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Abstract 

A common strategy for the modeling of stochastic loads in time-dependent reliability 

analysis is to describe the loads as independent Gaussian stochastic processes. This assumption 

does not hold for many engineering applications. This paper proposes a Vine-autoregressive-

moving average (Vine-ARMA) load model for time-dependent reliability analysis, in problems 

with a vector of correlated non-Gaussian stochastic loads. The marginal stochastic processes are 

modeled as univariate ARMA models. The correlations between different univariate ARMA 

models are captured using the Vine-copula. The ARMA model maintains the correlation over 

time. The Vine-copula represents not only the correlation between different ARMA models, but 

also the tail dependence of different ARMA models. The developed Vine-ARMA model 

therefore can flexibly model a vector of high-dimensional correlated non-Gaussian stochastic 

processes with the consideration of tail dependence. Due to the complicated structure of the 

Vine-ARMA model, new challenges are introduced in time-dependent reliability analysis. In 

order to overcome these challenges, the Vine-ARMA model is integrated with a single-loop 

Kriging (SILK) surrogate modeling method. A hydrokinetic turbine blade subjected to a vector 

of correlated river flow loads is used to demonstrate the effectiveness of the proposed method. 

Keywords: Time-dependent; Reliability; Time-series; Vine copula; Stochastic process;
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1. Introduction 

In problems with stochastic load histories and time-dependent factor, such as material 

degradation, wear, and corrosion, the reliability is also time-dependent [1-3]. Time-dependent 

reliability has been investigated intensively during the past decades using upcrossing rate 

methods [4-7], sampling-based methods [8-11], and surrogate modeling methods [12, 13]. A 

common strategy in current time-dependent reliability analysis methods is to assume the 

stochastic loads as Gaussian stochastic processes [11] with precisely known mean, variance, and 

correlation functions. Based on the representation of Gaussian stochastic processes, the non-

Gaussian stochastic processes are simulated based on probability transformations [14]. The most 

commonly used methods for the simulation of Gaussian stochastic processes include Karhunen–

Loève (KL) expansion [15], orthogonal series expansion (OSE) [16], and polynomial chaos 

expansion [15].  

Along with the above methods, autoregressive-moving average (ARMA) modeling, which is 

the focus of this paper, has also been used in time-dependent reliability analysis to describe the 

loading time histories based on available experimental or history data. For instance, Singh and 

Mourelatos described the roughness of the road as an ARMA model for time-dependent 

reliability analysis of automotive vehicles [8]; Hu et al. [17, 18] used a Bayesian ARMA model 

to represent the stochastic load history in the time-dependent reliability analysis in the presence 

of parametric uncertainty; Ling et al. [19, 20] described the fatigue load history as a ARMA and 

ARIMA models to perform fatigue life prognosis; and Wang and Billinton applied the ARMA 

model to the reliability analysis of an electric power system under stochastic wind speed [21].  

 The above methods and applications of ARMA models mainly focus on a single Gaussian 

stochastic process or multiple independent Gaussian stochastic processes. In practical situations, 
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however, it is quite possible that the stochastic processes are correlated and non-Gaussian. For 

example, the ocean waves acting on a jack-up platform are correlated at different locations of the 

platform [22] and the wind pressures on a building are correlated at different locations and 

directions [23]. A possible way of describing the high-dimensional correlated Gaussian 

stochastic processes is to use the multivariate ARMA models [24, 25]. The basic principle of the 

multivariate ARMA model is to represent the noise terms as a multivariate normal distribution at 

each time instant [26]. The correlations of the stochastic processes over time are captured by the 

marginal ARMA model and the correlations between different ARMA models are described by 

the multivariate normal distribution. The employment of the multivariate normal distribution in 

multivariate ARMA models, however, has two main limitations. First, the multivariate normal 

distribution is only applicable for noise terms with Gaussian marginal distribution. Second, the 

multivariate normal distribution cannot capture the tail dependence between different ARMA 

models [27]. Tail dependence refers to the phenomenon that two correlated random variables 

also have dependence between their extreme values. For example, there is a high probability that 

the rain takes it extreme value when the wind takes its extreme value during a hurricane. 

Accounting for the tail dependence is important in reliability analysis because failures are 

usually caused by extreme events. 

This paper investigates the integration of Vine copula concepts with the ARMA models to 

develop a Vine-ARMA model to overcome the above mentioned limitations. Vine is a 

decomposition strategy, which decomposes a high-dimensional copula into bivariate copulas 

[28]. A reason that Vine is very useful is current multivariate copula is only available for 

Gaussian copula or Gaussian-related copula. When a Gaussian copula is not applicable, other 

copula families (such as Clayton, Gumbel, and Frank) are only well-studied for bivariate cases. 
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The decomposition using Vine enables us to flexibly model a high-dimensional copula based on 

currently available bivariate non-Gaussian copulas. An advantage of using the non-Gaussian 

bivariate copula to model the high-dimensional copula is that the tail dependence between 

different variables can be captured using the non-Gaussian copula. Since the first construction 

[29] and formal definition [30] of Vines in 1990s, they have been intensively studied in many 

areas [31]. Recently, Jiang et al. [27] applied Vine copula to reliability analysis by integrating 

Vine copula with MCS and FORM. In this work, the Vine copula is integrated with ARMA 

models to model high-dimensional correlated non-Gaussian load processes.  

The developed Vine-ARMA model is then applied to time-dependent reliability analysis. 

Since current time-dependent reliability analysis methods are mainly developed based on the 

Gaussian and independent assumptions of stochastic loads, the introduction of Vine-ARMA 

model into time-dependent reliability analysis raises new challenges. During the past years, a 

group of time-dependent reliability analysis methods have been developed to improve the 

accuracy of reliability analysis. These methods, however, cannot be directly applied to problems 

with Vine-ARMA models. How to accurately perform time-dependent reliability analysis is the 

first challenge. A surrogate modeling approach might be a promising way for problems with 

loads described as Vine-ARMA models. Current surrogate model-based time-dependent 

reliability analysis methods however mainly focus on problems without stochastic processes [12, 

13]. How to integrate the Vine-ARMA model with the surrogate model-based methods to 

efficiently perform time-dependent reliability analysis is the second challenge. In order to 

overcome these challenges, the Vine-ARMA model is combined with a recently developed 

single-loop Kriging (SILK) surrogate modeling method [32]. The combination of the Vine-

ARMA model and the SILK method enables us to accurately and efficiently evaluate the time-
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dependent reliability. The main contributions of this paper are therefore summarized as: (1) the 

application of Vine copula in time-dependent reliability analysis. (2) the integration of Vine 

copula and ARMA techniques for the modeling of high-dimensional correlated non-Gaussian 

stochastic processes. (3) the synthesis of Vine-ARMA and SILK for efficient and accurate time-

dependent reliability analysis. 

The remainder of the paper is organized as follows. Section 2 provides background review of 

time-dependent reliability analysis methods and multivariate ARMA modeling. Section 3 

develops a Vine-ARMA model for the modeling of high-dimensional non-Gaussian stochastic 

loads. Section 4 develops a method for time-dependent reliability analysis by using the Vine-

ARMA model and the SILK method. A turbine blade example is used to demonstrate the 

proposed method in Section 5, and concluding remarks are given in Section 6. 

 

2. Background 

 

2.1.  Time-dependent reliability 

In time-dependent reliability analysis, the first-passage reliability over a desired time period 

is given by [33] 

 0 0( , ) Pr{ ( ) ( , ( ), ) 0, [ , ]}e eR t t G g t t       X Y   (1) 

in which ( ) ( , ( ), )G t g t t X Y  is a time-dependent response function, 1 2[ , , , ]nX X XX  is a 

vector of random variables, 1 2( ) [ ( ), ( ), , ( )]mt Y t Y t Y tY  is a vector of stochastic processes, t 

stands for time, Pr{}  stands for probability, “ ” means “for all”, and  0t  and et  are the initial 

and final time instants, respectively. 

The corresponding time-dependent failure probability is given by 
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 0 0( , ) Pr{ ( ) ( , ( ), ) 0, [ , ]}f e ep t t G g t t       X Y   (2) 

where “ ” means “there exists”. 

In practical applications, the stochastic processes 1 2( ) [ ( ), ( ), , ( )]mt Y t Y t Y tY  may be 

correlated. Since the focus of this paper is to use time-series models to represent stochastic 

processes, next we briefly review the multivariate ARMA model which can be applied to the 

modeling of multiple correlated stochastic processes. 

