytical expressions for the critical buckling load by using Koiter’s

method. Pi et al. [7] studied the nonlinear dynamic snap-through

buckling behavior of shallow arches under suddenly applied long-

duration uniform loads. Similarly, analytical expressions for static

critical loads for sinusoidal arches under different loading conditions,
such as sinusoidally distributed loads, uniformly distributed loads, and
point loads, in the presence of flexible boundary conditions have been
investigated [7]. Prezkop and Rizzi [8] studied the snap-through
behavior of thermally buckled structures using a reduced-order model.
Snap-through buckling reliability analysis methods that account for the
randomness in the structure geometry, variability in the material
property, and uncertainty in the boundary conditions have been studied
in recent years. For instance, Alibrandi et al. [9] proposed an efficient
procedure for buckling reliability analysis using a response surface
method based on rational functions, Papadopoulos and Papadrakakis
[10] studied the effect of material and thickness variability on the
buckling load of shells with initial imperfections, Van de Lindt and Pei
[11] presented a buckling reliability analysis procedure by investigating
the effect of the deterioration of steel beam ends on the steel beam
buckling capability, and Choi et al. [12] used a polynomial chaos
expansion (PCE) surrogatemodel for the buckling reliability analysis of
a joined-wing model. Buckling in the presence of manufacturing
imperfections, variable thickness, and initial imperfections has also
been carried out in the past by Hilburger et al. [13], Koiter et al. [14],
Starnes et al. [15], and Chryssanthopoulos et al. [16].
From the previouslymentioned literature review, it is found thatmost

reported buckling reliability analysis studies rely on the computation of
the critical buckling load, which is affected by many sources of
uncertainty. Besides, current buckling reliability analysis methods are
based on assumptions regarding loading, such as uniformly distributed
loador concentrated load. In practical situations, however, bothmaterial
property and loads may have spatial and/or temporal variability. For
example, a hypersonic aircraft panel experiences loads varying along its
surface andwith time throughout the flightmission. The spatiotemporal
variability makes the buckling reliability analysis difficult. In addition
to that, how to properly represent the spatiotemporal variability also
creates a challenge. The reliability analysis also needs to account
for sources of epistemic uncertainty due to limited data for the
quantification of spatiotemporal variability.
To overcome the previously mentioned shortcomings, this paper

proposes a new buckling reliability analysismethod that can consider
spatiotemporal variability and epistemic uncertainty using support
vector machines (SVMs) [17]. SVMs are a powerful classification
tool, which can construct highly nonlinear continuous, discontinu-
ous, or disjoint functions between classes in a multidimensional
domain. Applications of SVMs in time-independent reliability
analysis have been investigated by Basudhar and Missoum [17] by
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constructing failure boundaries using SVMs. Based on that,
Basudhar and Missoum [18] employed a probabilistic SVM using
sigmoid-based SVMmodel to account for classification uncertainty.
In this paper, a SVM is combined with a spatiotemporal modeling
technique [using singular value decomposition (SVD) and the
autoregressivemoving average (ARMA)] to perform time-dependent
buckling reliability analysis under epistemic uncertainty.
The modeling of spatiotemporal variability based on experimental

data is investigated first. The epistemic uncertainty in themodeling of
spatiotemporal variability due to limited data is quantified using
Bayesian calibration [19]. In the presence of spatiotemporal
variability, as stated before, the response surface is not amenable to
response surface-based surrogate modeling. Therefore, buckling
reliability analysis is performed by training a surrogate model for the
buckling failure event using SVMs. Since the computer simulation of
buckling analysis of a complicated system is usually computationally
expensive, the SVM classifier may not be well trained due to limited
computational resources. A method is developed in this paper to
quantify the uncertainty in the buckling reliability estimate due to the
classification uncertainty. This paper develops new methods in three
directions: 1) representation of spatiotemporal variability based on
experimental data, 2) quantification of the epistemic uncertainty in
themodeling of spatiotemporal variability, and 3) buckling reliability
analysis under spatiotemporal variability and epistemic uncertainty.
The remainder of the paper is organized as follows. We first

provide background concepts on buckling reliability analysis and
spatiotemporal variability in Sec. II. Section III presents the proposed
methodology. A curved beam with an uncertain boundary condition
is used in Sec. IV to demonstrate the proposed method. Section V
gives the concluding remarks.

II. Background

A. Snap-Through Buckling

Snap-through buckling is commonly identified by estimating the
critical buckling load of the structure using analytical or numerical
methods and then comparing it with the actual load value. If the actual
load exceeds the critical load, the system has snapped through. The
limit state function for buckling failure is defined as

g�x� � F − Fcr�x� (1)

whereF is the actual load,Fcr�x� is the critical buckling load, and x is
a vector of variables that affect the value of the critical buckling load.
The previous equation indicates that the most critical step for the

buckling failure analysis is the computation of the critical buckling
load Fcr�x�. The evaluation of the critical buckling load has been
extensively investigated in the literature as described in Sec. I.
Among the available methods, a widely usedmethod is the analytical
expression derived by Fung and Kaplan [20,21] for a sinusoidal arch
in the presence of uniform pressure loading and flexible boundary
conditions. Consider a sinusoid shaped beam as shown in Fig. 2,
where end 1 of the beam is fully fixed and the other end has a
horizontal spring. Here, the motion is allowed only along the x axis
and is restrained along the y and z axes. In Fung andKaplan’smethod,

the critical snap-through buckling load can be estimated by following

the procedure given in the following.

1) Estimate the parameters υ � l
2

���
Λ
I

q
and β � Kd

�Kd�EΛ∕L�, whereΛ
indicates the cross-sectional area, I indicates themoment of inertia of
the cross-sectional area, E is the Young modulus, L is the beam
length, l is the rise of the arch,K is the compliance coefficient of the
spring, andK is related to the spring stiffnessKd asK � 500∕Kd. A
value of K � 0 indicates a completely fixed end, and a value of
K � ∞ indicates a completely free end.
2) Solve for υ using �βυ2 − 4� � 4�βυ2 − 1�3∕243. Let υ0 be the

value of theminimumpositive root; then the nondimensional value of
the critical load Rcr can be estimated as [16,17]

Rcr �
8<
:
π
�
υ�

��������������������������������������
4�βυ2 − 1�3∕�27β�

p �
∕4; 1∕

���
β

p
< υ ≤ υ0;

π
�
υ� 3

�������������������������
�βυ2 − 4�∕β

p �
∕4; υ > υ0

(2)

The critical snap-through buckling load Fcr is then estimated as

Fcr � 2π4EIRcr∕�L4
���������
I∕Λ

p �, where Fcr is the pressure load acting

per unit width of the structure.
The previous equations are only for a half-sine-shaped beam with

the configuration given in Fig. 2. Other methods have also been

developed to compute the critical buckling load by using finite-

element analysis. For example, Elishakoff et al. [22] developed a

nonlinear buckling analysis method using stochastic and non-

stochastic convex models, and Haftka and Mallett [4] used Koiter’s

method to perform snap-through buckling analysis based on finite-

element analysis. Based on the available buckling analysis methods,

a group of probabilistic buckling analysis methods have been

proposed to account for uncertainty sources such as geometry

imperfections, material property variability, and random boundary

conditions. For example, Kogiso et al. [23] studied the effects of

correlation between random variables on the buckling failure of a

composite plate, and Elishakoff et al. [24] investigated buckling

reliability analysis with random imperfections using the first-order

second-moment analysis method.
Even though it may be possible to estimate the critical buckling

loads using analytical expressions or finite-element simulations,

obtaining a specific solution for the critical load can be tedious for

some problems involving spatial variation of the load or the material

properties. This issue is discussed in Sec. III.B.

Fig. 1 Two types of snap-through buckling.

Fig. 2 Curved beam with flexible boundary condition at End 2.
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B. Spatiotemporal Variability and Epistemic Uncertainty

In many practical systems, several physical quantities vary both
spatially and temporally. For example, the loads acting on the bodyof an
aircraft, hull of a ship, etc., vary both over space and time. Hypersonic
vehicle panels are subjected to large thermal and aerodynamic stresses
varying over space and time. In such extreme environments, small
variations in physical quantities can give rise to large fluctuations in
stress, thus strongly affecting the failure probability.
In the current work, we consider the reliability analysis for snap-

throughbuckling in thepresenceof both spatial and temporal variability.
In snap-through buckling, a systemor a curved structure snaps fromone
stable configuration to another. Snap-through deformation can be either
of small amplitude or large amplitude. Irrespective of the magnitude of
the deformation, the presence of small disturbances can cause snap
through in anotherwise stable system.Large-amplitude snap-through is,
especially, more sensitive to such fluctuations.
Figure 3 shows a snapshot of a spatiotemporally varying random

field. The horizontal coordinate refers to space, and the vertical
coordinate refers to time. A horizontal slice shows the variation of the
load over space, at a particular time instant. Similarly, a vertical slice
gives the variation of the load over time at a particular spatial location.
In snap-through buckling reliability analysis with the spatiotemporal
variability, there are mainly two challenges, which are 1) how to
represent and quantify the spatiotemporal variability based on
available history or experimental data and 2) how to predict the
reliability based on the modeling of spatiotemporal variability. The
first challenge comes from the lack of analytical expressions for
spatiotemporal variability. The second challenge stems from the fact
that when we have spatiotemporal variation the response surface is
irregular and hence cannot be modelled using commonly used
numerical surrogate modelling techniques (discussed in Sec. III.B).
In addition, the data available to model the spatiotemporal variability
may be limited. It may be typical for the designer to have just one set
of data obtained at a few locations over different time instants but no
more than that. In that case, the parameters of the spatiotemporal field
may not be known accurately. This is epistemic uncertainty (lack of
knowledge), on top of aleatory uncertainty (natural variability over
space and time).
In the following section, we will first discuss how to represent the

spatiotemporal variability and then investigate how to quantify the
epistemic uncertainty in the model of spatiotemporal variability.
Based on that, we develop the buckling reliability analysis method.

III. Proposed Methodology

A. Representation of Spatiotemporal Variability Based on Data

In this paper, the spatiotemporal variability is modeled as a
stationary random field. A stationary random field x�s; t� can be

decomposed into a mean term μ�s� and the variation term z�s; t�.
Based on the decomposition, the random field is represented as

x�s; t� � μ�s� �
Xr
i�1

wi�t�ϑi�s� (3)

where s is the spatial coordinate, t is the temporal coordinate, ϑi�s� is
the ith important feature used to model the variation, r is the number

of importance features, and wi�t� is used to represent the variation

over snapshots.
A critical step in the modeling of the random field using the

previous equation is to determine the important features ϑi�s�,
i � 1; 2; · · · ; r. During the past decades, a group of methods has

been proposed to model a random field, such as the midpoint method

[25], the spatial averaging method [25], proper orthogonal

decomposition (POD) [26,27], etc. The POD method, which is also

called principal component analysis or Karhunen–Loeve decom-

position, solves an optimization model to determine the important

features [28],

max fobj � �ϑ�s� · z∞�2 (4)

where fobj is the objective function, ϑ�s� is the important feature, z∞
is the ensemble of the field variation part, and �ϑ�s� · z∞�means inner

product.
In this work, the discrete version of the POD,which is SVD [29], is

used to identify the important features since the experimental data are

usually collected at discrete values.

1. Singular Value Decomposition

Assume that the spatiotemporal data matrix X ∈ Rm×n �
�x�si; tj��, ∀ i � 1; 2; · · · ; m; j � 1; 2; · · · ; n; is available, where

x�si; tj� represents the value ofX at the ith spatial location and the jth
time instant, m indicates the number of spatial locations, and n
indicates the number of time instants. This matrix can be scaled for

the sake of further analysis as

Z � X − μI1×n (5)

where μ�si� �
P

n
j�1 x�si; tj�∕n, i � 1; 2; · · · ; m, μ �

�μ�s1�; μ�s2�; · · · ; μ�sm��T ∈ Rm×1 is the vector of mean values and

I1×n is a vector of 1s.
Using the SVDmethod, thematrixZ can be decomposed into three

matrices as [29]

Z � VHUT (6)

Fig. 3 Snapshot of a spatiotemporal random field.
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whereV is a matrix of orderm ×m,H is a matrix of orderm × n, and
U is a matrix of order n × n. The matrix H contains singular values
along the diagonal.
Let rn be the number of important features, that is, the number of

singular values that contribute 99% or more to the total sum. This is
generally much smaller than the total number of singular values. The
matrix X can now be rewritten as

x�∶; ti� � μ�∶� �
Xrn
j�1

wj�ti�ϑj (7)

where wj�ti� � A�i; j�, A � VH, and ϑj is the jth row of

U�∶; 1∶rn�T . It may be noted that the coefficients obtained through

SVD decomposition are random variables in the absence of temporal
variation and random processes in the presence of temporal variation
and thus account for spatial variation, too.