2.2.  Multivariate autoregressive-moving average (ARMA) model 

Data-driven time series models have been widely used in many areas for the modeling of 

stochastic processes and perform predictions based on the modeling. The commonly used time 

series models include the autoregressive (AR) model, moving average (MA) model, and ARMA 

model. The AR, MA, and ARMA are for stationary stochastic processes. When the stochastic 

process is non-stationary, the autoregressive integrated moving average (ARIMA) model is 

employed [34]. In this work, the ARMA model is used to illustrate the proposed method. The 

proposed method, however, can be easily extended to ARIMA models.  

An ARMA(p, q) time series model of a stochastic process ( )Y t  is given by 

(0) (1) (2) ( ) (1) ( )

1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( )p q

i i i i p i i i qY t Y t Y t Y t t t t                       (3) 

in which 1( ), ( ), , ( )i i i qt t t    , is a sequence of independent and identically distributed random 

variables with zero mean and finite standard deviation  , (0) , (1) ( ), , p  , (1) ( ), , q   are 

the coefficients of the ARMA model, p is the order of the AR model, and q is the order of the 

MA model. The random variables, 1( ), ( ), , ( )i i i qt t t    , can follow Gaussian or non-Gaussian 

distributions. The common approach is to assume that 1( ), ( ), , ( )i i i qt t t     follow Gaussian 

distributions.  
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For the multivariate ARMA model, Eq. (3) is rewritten as [35] 

 

( )(0) (1) (2)

1 2

( )(1)

1

( ) ( ) ( ) ( )

( ) ( ) ( ), 1, 2, ,

j

j

j

j

p

j i j j j i j j i j j i p

q

j i j j i j j i q

Y t Y t Y t Y t

t t t j m

   

    

  

 

    

    
  (4) 

in which ( )j iY t  is the j-th stochastic process at time instant it  and ( ( )) 0j iE t  , 

2( ( ) ( ))j i j i jE t t    , ( ( ) ( ))j i k i jk j kE t t       , and ( ( ) ( )) 0,j i k lE t t i l     , where jk  is 

the correlation coefficient between the noise term ( )j it  and ( )k it  at time instant it . 

In practical situations, we may only know the correlation (if at all) between ( )iY t  and ( )jY t , 

, 1, 2, ,i j m  . The correlation between the noise terms of the multivariate ARMA models is 

then obtained by solving the following equation [35]: 

 T T

Y Y     φ φ ω ω   (5) 

where Y  is the covariance matrix of ( )iY t  and ( )jY t , , 1, 2, ,i j m  ,   is the covariance 

matrix of ( )i t  and ( )j t , , 1, 2, ,i j m  , and φ  and ω  are the coefficients matrices with the 

i-th row being the coefficients of the i-th ARMA model (i.e. (1) (2) ( )[ , , , ]p

i i i    and 

(1) (2) ( )[ , , , ]q

i i i   ).   

Based on the multivariate ARMA model, the non-Gaussian stochastic processes are then 

obtained using the probability transformation as follows. 

 1( ) ( ( ( ), , ))Z Y YZ t F Y t      (6) 

in which ( )ZF   is the marginal cumulative probability function (CDF) of a non-Gaussian 

stochastic process ( )Z t , 1( )ZF    is the inverse CDF, Y  and Y  are the mean and standard 

deviation of Gaussian stochastic process ( )Y t , and ( , , )    is the CDF of a normal variable.  
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Even though multivariate ARMA models can effectively model and simulate the correlated 

stochastic processes, their application is limited by two main drawbacks: (1) the marginal 

distribution of the noise term is limited to Gaussian distribution since the Gaussian distribution 

can significantly facilitate the regression of ARMA models; (2) the multivariate Gaussian 

distribution cannot capture the tail dependence between different load processes. In the 

subsequent section, the Vine copula is integrated with ARMA models to overcome the 

drawbacks of multivariate ARMA models.  

 

3. A Vine-ARMA Model for High-Dimensional Stochastic Load Modeling 

 

This section first introduces the concepts of tail dependence and Vine copula, followed by 

development of the proposed Vine-ARMA model. 

3.1. Tail dependence 

Tail dependence, which is usually defined for bivariate random variables, measures the 

extreme co-movements in the lower and upper tails of the joint probability function [36]. Or in 

other words, tail dependence gives the probability that a random variable reaches an extreme 

value given that another random variable attains an extreme value as well. For two random 

variables 1X  and 2X , the upper tail dependence coefficient (UTDC) U  and the lower tail 

dependence coefficient (LTDC) L  are defined as [36] 

 1 1

2 2 1 1
1

lim Pr{ ( ) ( )}U
u

X F u X F u   (7) 

 1 1

2 2 1 1
0

lim Pr{ ( ) ( )}L
u

X F u X F u   (8) 
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where u  is the CDF value of a random variable, 0u  means u approaches 0 from the value 

larger than 0 side,  1u  means u approaches 1 from the value less than 1 side, and 1

1 ( )F  and 

1

2 ( )F  are the inverse CDFs of 1X  and 2X , respectively. 

The UTDC and LTDC can also be represented in terms of copula functions [36]. A copula 

function describes the dependence between random variables by linking the marginal probability 

functions to the joint distribution function [37]. For n random variables, 1 2, , , nX X X , the joint 

CDF 1 2( , , , )nF x x x  is connected to the marginal CDFs using the copula function C as follows 

 1 1 1

1 2 1 1 2 2 1 1 2 2( , , , ) ( ( ), ( ), , ( )) ( ( ), ( ), , ( ))n n n n nF x x x C F x F x F x C F u F u F u   (9) 

where ( )iF  is the CDF of the i-th random variable, 1( )iF  is the corresponding inverse CDF, 

and iu  is the marginal CDF value of ix . 

Using the copula function, UTDC and LTDC are represented as [36] 

 
1

1 2 ( , )
lim

1
U

u

u C u u

u
  (10) 

 
0

( , )
limL
u

C u u

u
  (11) 

It has been shown that both the UTDC and LTDC are zero for the bivariate normal 

distribution [36]. Since the multivariate normal distribution can be represented as combinations 

of bivariate normal distributions or a multivariate Gaussian copula, this means that the tail 

dependence between individual ARMA models cannot be captured in the multivariate ARMA 

models presented in Sec. 2.2. Tail dependence is important for both time-independent and time-

dependent reliability analysis since failure events are often caused by the extreme (rare) events. 

The non-Gaussian copulas are able to capture the tail dependence between two random variables. 

But current non-Gaussian copulas are only well studied for bivariate distributions. In order to 
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represent the correlations over time and between individual ARMA models at the same time 

capture their tail dependences, a promising way is to integrate Vine copula with the ARMA 

models. Note that Levy process has also been used to capture the anomalous tail behaviors and 

correlation structure of a stochastic process [38, 39]. However, the focus of this paper is to 

capture the tail dependence between different stochastic processes. The Vine-ARMA model 

presented in this paper can be extended to capture the tail dependence between different Levy 

processes by developing a Vine-Levy model. 

3.2. Vine copula 

During the past decades, numerous methods have been developed to model the extreme value 

distributions and perform load combination of extreme value distributions [40-42]. Most of these 

methods however are based on certain assumptions and simplifications. In this paper, the Vine 

copula is employed to develop a more rigorous way of modeling the extreme values of loads. As 

discussed in the above sections, using a multivariate Gaussian distribution cannot capture the tail 

dependence between load processes. In this situation, the high-dimensional copula can facilitate 

the correlation representation and tail dependence modeling of high-dimensional variables since 

the marginal distribution of the correlated random variables is independent from the copula 

function. However, most of copula families, which can capture the tail dependence, are only 

well- studied for bivariate cases.  

Vine is a method used to represent a high-dimensional probability distribution of correlated 

random variables through bivariate copulas. Based on the bivariate decomposition, we can then 

use the well-studied non-Gaussian bivariate copulas to model the complicated dependences 

between multiple random variables [28]. The basic principle of Vine decomposition is that the 
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joint probability density function (PDF) of n random variables, 1 2, , , nX X X  can be 

decomposed as 

 
1 2 1 2 1 1 2( , , , ) ( ) ( ) ( , ) ( , , )n n n n n n n n nf x x x f x f x x f x x x f x x x   (12) 

where ( )f  is the conditional PDF.  