2. SVD-Based Modeling of Spatiotemporal Variability

Using Eq. (7), the spatiotemporal data matrix X has now been
decomposed into temporal and spatial parts, wj�ti� and ϑj,
respectively. The basis vectors that account for the correlation of the
response over space are ϑj, andwj�ti� represents the variation of the
response over time. To consider the correlation among the snapshots
over time, in this work, we propose to integrate a time-series model
with SVD. More specifically, we use the time-series model to
represent the variation over time and predict the future realizations
using the time-series model.
Data-driven time-series models have been widely used in many

areas, such as economics [30], finance [31], and weather forecasting
[32], for the modeling of stochastic processes, especially for
problems in which available realizations of the stochastic process are
limited to one or just a few trajectories. The commonly used time-
series models include the autoregressive (AR) model [33], moving
average (MA)model [34], andARMAmodel [34], which are suitable
for stationary stochastic processes. When the stochastic process
is nonstationary, the autoregressive integrated moving average
(ARIMA) model is employed [34]. In this work, we focus on
stationary temporal variations, and therefore the ARMA model is
used. However, the developed method can be easily extended to
problems with nonstationary time history using ARIMA. An ARMA
(p, q) time-series model Yj�t� is given by

Yj�ti� � φ�0�
j � φ�1�

j Yj�ti−1� � φ�2�
j Yj�ti−2�� · · ·

� φ�p�
j Yj�ti−p� � εj�ti� � ω�1�

j � εj�ti−1�� · · ·

� ω�q�
g εj�ti−q� (8)

in which εj�ti�; εj�ti−1�; · · · ; εj�ti−q� is a sequence of independent
and identically distributed random variables with zero mean and

finite standard deviation σj;t; φ
�0�
j , φ�1�

j ; · · · ;φ�p�
j are the coefficients

of the AR term; ω�1�
j ; · · · ;ω�q�

j are the coefficients of MA term in the

time-seriesmodelYj�t�; andp andq are the orders of theAR andMA

terms, respectively.
Since each value of wj�ti�, j � 1; 2; · · · ; rn, corresponds to a

snapshot at specific time instant ti of the random field [as indicated
in Eq. (7)], the ARMA model is employed to model wj�ti�,
j � 1; 2; · · · ; rn. The number of ARMAmodels required is equal to
the number of important features rn. AnARMAmodel of order �p; q�
for the time-series datawj�t�, j � 1; 2; · · · ; rn, can be represented as

wj�t� � εj;t �
Xp
i�1

φ�i�
j wj�t − i� �

Xq
k�1

ω�k�
j εj;t−k (9)

Note that the noise terms, εj�ti�; εj�ti−1�; · · · ; εj�ti−q�, are usually
assumed to be independent and identically distributed (I.I.D.) and
follow Gaussian distributions. They can also be modeled as non-
Gaussian distributions. The non-Gaussian noise term, however, will

make the modeling of ARMAmodels much more complicated [35].

In the following discussion, unless otherwise mentioned, they are

assumed to follow Gaussian distributions for the sake of illustration.

All the parameters of the ARMAmodel are unknown, and they need

to be estimated based on available data. Many methods are available

to estimate these parameters, such as the Yule–Walker method, Burg

method, covariance method, and maximum likelihood estimation

method [34,36]. Since the SVD method is used to obtain the

important features and the ARMA model is used to represent the

coefficients of the important features, we call the integratedmodel the

SVD–ARMA model [37,38].
The SVD–ARMA model can effectively represent the

spatiotemporal variability when we have enough observation

data. However, the data available for wj�ti�, j � 1; 2; · · · ; rn
(obtained from SVD) are usually sparse. As a result, estimates

of the previously mentioned parameters of the ARMA models

(φ�1�
j ;φ�2�

j ; : : : ;φ�p�
j ;ω�1�

j ;ω�2�
j ; : : : ;ω�q�

j ; σj;t) are uncertain. This

uncertainty about the actual value of the model parameter is termed

epistemic uncertainty. In the following section, Bayesian calibra-

tion is used to quantify the epistemic uncertainty in the SVD–

ARMA model and is discussed in detail.

3. Modeling of Epistemic Uncertainty

Bayesian calibration is used to update our belief about a quantity of

interestwhen newevidence or observation is available. For a vector of

calibration parameters θ, the posterior distribution of the calibration
parameters is computed using Bayes’s theorem as

f 0 0�θjD� � L�θ�f 0�θ�∕
Z

L�θ�f 0�θ� dθ (10)

where D is the observation data, f 0�θ� is the prior distribution,

f 0 0�θjD� is the posterior distribution, and L�θ� is the likelihood

function. The likelihood function is a measure of how well the ob-

servation data support the current belief regarding the calibration

parameters.
Directly solving the previous equation is difficult when the

dimension of θ is high. In that case, Markov chain Monte Carlo

(MCMC) sampling [39] is widely used to estimate Eq. (10) based on

the proportional relationship

f 0 0�θjD� ∝ L�θ�f 0�θ� (11)

where ∝ stands for “proportional to.” For the sake of illustration, we

denote all the parameters in the ARMA model given in Eq. (8) as

θj � �σε;φ�1�
j ;φ�2�

j ; · · · ;φ�p�
j ;ω�1�

j ;ω�2�
j ; · · · ;ω�q�

j �,
∀ j � 1; 2; · · · ; rn.
A critical step for the application of Bayesian calibration is the

computation of the likelihood function L�θj�. For given values of θj
and I.I.D noise terms (with Gaussian distribution), L�θj� is given
by [40]

L�θj� � �2πσ2t �−�n−p�∕2 exp
�
−

Xn
t�p�1

e2t ∕�2σ2t �
�

(12)

where

et � wj�t� −
Xp
i�1

φ�i�
j wj�t − i� −

Xq
k�1

ω�k�
j εt−k (13)