There are many possible combinations of the decomposition. The above decomposition is 

just used as an example to illustrate the principle of Vine. For any conditional PDF, ( )Cf x x , it 

can be represented as pair-copula density functions as follows [43] 

 ( ) { ( ), ( )} ( )
j

C C C C C

jxc
f x c F x F x f x

c
x x x x   (13) 

where C

jx  is an arbitrarily chosen variable among the conditioned variables C
x , C

x  is the set of 

conditioned variables excluding the chosen variable C

jx , {, }
jxc

c
c

 is the bivariate copula density 

function, and ( )CF x x  is the conditional CDF [43].  

As indicated in Eq. (13), a key step in the Vine decomposition is the computation of the 

conditional CDF ( )CF x x . For a generalized 1 2( )F x x , it has been shown that [44] 

 12 1 1 2 2 12
1 2

2 2

{ ( ), ( )} { , }
( ) ( , , )

( )

C F x F x C u v
F x x h u v

F x v
  (14) 

where 12{, }C  is the bivariate copula function,  is the vector of parameters of the copula, 

1 1( )u F x , and 2 2( )v F x . When the conditioning variables are multivariate, similar 

expressions can be found in Ref. [43]. The h-function given in Eq. (14) has been derived for 

commonly used bivariate Gaussian, Student’s t, Clayton, and Gumbel copulas in Ref. [43]. 

Based on the h-functions, the conditional PDF given in Eq. (13) can be computed. 
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It should be noted that there are many possible Vines to describe the joint PDF given in Eq. 

(12) since the joint PDF can be decomposed in different orders. For example, 
1 2 3( , )f x x x  can 

be decomposed as 

 1 2 3 12|3 1 3 2 3 1 3( , ) { ( | ), ( | )} ( | )f x x x c F x x F x x f x x   (15) 

or  

 1 2 3 13|2 1 2 3 2 1 2( , ) { ( | ), ( | )} ( | )f x x x c F x x F x x f x x   (16) 

Even if there are many possible Vines, not all Vines can be used to obtain a pair copula 

construction, the most commonly used Vines include the D-Vine and C-Vine. A vine structure 

which is consistent with a valid pair copula construction is called regular Vine [45]. D-Vine and 

C-Vine are special cases of the regular Vine. There are also other regular Vines which can 

represent Eq. (12) flexibly. The joint PDF given in Eq. (12) is decomposed using a D-Vine as 

[43, 46, 47] 

 
1

1 2 1 1 1 1, 1, , 1

1 1 1

( , , , ) ( ) { ( , , ), ( , , )}
n jn n

n i i i i i j i j i i ji i j i i j

i j i

f x x x f x c F x x x F x x x  (17) 

The C-Vine decomposition gives [43, 46, 47] 

 
1

1 2 1 1 1 1, 1, , 1

1 1 1

( , , , ) ( ) { ( , , ), ( , , )}
n jn n

n i i j j j i jj j i j

i j i

f x x x f x c F x x x F x x x   (18) 

We use a four-variable problem below to illustrate the differences between different Vines. 

Fig. 1 shows the D-Vine, C-Vine, and a regular Vine decomposition of the joint PDF of four 

random variables.  

------------------------------- 

Place Figure 1 here 

------------------------------- 



 

Mahadevan  15 RISK-16-1078 

 

The above discussion indicates that a high-dimensional joint distribution can be decomposed 

into bivariate copulas using Vines. This enables us to use non-Gaussian bivariate copulas to 

model complicated high-dimensional dependences instead of using multivariate Gaussian 

distributions. Next, we will develop the proposed integration of Vine and ARMA models. 

3.3. Vine-ARMA model for correlated load process modeling  

The basic principle for the integration of Vine copula with ARMA models is to implement a 

top-down procedure during the simulation process of the multivariate ARMA model. It is 

different from the conventional multivariate ARMA models which implement a bottom-up 

procedure. More specifically, during the conventional simulation of multivariate ARMA models, 

realizations of the noise terms, ( )j t , 1, 2, ,j m , are generated first. Based on realizations of 

the noise terms, realizations of the stochastic processes are obtained. However, in the proposed 

Vine-ARMA model, samples are generated at the stochastic process response level (physical 

quantity level) first. The generated samples are then transformed to the noise terms to simulate 

the ARMA models.  

The top-down procedure for the integration of Vine and ARMA is achieved through the 

distribution-independent property of the copula function. For m non-Gaussian stochastic 

processes 1 2( ), ( ), , ( )mZ t Z t Z t , at a specific time instant t , we have 

 
1 21 2 1 2( ( ), ( ), , ( )) ( ( ( )), ( ( )), , ( ( )))

mm Z Z Z mF z t z t z t C F z t F z t F z t   (19) 

in which ( )
iZF  is the CDF of the i-th stochastic process. 

According to the probability transformation given in Eq. (6), Eq. (19) can be rewritten in 

terms of the associated ARMA models 1 2( ), ( ), , ( )mY t Y t Y t  as 
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1 1 2 2

1 2 1 2

1 2

( ( ), ( ), , ( )) ( , , , )

( ( ( ), , ), ( ( ), , ), , ( ( ), , ))
m m

m m

Y Y Y Y m Y Y

F z t z t z t C u u u

C y t y t y t
  (20) 

where ( )jy t  is a realization of the stochastic process ( )jY t  at time instant t , 1, 2, ,j m .  

For any ARMA model ( )jY t , the realization at time instant it  is a random variable 

conditioned on realizations before this time instant and is given by 

 (0) (1) (2) ( ) (1) ( )

1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( )p q

j i j j j i j j i j j i p j i j j i j j i qY t y t y t y t t t t                      (21) 

Eq. (21) can be rewritten as 

 1 1 1( ) ( ), , ( ), ( ), , ( ) ( )j i j i j i j i j i q j j iY t y t y t t t a t          (22) 

where 

 (0) (1) (2) ( ) (1) ( )

1 2 1( ) ( ) ( ) ( ) ( )p q

j j j j i j j i j j i p j j i j j i qa y t y t y t t t                     (23) 

The above equation implies that 1 1 1( ) ( ), , ( ), ( ), , ( )j i j i j i j i j i qY t y t y t t t      is a linear 

function of ( )j it , and we have 

 * *

1 1 1( ( ) ( ), , ( ), ( ), , ( ) ) ( ( ) ( ))Y j i j i j i j i j i q i jF Y t y t y t t t y F t y a            (24) 

Based on Eqs. (20) and (24), we then have 

 
1 2

1 2 1 2

1 2

( ( ), ( ), , ( )) ( , , , )

( ( ( )), ( ( )), , ( ( )))
m

m m

m

F z t z t z t C u u u

C F t F t F t
  (25) 

Eq. (25) indicates that the copula at the stochastic process response level (physical quantity 

level) is the same as the copula at the noise term level in the conventional ARMA models. This 

property significantly facilitates the integration of the Vine and ARMA models.  

In order to use the Vine copula to capture the tail dependence between different ARMA 

models, we build a Vine copula model to capture the dependence at any given time instant and 
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use the univariate ARMA models to maintain the correlation over time. The Vine copula and the 

univariate ARMA model are connected through the CDF values in the copula function as 

indicated in Eq. (25). Next, we will first briefly discuss how to build such a Vine-ARMA model 

based on data. Following that, we will explain the simulation of the Vine-ARMA model. 

3.4. Construction of the Vine-ARMA model 

Since the Vine copula is a function of the CDF values and is independent from the marginal 

distribution types of the univariate ARMA models and the noise terms, the Vine copula and the 

univariate ARMA models can be built independently.  

During the construction of the Vine-ARMA model, the experimental data on  

1 2( ), ( ), , ( )mZ t Z t Z t  are first transformed into data on CDF values and data on the associated 

standard Gaussian stochastic processes based on the marginal distributions of the stochastic 

processes. The data on the CDF values are then used to build the Vine copula, and the data on 

the associated Gaussian stochastic processes are used to build the individual ARMA models. The 

construction of the Vine copula involves the selection of Vine structure and copula types. Once 

the Vine structure and copula type are determined, parameters of the bivariate copulas need to be 

estimated. The construction of the Vine copula has been well studied in the literature and is not 

the focus of this paper; we direct the readers to Refs. [43, 46, 47] for details. The methods for the 

construction of univariate ARMA models are also well-documented, such as the Yule-Walker 

method, Burg method, covariance method, and maximum likelihood estimation [34, 48]. In this 

work, we therefore do not give details about how to construct the ARMA models. Note that the 

Vine tree structure, the copula type, and copula parameters may affect the reliability analysis 

results. As mentioned above, selection of Vine copula has been studied in Refs. [43, 46, 47, 49] 

using either maximum likelihood-based method or Bayesian methods. More details about the 



 

Mahadevan  18 RISK-16-1078 

 

selection of Vine copula can be found in these literatures [43, 46, 47, 49]. The Vine-ARMA 

model and the associated reliability analysis method developed in the subsequent sections are 

based on the assumption that the Vine copula is already selected based on available data.  

Assume that from the construction, we obtain the parameters of the bivariate copula function 

as ,j i  (the parameters given in Eqs. (17) and (18)) and the parameters of the univaraite ARMA 

models as φ  and ω  (the coefficients given in Eq. (5)). Next, we will discuss how to simulate the 

Vine-ARMA model based on ,j i , φ , and ω . 

3.5. Simulation of Vine-ARMA model  

At a given time instant t, there are two widely used methods that can be employed for the 

simulation of correlated random variables: the Rosenblatt transformation [50] and the Nataf 

transformation [51]. The Nataf transformation is basically the multivariate Gaussian copula, 

which cannot capture the tail dependence. The Rosenblatt transformation is accurate, but requires 

the joint CDF of the correlated random variables. Since the joint CDF and tail dependence of the 

high-dimensional load processes is accurately described by the Vine copula, the Rosenblatt 

transformation can be used to simulate the load processes at the given time instant.  

As discussed in Sec. 3.1.3, the simulation of the Vine-ARMA model is implemented here 

through a top-down procedure. For a given time instant t , we first generate samples of the 

physical quantity 1 2( ), ( ), , ( )mZ t Z t Z t . Since 1 2( ), ( ), , ( )mZ t Z t Z t  are high-dimensional 

correlated random variables at a given time instant, the Rosenblatt transformation [50] generates 

samples for 1 2( ), ( ), , ( )mZ t Z t Z t  as follows 
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where 1 2, , ,in in in

mu u u  are samples generated from independent uniform random variables [0,1] . 

Since the samples of 1 2( ), ( ), , ( )mZ t Z t Z t  are connected to the noise term through the 

copula equivalence given in Eq. (25), Eq. (26) can be rewritten in terms of copula functions as 
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  (27) 

Based on Eq. (27), correlated CDF samples of 1 2( ), ( ), , ( )mZ t Z t Z t  are obtained as below 

 

1 1
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1 1

3 3 2 1 11 21 1 12

( , , )

( ( , ( , , ), ), , )

Co in

Co in Co

Co in Co Co Co

u u

u h u u

u h h u h u u u



 



 

   
  (28) 

in which 1 2, , ,Co Co Co

mu u u  are correlated CDF samples of 1 2( ), ( ), , ( )mZ t Z t Z t  or of 

1 2( ), ( ), , ( )mt t t  at time instant t .  

Note that the inverse h-function (i.e. 1( , , )h    ) is required to generate the CDF samples. 

The inverse h-function for commonly used Gaussian, Clayton, Student’s t, and Gumbel copulas 

can be found in Ref. [43].  For different Vine structures, the sampling orders of the CDF values 

are different. Typically, the C-Vine is computationally more efficient than the D-Vine since the 
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C-Vine has less number of conditional distribution functions to be computed in the simulation 

than the D-Vine. In this work, the C-Vine is used in the Vine-ARMA model.  

Once the samples of 1 2, , ,Co Co Co

mu u u  are obtained, samples of 1 2( ), ( ), , ( )mt t t  are 

obtained as 

 1( ) ( )
i

Co

i it F u   (29) 

where 1( )
i

F  is the inverse CDF of ( )i t . 

Based on the samples of 1 2( ), ( ), , ( )mt t t , samples of 1 2( ), ( ), , ( )mY t Y t Y t  and 

1 2( ), ( ), , ( )mZ t Z t Z t  at time instant t  conditioned on realizations before this time instant are 

then obtained using  Eqs. (21) through (23) and the coefficients of the ARMA models. Table 1 

gives a simplified algorithm for the simulation of the Vine-ARMA model based on the C-Vine 

structure. In the algorithm, the simulation algorithm of the Vine structure is adopted from Ref. 

[43]. The discussions presented in Secs. 3.1.3-3.1.5 show that no Gaussian assumption is made 

regarding the noise term of the ARMA models. The developed Vine-ARMA model is therefore 

also applicable to multivariate ARMA models with non-Gaussian noise terms. This advantage 

comes from the distribution type independence property of the copula function.  

------------------------------- 

Place Table 1 here 

------------------------------- 

Next, we will develop our proposed approach to apply the Vine-ARMA model to time-

dependent reliability analysis. 

 

 

4.  Time-dependent reliability analysis using the Vine-ARMA model 
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The Vine-ARMA model is able to flexibly capture the tail dependence and correlations 

between different stochastic processes and over time. The complicated Vine copula structure, 

however, creates new challenges for time-dependent reliability analysis when the Vine-ARMA 

model is substituted in Eq. (2). In order to overcome the difficulty introduced by the Vine-

ARMA model, a single-loop Kriging (SILK) surrogate modeling method recently developed by 

the authors is employed to perform time-dependent reliability analysis [32]. In this section, we 

first briefly review the SILK method. Based on that, we discuss time-dependent reliability 

analysis based on the combination of the SILK and Vine-ARMA models. 

4.1. Single-Loop Kriging (SILK) method for time-dependent reliability analysis 

During the past decades, a group of time-dependent reliability analysis methods have been 

developed, such as the upcrossing rate method [6, 52], composite limit-state function method 

[53], and extreme value surrogate modeling-based methods [12, 13]. Even though the upcrossing 

rate methods can perform time-dependent reliability analysis for problems with stochastic 

processes, currently available methods cannot be applied to problems with Vine-ARMA models 

considering that the complicated Vine copula structure brings significant challenges to the 

correlation computation of the system response. The surrogate modeling-based method is a 

potential solution to this. Current extreme value surrogate modeling-based methods, however, 

have low computational efficiency for problems with stochastic processes. Recently, a single-

loop Kriging (SILK) surrogate modeling method has been developed by the authors for the 

reliability analysis of problems with stochastic processes by converting the double-loop 

procedure in the extreme value surrogate modeling methods into a single-loop procedure. The 

SILK method has been found to significantly improve the efficiency of time-dependent 

reliability analysis without sacrificing the accuracy. In this paper, we therefore combine SILK 
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with the Vine-ARMA model to overcome the challenges created by the introducing of Vine-

ARMA model. A very brief summary of the SILK method is provided here; refer [32] for details. 

The basic idea of the SILK method for time-dependent reliability analysis is to build a single 

surrogate model ˆ ˆ( , , )G g t X Y   using the Kriging approach summarized in the Appendix. The 

surrogate model is refined adaptively based on a learning function and the quality of the 

surrogate model is checked during the refinement using a convergence criterion. Before the 

training of the surrogate model ˆ ˆ( , , )G g t X Y , the time interval 0[ , ]et t  is first discretized into 

tN  time instants, and MCSN  samples for X  and MCSN  trajectories for ( )tY  are generated. Let the 

prediction of the surrogate model at a sample point ( ) ( ) ( ) ( )[ , ( ), ]i i j jt tx y  be ( ) ( ) ( ) ( )ˆ ( , ( ), )i i j jG t tx y . 

According to the property of the Kriging surrogate model, we then have 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

ˆ
ˆ ( , ( ), ) ~ ( ( , ( ), ), ( , ( ), ))i i j j i i j j i i j j

gG t t N g t t t tx y x y x y   (30) 

where ( ) ( ) ( ) ( )( , ( ), )i i j jg t tx y  and 2 ( ) ( ) ( ) ( )

ˆ ( , ( ), )i i j j

g t t x y  are obtained from Eqs. (A3) and (A5), and 

( ) ( )( )i jty  is the i-th trajectory at time instant ( )jt . 