With the likelihood function, the posterior distribution of the

parameters of each ARMAmodel is obtained usingMCMCbased on

Eq. (11). The spatiotemporal variability with epistemic uncertainty is

then represented as x�s; t; θ1; θ2; · · · ; θrn�. Note that θ1; θ2; · · · ; θrn
are the coefficients of wj�ti�, j � 1; 2; · · · ; rn. In the following

sections, for the sake of illustration, we use Θ � �θ1; θ2; · · · ; θrn � to
represent all the coefficients, and we have x�s; t;Θ�.
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B. Snap-Through Buckling Reliability Analysis

In this section, we discuss the snap-through buckling reliability
analysis by considering the spatiotemporal variability and epistemic
uncertainty. Defining the critical buckling load for structures under
loads with spatiotemporal variability is difficult. The reason is that if
the loads are randomly distributed there are numerous values of loads
the structure is experiencing at the same time, but the critical buckling
load is a single value. A common strategy in deterministic buckling
analysis is to consider proportional loading. i.e., assume a load
distribution over space and gradually increase the load proportionally
over the structure (keeping the same load profile) to identify the load
proportionality factor (lpf) at which buckling occurs. However,
when the load has spatial randomness, many realizations of the load
profile are possible, and the load proportionality factor needs to be
identified for each profile. Additional variability in material
properties and boundary conditions requires additional random
realizations of these quantities and affects lpf.
For the curved beam example discussed in Sec. IV, the lpf

obtained for various realizations of the random quantities are shown
in Fig. 4. Two-dimensional contour plots for only a few variables are
shown in Fig. 4 as illustration, where ξ1 and ξ2 represent spatial
randomness of thickness h, andw1 andw2 are parameters of the load
history (described in detail later in Sec. IV). It can be seen that the
response is highly irregular and nonlinear, which makes it difficult to
use commonly used numerical surrogatemodels such as theGaussian
process or PCE.
Since we cannot use numerical surrogate models to build a

response surface for the critical load, we cannot directly use the limit-
state function given in Eq. (1) for the buckling reliability analysis
with spatiotemporal variability and epistemic uncertainty. Thus,
instead of a general-purpose numerical surrogate model, we pursue
the construction of a classification surrogate model. We first define a
failure indicator function as

Ib�X;XF;X�s; t;Θ�� �
�
1; buckling occurs

0; otherwise
(14)

where X is the vector of random quantities in the buckling analysis
model,XF is the random fieldmodelwith only spatial variability such
as the material properties, and X�s; t;Θ� is the spatiotemporal
variability conditioned on the ARMA parameters Θ, which are
obtained from experimental or operational data. The failure indicator
function for the snap-through buckling problem can be obtained
either by comparing lpf with a threshold value or using clustering.
Although comparing with a threshold is a commonly used technique,
more often than not, it may not be possible to define a threshold
value [17,41].
For the current snap-through buckling problem, either of the

previous two techniques can be used. For comparingwith a threshold,
the initial load profile is divided by a number, say lpf0; the analysis
starts from this load profile. It is clear that if lpf exceeds lpf0 then
buckling occurs, and thus lpf0 is the threshold value. An alternative
method is to obtain the midpoint displacement of the beam with
the initial load profile. A large displacement indicates that the beam
has failed and vice versa. This results in a discontinuity in the
displacement response surface. K-means clustering similar to that
used by Basudhar and Missoum [41] can be used to identify the two

classes, one corresponding to the case in which the beam buckles and

the other to the case in which the beam is safe. TheK-means cluster-

ing technique identifies the various classes through discontinuities in

the response surface. In the current work, we use the threshold

technique to identify if the beam has buckled or not due to its

simplicity and accuracy.
Based on the definition of the failure indicator function, the

buckling failure probability is defined as

pf�Θ� � PrfIb�X;XF;X�s; t;Θ�� � 1; ∃ t ∈ �t0; te�g (15)

in which pf�Θ� is the failure probability conditioned on the

realization of the epistemic variables Θ, ∃ stands for “there exists,”

and t0 and te are the initial and last time instants of the time period of

interest. Here, the probability of failure for a time interval �t0; te� is
defined as the probability that the system snaps through in that time

interval. No vibratory loads are considered in the current study.

Instead,we consider the quasi-static load to bevarying randomly over

the given time interval. The resulting failure probability thus accounts

for the worst possible quasi-static loading condition and does not

include dynamic amplification in vibratory loads; however, the over-

all reliability analysis procedure is the same if dynamic amplification

is included.
The unconditional buckling failure probability is given by

pf �
Z

pf�Θ�f 0 0�Θ� dΘ (16)

in which f 0 0�Θ� is the posterior distribution of Θ obtained using

Bayes’ theorem as indicated in Eq. (11).
The failure probability given in Eq. (15) is the time-dependent

failure probability [42,43], which gives us the probability of failure

over the time interval of interest �t0; te�. Here, the time-dependent

failure probability is used due to the temporal variability. Directly

solving Eqs. (15) and (16) is computationally very expensive because

the indicator function given in Eq. (14) usually needs to be evaluated

using simulationmodels. For a given realization ofX � x,XF � xF,
and X�s; t;Θ� � x�s; t;Θ�, a buckling simulation is performed to

see whether snap-through buckling occurs or not. To save the

computational cost of buckling reliability analysis, we construct a

SVM-based classifier; thus, a SVM is a classification surrogate

model. In the following sections, we first briefly review the SVM

method. We then discuss buckling reliability analysis using a SVM.