The quality of the Kriging surrogate model is then checked using the following convergence 

criterion 

 2

*
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2

*

2max
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max { 100%}
f

f f

r
N N

f f

N N

N N





 


  (31) 

where 1 1

1

( )
MCSN

f

i

N I i


   and 2 2

1

( )
MCSN

f

i

N I i


  , and  

 0

( ) ( )

min
[ , ]

1

1, if max{ ( , ( ), )} 0 and ( ) 2
( ) , 1, 2, ,

0, otherwise

e

i i

t t t
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g t t U i
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  (32) 
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in which  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )min
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e t
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j N
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x y x y

x y
  (34) 

where eu  is an arbitrary constant larger than 2 and ( ) ( ) ( ) ( )( , ( ), )i i j jU t tx y  is given by [32, 54, 55] 
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t t
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   (35) 

If max 5r  , it means that the accuracy of surrogate model ˆ ˆ( , , )G g t X Y  can satisfy the 5% 

error requirement. If the accuracy requirement is satisfied, the time-dependent failure probability 

is then estimated by [32] 
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where  
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If the convergence criterion is not satisfied, then a new training point is identified by 

 
( ) ( ) ( ) ( )

[ , ( ), ]
t t

new new new newi i i it

new t tx x y   (38) 

where 
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In order to avoid the clustering of training points, another criterion is also introduced in SILK 

as follows [32] 

 max{ ( , )} 0.95t s

new ρ x x   (41) 

where s
x  is a matrix of current training points and ( , )t s

newρ x x  are the correlations between the 

new training points and current training points. The SILK method is applicable to general time-

dependent reliability analysis problems with Gaussian, non-Gaussian, correlated, or independent 

stochastic load processes. The Vine-ARMA model therefore can be easily combined with SILK 

for time-dependent reliability analysis. 

 

4.2. Time-dependent reliability analysis based on SILK and Vine-ARMA 

We now summarize the general procedure for time-dependent reliability analysis using the 

SILK method and Vine-ARMA models. The Vine-ARMA model is used to accurately generate 

samples for the stochastic process and SILK is used to identify training points from the generated 

samples to efficiently perform time-dependent reliability analysis. The Vine-ARMA model 

guarantees the accuracy of extreme value modeling of stochastic load and SILK reduces the 

computational effort of reliability analysis. Table 2 gives the generalized algorithm for time-

dependent reliability analysis using the SILK and Vine-ARMA models. 

------------------------------- 

Place Table 2 here 

------------------------------- 

Overall, the proposed method consists of mainly two parts. The Vine-ARMA model 

accurately captures the tail dependence between high-dimensional correlated stochastic loads, 

which ensures the accuracy of time-dependent reliability analysis. The combination of Vine-
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ARMA model and SILK method makes the time-dependent reliability analysis with Vine-

ARMA models possible and efficient. The developed method is able to perform time-dependent 

reliability analysis accurately and efficiently. In Table 2, 5% is used as the error requirement for 

the surrogate modeling; this is only for the sake of illustration. The actual value is chosen by the 

decision maker based on the risk tolerance for the particular problem. However, when the 

number is decreased (i.e., higher requirement of accuracy), the reliability estimate will become 

accurate but the number of training points for the surrogate model will increase. In the next 

section, we use a numerical example with a hydrokinetic turbine blade to illustrate the proposed 

Vine-ARMA model and the SILK-Vine-ARMA approach for time-dependent reliability analysis. 

 

5. Numerical Example: A Hydrokinetic Turbine Blade 

5.1. Problem statement 

A hydrokinetic turbine as shown in Fig. 2 is a mechanism to extract energy from river water 

flow [6, 56]. During its operation, the turbine is subjected to stochastic flow loads. At different 

locations (stations) of the turbine blade, the stochastic river loads are different and correlated. In 

this section, the time-dependent reliability analysis of a hydrokinetic turbine blade is used to 

illustrate the proposed Vine-ARMA load model and the combination of SILK and Vine-ARMA 

methods. This example is modified from Ref. [57].   

------------------------------- 

Place Fig. 2 here 

------------------------------- 

A 3-dimensional model of the hydrokinetic turbine blade is shown in Fig. 3. The 

hydrokinetic turbine blade is one-meter long and made of steel. The turbine blade is twisted and 

has variable chord length along the radial direction. The hydrofoil of the turbine blade is NREL 
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S809. The lift and drag coefficients of the hydrofoil are available in Ref. [58]. Figs. 4 and 5 

depict the chord length and twist angle distribution of the turbine blade along the radial direction. 

Failure of the turbine blade is defined to occur when the maximum stress on the turbine blade is 

larger than the strength of the material. Note that rotation of the turbine blade is an important 

issue for the safety of hydrokinetic turbine blade because rotation will change the load conditions 

of the turbine system. There are also uncertainty sources in the rotation model of the blade. 

Considering rotation and fluid-structure interactions of the turbine system will make the problem 

be more practical and complicated. Since the turbine blade is just an illustrative example to show 

the effectiveness of the proposed reliability analysis method and load model, we did not consider 

the effect of rotation to simplify the problem. 

------------------------------- 

Place Figs. 3-4 here 

------------------------------- 

The time-dependent failure probability of the turbine blade is given by 

 0 max 0( , ) Pr{ ( ) ( ) 0, [ , ]}f e mat ep t t G S S t t          (42) 

where  maxS  is the maximum stress and matS  is the strength of the material. maxS  is a function of 

the river flow velocities acting on the turbine blade. In the subsequent section, we will discuss 

how to perform stress analysis for a given river flow velocity profile on the blade.  

------------------------------- 

Place Fig. 5 here 

------------------------------- 

 

5.2. Stress analysis 
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From the load analysis, it is found that the turbine blade is subjected to an edgewise moment 

generated from the edgewise force TF  and a flapwise moment generated from the flapwise force 

NF . In order to compute TF  and NF , the turbine blade is divided into 48 stations along the radial 

direction. The radius at station i is given by 

 (1 ) / 48i root rootr r i r     (43) 

where 0.2 meterrootr   is the root of the turbine blade.  

After the discretization, the edgewise force ,T iF  and flapwise force ,N iF  at station i are 

computed using the Blade Element Momentum (BEM) theory [57] based on the geometry of the 

turbine blade, local pitch, and the river velocity at the station. More details about the load 

analysis of the turbine blade is available in Ref. [57]. After the forces at stations of the turbine 

blade are obtained, they are input into Finite Element Analysis (FEA) to get the stress response 

of the blade. Fig. 6 gives the flowchart of the stress analysis. Fig. 7 plots a snapshot of the stress 

analysis results of the turbine blade. In the stress analysis, nonlinearity is not considered. The 

maximum stress of the turbine blade is therefore independent from the strength of the material. 

The stress response of the turbine blade is governed by the river flow velocity at different 

stations. In this paper, the velocities at different stations are modeled using the Vine-ARMA 

model to account for the correlation and tail dependence over time and space. In addition, for the 

sake of illustration, it is assumed that the velocities at every four stations are the same. There are 

therefore totally 12 correlated stochastic processes (as indicated in Fig. 3 (c)) that need to be 

modeled using the Vine-ARMA approach.   

------------------------------- 

Place Figs. 6-7 here 

------------------------------- 
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5.3. Simulation of river velocity using the Vine-ARMA model 

Assume that the Vine-ARMA model is trained based on experimental data. Since there are 

12 stochastic processes, there are totally 66 copulas in the Vine structure (C-Vine is used in this 

example). Tables 3 and 4 give the families and parameters of the 66 bivariate copulas. All the 

marginal distributions of the 12 stochastic processes are assumed to be two-parameter Weibull 

distribution. Table 5 gives the parameters of the 12 Weibull distributions. For the 12 ARMA 

models of the associated Gaussian stochastic processes, the noise terms are assumed to be zero-

mean Gaussian distributions with standard deviations as 

, ( )[ , 1, 2, ,12] [0.52, 0.45, 0.44, 0.27, 0.36, 0.33, 0.37, 0.57, 0.56, 0.32, 0.40, 0.56]
i t i   . 

Tables 6 and 7 present the AR and MA coefficients of the 12 ARMA models. 

------------------------------- 

Place Tables 3-5 here 

------------------------------- 

Based on the parameters of the Vine copula and ARMA models, the river flow velocities at 

locations 1 to 12 as indicated in Fig. 3(c) are simulated using the algorithm given in Table 1. Fig. 

8 gives one realization of the stochastic processes at four of the locations and Fig. 9 depicts the 

velocity samples at several locations at a given time instant. It shows that the correlation over 

time and locations as well as the tail-dependence are maintained in the Vine-ARMA model as 

can be seen in Fig. 9.  

------------------------------- 

Place Figs. 8-9 here 

------------------------------- 
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------------------------------- 

Place Tables 6-7 here 

------------------------------- 

 

5.4. Time-dependent reliability analysis using SILK-Vine-ARMA model 

We then perform time-dependent reliability analysis based on the simulated river velocities 

using the SILK method. In time-dependent reliability analysis, the Poisson ratio   and the 

strength of the material matS  are assumed to be random variables given by ~ (0.3, 0.02)LN  and 

~ (210, 50)matS LN , where ( , )LN    is lognormal distribution with mean   and standard 

deviation  . In order to verify the accuracy of the proposed method, a surrogate model is trained 

first for maxS  using the FEA model given in Sec. 5.2 with a large number of training points (i.e. 