1. Support Vector Machine

In building a SVM classifier, we construct the best hyperplane that

separates two classes of data [44]; this is an optimization problem as

illustrated in Fig. 5. Consider two input variables, p1 and p2. The

output, which is a function of these two variables, can be classified

into either the�1 class or the −1 class. Let al. the data belonging to
class�1 lie to the left of line A. Similarly, all data belonging to class

−1 lie to the right of the line C. Line B is equidistant from both A and

C. Now, the objective is to obtain the best separating hyperplane, B,

such that the distance between the lines A and C is maximized [44].
Let d be any vector in the �p1; p2� plane. The equation of the

hyperplane B can be given as

Fig. 4 Two-dimensional plots of lpf with respect to realizations of a few random quantities (defined in Sec. IV).
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p · d − b � 0 (17)

where · stands for inner product, d is any vector, and b is any scalar.
Similarly, the equations of the hyperplanes A and C can be

respectively given as [44]

p · d − b � �1 (18)

p · d − b � −1 (19)

Therefore, the distance betweenA andC can be given as 2∕kdk. To
maximize this distance, we have to minimize kdk. It may also be
noted that, by virtue of Eqs. (18) and (19), for all data that belong to
class�1,

�d · pi� − b ≥ 1 (20)

and for all data that belong to class −1,

�d · pi� − b ≤ −1 (21)

Equations (20) and (21) can be combined together as [44]

yi��d · pi� − b� ≥ 1 (22)

where yi is the data class at point pi. The previous discussion can be
cast into a mathematical optimization problem as [44]

min
d;b

d · d∕2 s:t: yi��d · pi� − b� ≥ 1 (23)

where “s.t.” stands for “such that.”
We can also rewrite Eq. (14) using the definition of yi as

Ib�X;XF;X�s; t;Θ�� � yi � 1

2
(24)

Itmay be noted that the previous discussion is only for data that can
be separated, meaning that the data can be clearly identified as
belonging to either class −1 or class �1. However, in practical
applications, the data may be nonseparable as shown in Fig. 6; i.e.,
data belonging to one class are occasionally found within the general
domain of the other class.
In such cases, a soft margin (using slack variables) is used within

the SVM approach. This indicates that most, but not all, data points
are separated. For nonseparable data, the optimization problem can
be cast as [44]

min
d;b;υi

1

2
d · d� Cmc

X
i

υi s:t: yi��d · pi� − b� ≥ 1 − υi; υi ≥ 0

(25)

where υi are the slack variables and give the distance from the mis-
classified point to one of the lines A or C andCmc is theweight acting
on the slack variables and represents how much misclassification is
permitted. Once the best separating hyperplane has been obtained,
any point can be classified into either of the classes by estimating its
classification score. For any point p, the classification score csi can
be given as d · p − b, and its class is given by sign�d · p − b�.
More often than not, the data available may not be amenable to

linear classification. In such cases, kernel functions may be used to
transform low-dimensional nonlinear data into a higher-dimensional
linearly classifiable data [41,45]. Constructing a nonlinear classifica-
tion boundary is not difficult; however, nonseparable data, i.e., the
presence of small islands of data belonging to one class within a
larger domain of the other class is a challenge for numerical response
surface models that attempt to model a physical quantitative output.
Such models will require a highly nonlinear function and a large
number of training points to capture the islands accurately. This is
where the slack variable approach of the SVM classification sur-
rogate model gives it a distinct advantage over numerical surrogate
models of physical outputs, and is found to be useful in buckling
reliability analysis, thus addressing the situation in Figs. 4 and 7.
One of the important challenges in successfully using an SVM

classifier is to choose the right values of the parameters; for example,
the weight acting on the slack variables Cmc can be obtained through
optimization to minimize the misclassification percentage. Jiang
et al. [46] have used three different metrics, namely, accuracy,
balanced accuracy, and the area under the receiver operating
characteristic curve, to optimally obtain thevarious SVMparameters.
In the current work, we use the default values of the parameters in the
MATLAB® in-built SVM classification function fitcsvm and also the
parameters of fitPosterior, which estimates the classification
uncertainty. However, optimizing the parameters may result in a
more accurate SVM classifier and can be considered in future
extensions of this methodology.

2. Buckling Reliability Analysis Using SVM

Wenowdiscuss how to use SVM to perform snap-through buckling
reliability analysis with spatiotemporal variability and epistemic
uncertainty. In the buckling reliability analysis, as indicated inEq. (15),
we may have random variables X, a random field XF, and spatio-
temporal variabilityX�s; t�. The spatiotemporal variability is modeled
using the SVD–ARMAmodel as discussed in Sec. III.A. The random
field XF with only spatial variability is usually modeled using the
Karhunen–Loeve (KL) expansion method as [47]

XF�s� � μ�s� �
XnF
i�1

����
λi

p
ξFi fi�s� (26)

Fig. 6 Nonseparable data.

Fig. 5 Support vector machine.
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where λi and fi�s� are the eigenvalues and eigenfunctions of the

covariance function of the random field and ξFi , i � 1; 2; · · · ; nF, are
independent random variables.
After replacing XF with ξFi , i � 1; 2; · · · ; nF, the snap-through

buckling reliability given in Eq. (15) is written as

pf�Θ� � PrfIb�X; ξF;X�s; t;Θ�� � 1; ∃ t ∈ �t0; te�g (27)

where ξF � �ξF1 ; ξF2 ; · · · ; ξFnF �.
A straightforward way of using the SVM to estimate the failure

probability given in Eq. (27) is to train a SVM model for the failure

indicator function defined in Eq. (14) as a function of X, ξF, and Θ.

The dimensionality of Θ, however, may be high. To reduce the

dimensionality, we train the SVM model as a function of X, ξF, and
w � �w1�t�; w2�t�; · · · ; wrn�t�� [the coefficients of the SVD model

as indicated in Eq. (7)]. The general procedure of snap-through

buckling reliability analysis is explained as follows:
1) Model the spatiotemporal variability of the quantity of interest

using the SVD–ARMAmodel and quantify the epistemic uncertainty
in the SVD–ARMA model using Bayesian calibration.
2) Generate training points for X, ξF, and w � �w1�t�; w2�t�; · · · ;

wrn�t�� using Latin hypercube sampling.
3) Convert ξF into random field quantity XF using Eq. (26) and

w � �w1�t�; w2�t�; · · · ; wrn�t�� into X�s; t� using Eq. (7).
4) Perform snap-through buckling analysis at the training points

using finite-element analysis, and thus obtain the failure indicator
responses Ib�X;XF;X�s; t��.
5) Train a SVM surrogate model for the failure indicator, and

represent the surrogate model as ybuckling � Îb�X; ξF;w�.
6) Generate samples of w using the ARMA models developed in

Step 1 and samples ofX and ξF. Note that if the unconditional failure
probability as given in Eq. (16) is desired the unconditional samples
of w need to be generated by considering the variability in the
posterior distribution of Θ.
7) Obtain the indicator responses by substituting the samples ofw,

X, and ξF into ybuckling � Îb�X; ξF;w� into the SVMmodel. Suppose

the indicator responses at the samples are given by

ybuckling �

2
6664

ybuckling�1; 1� ybuckling�1; 2� · · · ybuckling�1; n�
ybuckling�2; 1� ybuckling�2; 2� · · · ybuckling�2; n�

..

. ..
. . .

. ..
.

ybuckling�N; 1� ybuckling�N; 2� · · · ybuckling�N; n�

3
7775

(28)

where N is the number of samples at each time instant, n is the
number of time instants into which the time interval of interest �t0; te�
is discretized, and ybuckling�i; j� is the indicator response of the ith
sample at the jth time instant.

The failure probability is then computed as

pf �
XN
i�1

max
j

fybuckling�i; j�g∕N (29)

3. Reliability Analysis Under Epistemic Uncertainty

Two sources of epistemic uncertainty involved in buckling
reliability analysis are considered here, namely, data uncertainty and
surrogate model uncertainty. An important additional source of
epistemic uncertainty is the physics model uncertainty; this is not
considered in this paper. The two epistemic uncertainty sources
considered here are related to limited data; the first one relates to
limited physical data available to characterize spatiotemporal
variability, and the second one relates to limited training data for the
SVM surrogate model due to computational expense. In this section,
we discuss how to incorporate these two sources of epistemic
uncertainty in reliability analysis.

a. Incorporation of Data Uncertainty. The epistemic uncertainty in
the SVD–ARMA model (coefficients of ARMA models) due to
limited data is represented through probability distributions using the
Bayes’s theorem as discussed in Sec. III.A. A straightforward way of
incorporating the data uncertainty into reliability analysis is to employ
a double-loop implementation procedure. The basic procedures of the
double-loop framework are summarized as follows:
1) Generate the values of ARMA parameters from their posterior

distributions.
2) Perform buckling reliability analysis (Sec. III.B) conditioned on

each sample of the ARMA parameters. The conditional failure
probability is obtained as in Eq. (15). Based on this, the unconditional
buckling failure probability is obtained using Eq. (16).
The previouslymentioned double-loop procedure, however, is com-

putationally expensive since the time-dependent buckling reliability
analysis needs to be performed repeatedly for each realization of the
ARMA parameters. To improve the efficiency, an auxiliary variable
approach that converts the double-loop procedure into a single-loop
procedure is employed in this paper.
In theauxiliaryvariable approach, anauxiliaryvariable isdefined such

that thevariability in theARMAmodel can be explicitly represented as a
deterministic function of cumulative distribution function (CDF) values
(aleatory randomness) and epistemic parameters so that the double-loop
procedure can be replaced by the single-loop approach. At each time
instant, the ARMA model is a random variable. For a given ARMA
modelwi�tj� at time instant tj, the probability density function ofwi�tj�
is fw�wjΘ�, and the CDF value u is given by [48]

u �
Z

w

−∞
fw�xjΘ� dx (30)

where x is a dummy variable for integration. Repeating the same
procedure [Eq. (30)] by considering the variability of wi�tj�, we

will get corresponding CDF values. The obtained CDF values define

Fig. 7 Bayesian calibration of ARMA model parameters for the three load coefficients.
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another random variable Ui, which follows a uniform distribution on

�0; 1�. For a givenvalue ofUi � u and givenvalues ofΘ, there is a one-
to-one mapping to the realization of wi�tj�. More details about the

auxiliary variable approach are given by Sankararaman andMahadevan

[48], and adaptation of this approach to reliability analysis is discussed
by Nannapaneni and Mahadevan [49].
Using the auxiliary variable approach, a realization of wi�tj� for a

given Ui � u and Θ can be computed by

w � F−1
w �Ui � ujΘ� (31)

where F−1
w �·� is the inverse CDF of wi�tj�. Note that the previous

equation is a deterministic relationship.
Defining an auxiliary variable for each time instant, the double-

loop procedure then becomes a single-loop procedure as follows:
1) Generate the values of ARMA parameters from their posterior

distributions and random samples for the auxiliary variables. Convert
the samples of ARMA parameters and auxiliary variables into
realizations of spatiotemporal variability.
2) Obtain the buckling indicator responses at the realizations of

spatiotemporal variability, and thus directly compute the uncondi-
tional buckling failure probability.
Further, since the computer simulations are often computationally

expensive, the SVM model may not be well trained due to limited

computational resources. In that situation, the classification

uncertainty will affect the time-dependent reliability analysis results.
Next, we will discuss how to incorporate the effect of classification

uncertainty on the reliability estimate.

b. Incorporation of Classification Uncertainty. The SVM classifier
that has been discussed previously is based on the assumption that

there is no uncertainty in the classification of the data to either of the
classes. However, since the SVM is constructed using a limited num-

ber of training data, any new classification is inherently uncertain.

Thus, for any new point that needs to be classified, we can associate a
probability of it belonging to class�1 or class−1. The classification
uncertaintyPC can be obtained from the classification score using the

following two different transformation functions [44]. For separable
data, a discrete transformation function is available,

PC�csi� �

8>>><
>>>:

0; csi < max
yk�−1

csk;

πC; max
yk�−1

csk ≤ csi ≤ min
yk�1

csk;

πC; csi > min
yk�1

csk

(32)

where PC is the probability of pi falling into class �1 and πC
indicates the prior probability of class �1. The prior probability is
obtained from the training data. For nonseparable data, a sigmoid

function is available for estimating classification uncertainty,

PC�csi� �
1

1� exp�Scsi � I� (33)

in which S and I are the slope and the intercept; both can be obtained
from the training data using logistic regression [44].
After introducing the classification uncertainty into buckling

reliability analysis, each indicator response given in Eq. (28) is a
binary random variablewith probability given in Eq. (32) or Eq. (33).