900). The trained surrogate model maxS  is then used to substitute the original model since 

directly performing MCS on the original model is computationally prohibitive. Hereinafter, we 

call it the “high-fidelity surrogate model”. We first compare the developed Vine-ARMA model 

and the multivariate ARMA model by performing MCS on the high-fidelity surrogate model. 

The multivariate ARMA model is trained based on the same sample as the Vine-ARMA model. 

Table 8 gives the results comparison between the Vine-ARMA model and multivariate ARMA 

(MARMA). It shows that the MARMA model overestimates the probability of failure which is 

consistent with what is expected because the Clayton copulas which have lower-tail dependences 

are used in the Vine-ARMA models (as shown in Table 3).  

------------------------------- 

Place Table 8 here 

------------------------------- 
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We then perform time-dependent reliability analysis using the proposed Vine-ARMA-SILK 

method. Table 8 gives the results comparison of time-dependent reliability analysis obtained 

from the proposed method and MCS based on the high-fidelity surrogate model for the time 

duration of interest (0 to 150 minutes). Note that we can only compare the proposed method with 

MCS since MCS is the only currently available method for this kind of reliability analysis 

problem (as discussed in Sec. 4). The results show that the proposed method is able to perform 

time-dependent reliability analysis accurately and efficiently.  

------------------------------- 

Place Table 9 here 

------------------------------- 

 

6. Conclusions 

In practical applications, structures are often subjected to high-dimensional correlated and 

non-Gaussian stochastic load processes. Current methods for the modeling of such processes 

mainly rely on multivariate ARMA models. The multivariate ARMA model with Gaussian noise 

assumption has difficulty in capturing the tail dependence between different stochastic processes. 

In this paper, the Vine copula is combined with univariate ARMA models to model the 

correlated stochastic processes and accurately capture their tail dependence. In order to 

overcome the computational challenges in time-dependent reliability analysis caused by the 

introduction of Vine-ARMA model, the Vine-ARMA model is integrated with SILK surrogate 

modeling to efficiently and accurately estimate the time-dependent failure probability. A 

hydrokinetic turbine blade subjected to correlated river flow loads demonstrated the 

effectiveness of the proposed method. 
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Even though the Vine copula is able to flexibly model high-dimensional non-Gaussian 

copula and capture the tail dependence, the number of conditional distribution functions in the 

simulation of Vines will increase significantly with the dimension of the problem. For example, 

there are 2( 2)n  conditional distribution functions in the simulation of an n-variable D Vine. 

Simulation of the Vine-ARMA model for a high-dimensional problem is computationally 

expensive. Improving the efficiency of Vine-ARMA model simulation needs to be investigated 

in future. In addition, the surrogate modeling-based method is used in this paper to substitute the 

computationally expensive simulation model. However, construction effort and accuracy of the 

surrogate model may suffer from the curse of dimensionality, as the number of variables and the 

nonlinearity in the problem increases. How to efficiently construct surrogate models for high-

dimensional problems is an active research issue in the literature.  
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Appendix: Kriging Surrogate Model 

The Kriging model of an unknown function ( )g x is given by [59] 

 ˆ( ) ( ) ( )Tg x h x υ x    (A1) 
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where 
1 2[ , , , ]T

pυ     is a vector of unknown coefficients, 
1 2( ) [ ( ), ( ), , ( )]T

ph h hh x x x x   

is a vector of regression functions, ( )T
h x υ  is the trend of prediction, and ( )x  is assumed to be a 

Gaussian process with zero mean and covariance [ ( ), ( )]i jCov x x  .  

The covariance between two points ix  and jx  is given by 

 2[ ( ), ( )] ( , )i j i jCov Rx x x x     (A2) 

in which 2

  is the process variance and ( , )R    is the correlation function.  

For an untrained point x , the expected value of the prediction is given by 

 1( ) ( ) ( ) ( )T Tg x h x υ r x R g Hυ
     (A3) 

where 

 1 2( ) [ ( , ), ( , ), , ( , )]
snR R Rr x x x x x x x   (A4) 

in which 1, ,
snx x are current training points. 

The mean square error (MSE) of the prediction is given by [60] 

 

2 1

1 1 1 1

MSE( ) {1 ( ) ( )

[ ( ) ( )] ( ) [ ( ) ( )]

T

T T T T

x r x R r x

H R r x h x H R H H R r x h x




   

 

  
  (A5) 

 

References 

[1] Stewart, M. G., and Rosowsky, D. V., 1998, "Time-dependent reliability of deteriorating 

reinforced concrete bridge decks," Structural Safety, 20(1), pp. 91-109. 

[2] Kuschel, N., and Rackwitz, R., 2000, "Optimal design under time-variant reliability 

constraints," Structural Safety, 22(2), pp. 113-127. 



 

Mahadevan  33 RISK-16-1078 

 

[3] Mori, Y., and Ellingwood, B. R., 1993, "Reliability-based service-life assessment of aging 

concrete structures," Journal of Structural Engineering, 119(5), pp. 1600-1621. 

[4] Hagen, Ø., and Tvedt, L., 1991, "Vector process out-crossing as parallel system sensitivity 

measure," Journal of engineering mechanics, 117(10), pp. 2201-2220. 

[5] Hagen, O., and Tvedt, L., 1992, "Parallel system approach for vector out-crossing," Journal 

of Offshore Mechanics and Arctic Engineering, 114(2), pp. 122-128. 

[6] Hu, Z., and Du, X., 2012, "Reliability analysis for hydrokinetic turbine blades," Renewable 

Energy, 48, pp. 251-262. 

[7] Andrieu-Renaud, C., Sudret, B., and Lemaire, M., 2004, "The PHI2 method: a way to 

compute time-variant reliability," Reliability Engineering & System Safety, 84(1), pp. 75-86. 

[8] Singh, A., and Mourelatos, Z. P., 2010, "On the Time-dependent Reliability of Non-

Monotonic, Non-Repairable Systems," SAE International Journal of Materials and 

Manufacturing, 3(2010-01-0696), pp. 425-444. 

[9] Singh, A., Mourelatos, Z., and Nikolaidis, E., 2011, "Time-dependent reliability of random 

dynamic systems using time-series modeling and importance sampling," SAE Technical Paper. 

[10] Wang, Z., Mourelatos, Z. P., Li, J., Baseski, I., and Singh, A., 2014, "Time-Dependent 

Reliability of Dynamic Systems Using Subset Simulation With Splitting Over a Series of 

Correlated Time Intervals," Journal of Mechanical Design, 136(6), p. 061008. 

[11] Mori, Y., and Ellingwood, B. R., 1993, "Time-dependent system reliability analysis by 

adaptive importance sampling," Structural safety, 12(1), pp. 59-73. 

[12] Wang, Z., and Wang, P., 2012, "A nested extreme response surface approach for time-

dependent reliability-based design optimization," Journal of Mechanical Design, 134(12), p. 

121007. 



 

Mahadevan  34 RISK-16-1078 

 

[13] Hu, Z., and Du, X., 2015, "Mixed Efficient Global Optimization for Time-Dependent 

Reliability Analysis," Journal of Mechanical Design, 137(5), p. 051401. 

[14] Sudret, B., and Der Kiureghian, A., 2000, Stochastic finite element methods and reliability: 

a state-of-the-art report, Department of Civil and Environmental Engineering, University of 

California. 

[15] Huang, S., Mahadevan, S., and Rebba, R., 2007, "Collocation-based stochastic finite 

element analysis for random field problems," Probabilistic Engineering Mechanics, 22(2), pp. 

194-205. 

[16] Zhang, J., and Ellingwood, B., 1994, "Orthogonal series expansions of random fields in 

reliability analysis," Journal of Engineering Mechanics, 120(12), pp. 2660-2677. 

[17] Hu, Z., Mahadevan, S., Du, X., , 2015, "Uncertainty Quantification in Time-Dependent 

Reliability Analysis method " The ASME 2015 International Design Engineering Technical 

Conferences (IDETC) and Computers and Information in Engineering Conference (CIE), August 

2-7, 2015 in Boston, MA. 

[18] Hu, Z., Mahadevan, S., and Du, X., 2016, "Uncertainty Quantification of Time-Dependent 

Reliability Analysis in the Presence of Parametric Uncertainty," ASCE-ASME Journal of Risk 

and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, DOI: 

10.1115/1.4032307. 

[19] Ling, Y., Shantz, C., Mahadevan, S., and Sankararaman, S., 2011, "Stochastic prediction of 

fatigue loading using real-time monitoring data," International Journal of Fatigue, 33(7), pp. 868-

879. 

[20] Ling, Y., and Mahadevan, S., 2012, "Integration of structural health monitoring and fatigue 

damage prognosis," Mechanical Systems and Signal Processing, 28, pp. 89-104. 



 

Mahadevan  35 RISK-16-1078 

 

[21] Wang, P., and Billinton, R., 2001, "Reliability benefit analysis of adding WTG to a 

distribution system," Energy Conversion, IEEE Transactions on, 16(2), pp. 134-139. 

[22] Gupta, S., Shabakhty, N., and van Gelder, P., 2006, "Fatigue damage in randomly vibrating 

jack-up platforms under non-Gaussian loads," Applied Ocean Research, 28(6), pp. 407-419. 

[23] Yang, L., and Gurley, K. R., 2015, "Efficient stationary multivariate non-Gaussian 

simulation based on a Hermite PDF model," Probabilistic Engineering Mechanics, 42, pp. 31-41. 

[24] Li, W., and McLeod, A., 1981, "Distribution of the residual autocorrelations in multivariate 

ARMA time series models," Journal of the Royal Statistical Society. Series B (Methodological), 

pp. 231-239. 

[25] Boudjellaba, H., Dufour, J.-M., and Roy, R., 1994, "Simplified conditions for noncausality 

between vectors in multivariate ARMA models," Journal of Econometrics, 63(1), pp. 271-287. 

[26] Garel, B., and Hallin, M., 1995, "Local asymptotic normality of multivariate ARMA 

processes with a linear trend," Annals of the Institute of Statistical Mathematics, 47(3), pp. 551-

579. 

[27] Jiang, C., Zhang, W., Han, X., Ni, B., and Song, L., 2015, "A Vine-Copula-Based 

Reliability Analysis Method for Structures With Multidimensional Correlation," Journal of 

Mechanical Design, 137(6), p. 061405. 

[28] Bedford, T., and Cooke, R. M., 2002, "Vines: A new graphical model for dependent random 

variables," Annals of Statistics, pp. 1031-1068. 

[29] Joe, H., 1994, "Multivariate extreme‐ value distributions with applications to environmental 

data," Canadian Journal of Statistics, 22(1), pp. 47-64. 

[30] Cooke, R. M., "Markov and entropy properties of tree-and vine-dependent variables," Proc. 

Proceedings of the ASA Section of Bayesian Statistical Science. 



 

Mahadevan  36 RISK-16-1078 

 

[31] Cooke, R. M., and Goossens, L. H., 2004, "Expert judgement elicitation for risk assessments 

of critical infrastructures," Journal of Risk Research, 7(6), pp. 643-656. 

[32] Hu, Z., and Mahadevan, S., 2016, "A Single-Loop Kriging Surrogate Modeling for Time-

Dependent Reliability Analysis," ASME Journal of Mechanical Design, 138 (6), 061406. 

[33] Hu, Z., and Du, X., 2015, "First order reliability method for time-variant problems using 

series expansions," Structural and Multidisciplinary Optimization, 51(1), pp. 1-21. 

[34] Shumway., R. H., and Stoffer, D. S., 2009, Time series analysis and its applications, 

Springer, New York. 

[35] Cochrane, J. H., 2005, "Time series for macroeconomics and finance," Manuscript, 

University of Chicago. 

[36] Joe, H., 1997, Multivariate models and multivariate dependence concepts, CRC Press. 

[37] Sklar, M., 1959, Fonctions de répartition à n dimensions et leurs marges, Université Paris 8. 

[38] Deng, S.-J., and Jiang, W., 2005, "Levy process-driven mean-reverting electricity price 

model: the marginal distribution analysis," Decision Support Systems, 40(3), pp. 483-494. 

[39] Kirchler, M., and Huber, J., 2007, "Fat tails and volatility clustering in experimental asset 

markets," Journal of Economic Dynamics and Control, 31(6), pp. 1844-1874. 

[40] Ditlevsen, O., Olesen, R., and Mohr, G., 1986, "Solution of a class of load combination 

problems by directional simulation," Structural Safety, 4(2), pp. 95-109. 

[41] Ditlevsen, O., and Madsen, H. O., 1996, Structural reliability methods, Wiley New York. 

[42] Madsen, H. O., 1985, "Extreme-value statistics for nonlinear stress combination," Journal of 

engineering mechanics, 111(9), pp. 1121-1129. 

[43] Aas, K., Czado, C., Frigessi, A., and Bakken, H., 2009, "Pair-copula constructions of 

multiple dependence," Insurance: Mathematics and economics, 44(2), pp. 182-198. 



 

Mahadevan  37 RISK-16-1078 

 

[44] Bedford, T., and Cooke, R. M., 2001, "Probability density decomposition for conditionally 

dependent random variables modeled by vines," Annals of Mathematics and Artificial 

intelligence, 32(1-4), pp. 245-268. 

[45] Dissmann, J., Brechmann, E. C., Czado, C., and Kurowicka, D., 2013, "Selecting and 

estimating regular vine copulae and application to financial returns," Computational Statistics & 

Data Analysis, 59, pp. 52-69. 

[46] Joe, H., 1996, "Families of m-variate distributions with given margins and m (m-1)/2 

bivariate dependence parameters," Lecture Notes-Monograph Series, pp. 120-141. 

[47] Kurowicka, D., and Cooke, R. M., 2006, Uncertainty analysis with high dimensional 

dependence modelling, John Wiley & Sons. 

[48] Singh, N., 1994, "Forecasting time-dependent failure rates of systems operating in series 

and/or in parallel," Microelectronics Reliability, 34(3), pp. 391-403. 

[49] Czado, C., Brechmann, E. C., and Gruber, L., 2013, "Selection of vine copulas," Copulae in 

Mathematical and Quantitative Finance, Springer, pp. 17-37. 

[50] Rosenblatt, M., 1952, "Remarks on a multivariate transformation," The annals of 

mathematical statistics, pp. 470-472. 

[51] Noh, Y., Choi, K., and Du, L., 2009, "Reliability-based design optimization of problems 

with correlated input variables using a Gaussian Copula," Structural and multidisciplinary 

optimization, 38(1), pp. 1-16. 

[52] Zhang, J., and Du, X., 2011, "Time-dependent reliability analysis for function generator 

mechanisms," Journal of Mechanical Design, 133(3), p. 031005. 

[53] Li, J., and Mourelatos, Z. P., 2009, "Time-dependent reliability estimation for dynamic 

problems using a niching genetic algorithm," Journal of Mechanical Design, 131(7), p. 071009. 



 

Mahadevan  38 RISK-16-1078 

 

[54] Echard, B., Gayton, N., and Lemaire, M., 2011, "AK-MCS: an active learning reliability 

method combining Kriging and Monte Carlo simulation," Structural Safety, 33(2), pp. 145-154. 

[55] Hu, Z., and Mahadevan, S., 2016, "Global sensitivity analysis-enhanced surrogate (GSAS) 

modeling for reliability analysis," Structural and Multidisciplinary Optimization, 53(3), pp. 501-

521. 

[56] Hu, Z., Li, H., Du, X., and Chandrashekhara, K., 2013, "Simulation-based time-dependent 

reliability analysis for composite hydrokinetic turbine blades," Structural and Multidisciplinary 

Optimization, 47(5), pp. 765-781. 

[57] Hu, Z., and Du, X., 2013, "Reliability Analysis for Hydrokinetic Turbine Blades Under 

Random River Velocity Field," Proceedings of the 7th Annual ISC Research Symposium, ISCRS 

2013, April 23, 2013, Rolla, Missouri. 

[58] David J. Laino, A. C. H., 2002, "National Renewable Energy Laboratory Report, Report 

Number: NREL/TP-442-7817 Appendix B." 

[59] Rasmussen, C. E., 2006, "Gaussian processes for machine learning," The MIT Press, ISBN 

0-262-18253-X. 

[60] Lophaven, S. N., Nielsen, H. B., and Søndergaard, J., 2002, "DACE-A Matlab Kriging 

toolbox, version 2.0." 