For any specific indicator response ybuckling�i; j�, ∀ i � 1; 2; · · · ; N;

j � 1; 2; · · · ; m, we have

�
Prfybuckling�i; j� � 0g � 1 − PC

Prfybuckling�i; j� � 1g � PC
(34)

Equation (34) implies that the buckling failure probability given in
Eq. (29) is a randomvariable due to the uncertainty in ybuckling�i; j�. A
bootstrapping approach can be employed to quantify the uncertainty

in pf due to the classification uncertainty. The basic idea is to

generate samples of ybuckling�i; j� based on the classification

probability given in Eq. (34). Based on the samples of ybuckling�i; j�,
samples of pf are obtained. Suppose that Nc samples are generated

for each ybuckling�i; j� based on the classification uncertainty; we then
have

y�i�buckling �

2
66666664

y�i�buckling�1;1� y�i�buckling�1;2� · · · y�i�buckling�1;m�
y�i�buckling�2;1� y�i�buckling�2;2� · · · y�i�buckling�2;m�

..

. ..
. . .

. ..
.

y�i�buckling�N;1� y�i�buckling�N;2� · · · y�i�buckling�N;m�

3
77777775
;

∀ i� 1;2; · · · ;Nc (35)

where y�i�buckling�j; k� is the ith sample of ybuckling�j; k� generated based
on Eq. (34).
Based on the samples of failure indicators, we have the samples of

pf as follows:

p�k�
f �

XN
i�1

max
j

fy�k�buckling�i; j�g∕N; ∀ k � 1; 2; · · · ; Nc (36)

The uncertainty in pf due to the classification uncertainty is then
quantified based on the random samples.
Until now, we have discussed the techniques required for the snap-

through buckling reliability analysis under spatiotemporal variability
and epistemic uncertainty. As shown in Fig. 8, the proposed method
in general consists of three main parts. In the first part, the
spatiotemporal variability is represented using an SVD–ARMA
model, and the epistemic uncertainty in the spatiotemporal variability
modeling is quantified in using the Bayesian calibration. In the
second part, an SVM classifier surrogate model is constructed for the
snap-through buckling failure event instead of the common practice
of building a numerical surrogatemodel for the critical buckling load.
In the third part, the SVD–ARMAmodel is integrated with the SVM
model to perform time-dependent buckling reliability analysis, and
the effects of surrogate model uncertainty on the reliability analysis
results are quantified. These steps provide an effective strategy for
snap-through buckling reliability analysis under both aleatory and
epistemic uncertainty, in the presence of spatiotemporal variability in
loads and structural properties. A numerical example is given in the
subsequent section to demonstrate the proposed method.

IV. Numerical Example

A. Problem Description

A curved beam as shown in Fig. 2 with an uncertain boundary
condition is used to demonstrate the proposed method. The force-
deflection curve for this structure looks very similar to that shown in
Fig. 1b. The Young modulus E is modeled as an aleatory lognormal
random variable, and the thickness h is modeled as a random field
with spatial variability. The modeling of thickness as a random field
captures the issue of geometric imperfection, a factor often studied in
the context of buckling. The load P varies over both space and time
and is modeled based on assumed experimental data. The flexibility
coefficient of the spring (at End 2 of the beam)K is assumed to be an
aleatory random variable following a lognormal distribution. Table 1
describes the variables in this example.
The autocorrelation function of the thickness h random field is

assumed to be given by

ρh�s; s 0� � exp�−�s − s 0�2∕2l2h� (37)

where lh � 2.5 in: Based on the correlation function, the Young
modulus is represented using the K–L expansion. Since just two
eigenvalues add up to about 95% of the total sum of all the eigen-
values, only two terms are used in the K–L expansion. The reliability
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of the curved beamwith respect to snap-through buckling over [0, 50]
min is estimated. Following the procedure of the proposed method,
we first model the spatiotemporal variability of the load based on
experiment data.
Note that epistemic uncertainty inK and E can also be included in

the reliability analysis. K and E can be an unknown deterministic
constant, an aleatory variable with unknown distribution type and
parameters, or a random field with unknown correlation length and
variance, all of which can be characterized using Bayesian
calibration.

B. Representation of the Spatiotemporal Variability

It is assumed that the spatiotemporal load data is available at 16
spatial locations on the beam and at 51 time instants. The data are first
processed using SVD as discussed in Sec. III.A. Because of the space
limitation, we do not give the detailed data here. Figure 9 shows the
reconstruction of the load data using SVD. Figures 9a and 9b give the
reconstructed load over time, and Figs. 9c and 9d depict the
reconstructed loads over space. P�1; t� and P�2; t� represent the
spatiotemporal load histories corresponding to two different spatial
locations, and P�s; 1� and P�s; 2� represent the variation over space
for two different time instants. It is found that the spatiotemporal load
data can be almost perfectly reconstructed with the first three
important features. In the SVD model, we therefore use three
important features to model the load with spatiotemporal variability.
Since the first three important features are used in the SVD

expansion, we need to model the three time-dependent coefficients,
w1�ti�; w2�ti�, and w3�ti�, using ARMA models. We use ARMA
models of order (1,1). However, they can be chosen using Bayesian
calibration similar to how the other ARMA model parameters are

chosen. A detailed description for calibrating the ARMA model

parameters can be found in the work by Uturbey [40]. Let the

parameters for these three models be represented as fϕ1; θ1; σ1;tg,
fϕ2; θ2; σ2;tg, and fϕ3; θ3; σ3;tg. Using Bayesian calibration, the

posteriors for these parameters are obtained by assuming uniform

prior distributions. Figure 7 shows the prior and posterior distribu-

tions of the coefficients of the three ARMA models.
These parameters will be used to simulate the load history

realizations during the time-dependent buckling reliability analysis.

C. Time-Dependent Snap-Through Buckling Reliability Analysis

It may be noted that, even for a simple structure like the curved

beam discussed in Sec. IV.A, the computational effort using

Monte Carlo simulation (MCS) is already very large, since each run

takes about 2 min on a desktop computer and MCS requires about

100,000 samples to converge. Therefore, following the procedure

given in Sec. III.B, the SVMmodel is trained for the buckling failure

indicator. Five hundred training points are generated for boundary

condition K, Young’s modulus E, the variables ξ1 and ξ2 in the K–L
expansion of the thickness random field, and the coefficients of the

ARMA load model. At each of the training points, snap-through

buckling analysis is performed for the curved beam. Pass/fail data, as

a function of the individual variables, are given in Fig. 10. It can be

seen that the data are nonseparable; i.e., the data jump frequently

between 0 and 1. The inseparability in each plot is of course due to the

effect of the other variables; in seven-dimensional space, the points

will be apart from each other, yet the situation shown in Fig. 4 is also

present, requiring a highly nonlinear function to represent the data

with load proportionality factor lpf as the output. In fact, a Kriging

surrogate model was tried with the same training data, and the bias

and variance in Kriging model prediction were found to be too large.