 



 

Mahadevan  39 RISK-16-1078 

 

List of Table Captions 

Table 1 Algorithm to generate a realization of the Vine-ARMA model 

Table 2 Algorithm for time-dependent reliability analysis based on SILK and Vine-ARMA 

Table 3 Families of the bivariate copulas in the Vine copula 

Table 4 Parameters of the bivariate copulas in the Vine copula  

Table 5 Parameters of the 12 Weibull distributions 

Table 6 AR coefficients of the 12 ARMA models  

Table 7 MA coefficients of the 12 ARMA models 

Table 8 Results of turbine blade time-dependent reliability analysis 

Table 9 Results of turbine blade time-dependent reliability analysis 

 

 

 

List of Figure Captions 

Figure 1 Four-variable (node) Vine models 

Figure 2 Illustration of a hydrokinetic turbine 

Figure 3 Geometry configuration of the turbine blade 

Figure 4 Chord length distribution of the turbine blade 

Figure 5 Twist angle distribution of the turbine blade  

Figure 6 Flowchart of the stress analysis for the turbine blade  

Figure 7 von-Mises stress response of the turbine blade 

Figure 8 One realization of simulated river velocities at four stations 

Figure 9 Velocity at station i vs Velocity at location j, , 2, 5, 8,11i j   

 



 

Mahadevan  40 RISK-16-1078 

 

Table 1 Algorithm to generate a realization of the Vine-ARMA model 

For it=1 to tn , where tn  is the number of time instants to be simulated 

Generate samples 1 2, , ,in in in

mu u u  from independent uniform distribution  [0,1]  

1 1(1,1)Co in

tempu u u   

 For i=2 to n 

 ( ,1)tempu i = in

iu  

 For k=i-1 to 1 

 1

,( ,1) ( ( ,1), ( , ), )temp temp temp k i ku i h u i u k k

   

 End 

 ( ,1)Co

i tempu u i  

 If i==n 

 Stop 

 End if 

 For j=1 to i-1 

 
,( , 1) ( ( , ), ( , ), )temp temp temp j i ju i j h u i j u j j     

 End 

 End 

 Convert 1 2, , ,Co Co Co

mu u u  into 1 2( ), ( ), , ( )it it m itt t t  using Eq. (29). 

 Obtain samples of 1 2( ), ( ), , ( )it it m ity t y t y t  using Eqs. (21)-(23). 

 Obtain 1 2( ), ( ), , ( )it it m itz t z t z t  using Eq. (6). 

End 
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Table 2 Algorithm for time-dependent reliability analysis based on SILK and Vine-ARMA 

Description 

Discretize time interval 
0[ , ]et t  into tN  time instants. 

Generate initial training points and evaluate the response at the training points. 

Set 1q   and MCS
x   

While 1q   or 0.05pfCov   do 

Set 1p   

 Generate MCSN  trajectories of the correlated stochastic processes using the algorithm 

presented in Table 1 and generate MCSN  samples for random variables X . Add the 

generated samples into MCS
x . 

 While 1p   or max 5%r   do 

 1p p   

 Construct surrogate model ˆ( , , )g tX Y  

 Identify new training point 
( ) ( ) ( ) ( )

[ , ( ), ]
t t

new new new newi i i i
t tx y  using Eq. (38) through (40) 

and consider the correlation constraint given in Eq. (41) during the 

identification. 

 Check the quality of the surrogate model using Eqs. (31) through (35) and 

obtain max

r . 

 End while 

 Compute 0( , )f ep t t  using ˆ( , , )g tX Y  and Eq. (36). 

 Compute 0 0(1 ( , )) / ( ( , )) /pf f e f e MCSCov p t t p t t N   

 1q q   

End while 
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Table 3 Families of the bivariate copulas in the Vine copula 

Copula No.  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Family 2 2 2 3 3 3 3 2 2 2 3 3 2 2 3 3 3 

Copula No.  18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

Family 3 3 2 2 3 2 2 2 3 3 2 2 3 3 3 3 3 

Copula No.  35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

Family 2 2 3 2 2 2 3 3 2 2 3 3 3 3 3 2 2 

Copula No.  52 53 54 55 56 57 58 59 60 61 62 63 64 65 66   

Family 3 2 2 2 3 3 2 2 3 3 3 3 1 1 1   

Note: Family “1” is “Gaussian”, family “2” is “Student’s t”, and family “3” is “Clayton”. 

Table 4 Parameters of the bivariate copulas in the Vine copula 

Copula No.  1 2 3 4 5 6 7 8 

Parameter [0.72, 3.5] [0.65, 4.5] [0.81, 3] 4.3 4.5 5.2 5.5 [0.87, 4.5] 

Copula No.  9 10 11 12 13 14 15 16 

Parameter [0.61, 3] [0.72, 6] 4.5 5.5 [0.83, 4] [0.84, 2] 3.8 5.3 

Copula No.  17 18 19 20 21 22 23 24 

Parameter 3.2 4.5 5.2 [0.76, 5] [0.65, 3] 4.5 [0.77, 3.5] [0.61, 3] 

Copula No.  25 26 27 28 29 30 31 32 

Parameter [0.72, 5.8] 3.7 4.1 [0.73, 5.2] [0.93, 2] 5.2 4.8 3.7 

Copula No.  33 34 35 36 37 38 39 40 

Parameter 3.2 5.6 [0.66, 4.3] [0.67, 2.5] 2.2 [0.67, 4.2] [0.72, 3.5] [0.71, 6.5] 

Copula No.  41 42 43 44 45 46 47 48 

Parameter 5.1 3.5 [0.83, 6] [0.76, 3.5] 4.1 3.9 3.5 4.1 

Copula No.  49 50 51 52 53 54 55 56 

Parameter 5.2 [0.52, 5.2] [0.74, 3.2] 4.1 [0.82, 5.1] [0.59, 4.2] [0.82, 7.1] 5.2 

Copula No.  57 58 59 60 61 62 63 64 

Parameter 4.5 [0.81, 5.5] [0.81, 4.2] 3.4 3.2 4.2 3.4 0.68 

Copula No.  65 66       

Parameter 0.72 0.89       

Table 5 Parameters of the 12 Weibull distributions 

Distribution 1 2 3 4 5 6 7 8 9 10 11 12 

Parameter 1 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2.0 2.05 2.1 2.15 

Parameter 2 2.7 2.72 2.74 2.76 2.78 2.80 2.82 2.84 2.86 2.88 2.90 2.92 
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Table 6 AR coefficients of the 12 ARMA models 

Location 1 2 3 4 

AR coefficients [0.72, -0.15, 0.21] [0.82, -0.13, 0.10] [0.79, 0.13, -0.12] [0.88, 0.14, -0.09] 

Location 5 6 7 8 

AR coefficients [0.77, -0.11, 0.25] [0.77, -0.12, 0.24] [0.82, 0.15, -0.10] [0.72, -0.13, 0.11] 

Location 9 10 11 12 

AR coefficients [0.72, -0.11, 0.15] [0.88, 0.14, -0.21] [0.77, -0.12, 0.24] [0.72, -0.14, 0.18] 

Note: 
(0) 0j  , the above coefficients are 

(1) ( ), , p

j j  , 1, 2, ,12j  . 

 

 

Table 7 MA coefficients of the 12 ARMA models 

Location 1 2 3 4 5 6 

MA coefficients [0.3, 0.12] [0.35, 0.13] [0.27, 0.12] [0.23, 0.11] [0.24, 0.15] [0.52, 0.16] 

Location 7 8 9 10 11 12 

MA coefficients [0.25, 0.11] [0.3, 0.12] [0.23, 0.10] [0.52, 0.16] [0.23, 0.11] [0.22, 0.12] 

 

Table 8 Results of turbine blade time-dependent reliability analysis 

Method 0( , )f ep t t  (%)  

MCS (Vine-ARMA) 0.0652 N/A 

MCS (MARMA) 0.0712 9.10 

- where “NOF” stands for “Number of Function evaluations”. 

 

Table 9 Results of turbine blade time-dependent reliability analysis 

Method 0( , )f ep t t  NOF (%)  

Proposed 0.0665 264 1.99 

MCS (high fidelity surrogate model) 0.0652 59.75 10  N/A 
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Fig. 1 Four-variable (node) Vine models 

 

 

 
Fig. 2. Illustration of a hydrokinetic turbine 
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(a) Side view (b) Front view 

 

 

 
(c) Top view 

 

Fig. 3. Geometry configuration of the turbine blade 
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Fig. 4. Chord length distribution of the turbine blade 
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Fig. 5. Twist angle distribution of the turbine blade 

 

 

Fig. 6. Flowchart of the stress analysis for the turbine blade 

 

 

 

Fig. 7. von-Mises stress response of the turbine blade 
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Fig. 8 One realization of simulated river velocities at four stations 
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Fig. 9 Velocity at station i vs Velocity at location j, , 2, 5, 8,11i j   
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