On the other hand, the SVM approach does not attempt to model

every island in the data; instead, slack variables are introduced to

account for misclassification, resulting in satisfactory accuracy,

efficiency, and uncertainty quantification.
Based on the trained SVM model, the time-dependent buckling

failure probability is analyzed. Figure 11 gives the unconditional

time-dependent buckling failure probability over the time interval of

Table 1 Variables in the curved beam example

Variable Distribution Mean Standard deviation Correlation

K Lognormal 0.0098 0.0058 — —

h Normal 0.0684 in. 0.00684 in. Eq. (37)
E Lognormal 1e7 lb∕in.2 1e6 lb∕in.2 — —

P Modeled based on experimental data

Fig. 8 Flowchart of the proposed buckling reliability analysis method.
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interest by assuming that there is no classification uncertainty in the
surrogate model. It can be seen that the buckling failure probability
increases with time due to the temporal variability of the load. It
implies that the proposed method can effectively perform buckling
reliability analysis for problems with spatiotemporal variability and
epistemic uncertainty.

D. Buckling Failure Probability with Classification Uncertainty

Next, we quantify the uncertainty in the buckling failure proba-
bility estimate due to classification uncertainty caused by limited
training data, by using the method presented in Sec. III.B. Figure 12
shows the buckling failure probability over the time interval of
interest considering the classification uncertainty. It is to be noted that
the failure probability obtained in the absence of classification un-
certainty is lesser than the mean failure probability obtained in the

presence of classification uncertainty. This could be attributed to the

high misclassification percentage of about 3%. The misclassification

percentage can be reduced by increasing the accuracy of the SVM

model (either by increasing the number of training points or by

optimizing the SVM parameters). It shows that the proposed method

can not only provide a deterministic estimate of the buckling failure

probability over time but also give the uncertainty bounds of the

estimate due to the classifier uncertainty.
It is to be noted that the computational effort required for the

proposed strategy ismuch less than that required for traditionalMCS,

which takes thousands of runs to converge. The number of training

points required for the SVM classifier is 500. Quantification of epi-

stemic uncertainty in the representation of spatiotemporal variability

requires about 5–10min. Propagation of the various uncertainties for

reliability analysis takes less than 3 min. When direct MCS is used

Fig. 9 Reconstruction of the spatiotemporal data using SVD.

Fig. 10 Pass/fail data as a function of the random variables (units of E: lb∕in.2. Other quantities are dimensionless).
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(1 × 105 runs), it will take around 5 months to finish if a single
desktop computer is used to run the simulations. When the proposed
reliability analysis method is extended to realistic structures such as a
hypersonic aircraft panel subjected to multiphysics loads, the compu-
tational cost of MCS will become much higher and unaffordable.
In this paper, the SVM is used as classifier for reliability analysis.

TheArtificial Neural Network (ANN) is also used in the literature for
the modeling of disjoint failure boundaries [50]. However, Li et al.
[51] have discussed that the selection of the topology structure and
parameters, overfitting, and local minima makes ANN less effective
than SVM in reliability analysis [52–54].

V. Conclusions

Snap-through buckling is an important failure mode to consider
during the design of airframe structures subject to extreme environ-
ments. For problems with spatiotemporal variability, it is hard to
identify a specific value of the critical buckling load, which is widely
used in current buckling reliability analysis methods. To overcome
this difficulty, this paper directly uses a classifier to perform buckling
reliability analysis instead of relying on the critical buckling load.
Based on the definition of the failure indicator function, a new snap-
through buckling reliability analysis method is developed for
problems under spatiotemporal variability and epistemic uncertainty.
There are mainly two challenges in buckling reliability analysis

under spatiotemporal variability and epistemic uncertainty. The first
challenge is how to represent the spatiotemporal variability based on
available data and to quantify the epistemic uncertainty in this
representation due to limited data. The second challenge is how to
perform buckling reliability analysis by considering the spatiotem-
poral variability and epistemic uncertainty in characterizing spatio-
temporal variability. To overcome the first challenge, this paper
integrates singular value decomposition (SVD) with time-series

modeling to effectively describe the spatiotemporal variability. The
SVD is used to account for the variability and correlation over space,
while an autoregressive moving average (ARMA) model is used to
account for the variability and correlation over time. Bayesian
calibration is employed to quantify the epistemic uncertainty in the
SVD–ARMA model. A SVM-based classifier is developed for the
time-dependent buckling reliability analysis. The SVMmodel is first
trained for the various random quantities. After that, time-dependent
reliability is analyzed using Monte Carlo simulation with the SVM
model. The epistemic uncertainty introduced by limited training of
the SVM model (due to computational resource constraints) is
included to quantify the uncertainty in the reliability estimate. A
curved beamwith uncertain boundary condition, spatial variability in
the material modulus, and spatiotemporal variability in the loading is
used to demonstrate the proposed buckling reliability analysis
method.
The SVM model is directly used to obtain the buckling failure

indicator in this paper. No advanced sampling approach is used.
Future work needs to explore adaptive sampling to optimize the
number of training points for the SVM model, in order to maximize
its accuracy and minimize its uncertainty. In addition, future work
needs to incorporate verification and validation in the various steps of
the proposed methodology. In this paper, the SVD–ARMAmodel is
used to represent the spatial and temporal variability of loading.
When practical laboratory data are used, several sources of
uncertainty such as model uncertainty and observation uncertainty
need to be considered. When there are too much data, directly
performing SVDwill create a high demand on the computermemory.
In that case, a low-rank data compression method can be used to
perform SVD and then model the coefficients in the ARMAmodels.
Future work needs to account for the uncertainties of SVD–ARMA
representation and investigate strategies to meet the computational
demand in realistic problems. An important source of epistemic
uncertainty, namely, physics model uncertainty, is not included in
the methodology developed in this paper; this needs to be addressed
in future work. Application of the developed method to more
complicated air vehicle structures or components such as hypersonic
panels also needs to be investigated in the future.
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