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Abstract One of the major barriers that hinder the realization
of significant potential of metal-based additive manufacturing
(AM) techniques is the variation in the quality of the
manufactured parts. Uncertainty quantification (UQ) and un-
certainty management (UM) can resolve this challenge based
on the modeling and simulation of the AMprocess. This paper
reviews the research state of the art and discusses needs and
opportunities in the UQ/UM of the AM processes, with a
focus on laser powder bed fusion AM. The major methods
and models of laser powder bed fusion AM process are sum-
marized first. The current research work in UQ of AM pro-
cesses is then reviewed. Based on the review of AM process
models and current UQ approaches for the AM process, this
paper presents insights into how the current state of the art UQ
and UM techniques can be applied to AM to improve the
product quality. Future research needs in UQ and UM of
AM are also discussed. Laser sintering of metal nanoparticles,
which is part of the micro-AM process, is used as an example
to illustrate the application of UQ and UM in the AM.

Keywords Additivemanufacturing . Uncertainty
quantification .Uncertaintymanagement .Metal .Powderbed

1 Introduction

Additivemanufacturing (AM) ofmetal components is a process
of manufacturing metal components layer by layer based on 3D
computer-aided design (CAD) models [1]. AM is opposite to
traditional manufacturing, which usually subtracts materials
through a series of processes like casting, molding, andmachin-
ing [2]. Since it does not require special tools for part fabrica-
tion, it has high flexibility in manufacturing metal parts with
any customized geometry. This characteristic gives AM signif-
icant potential in reducing material waste and manufacturing
time. The manufacturing of metal components with highly
complicated geometry is difficult to be accomplished using
conventional manufacturing technologies. AM has been suc-
cessfully demonstrated in themanufacturing of bothmetal com-
ponents with complicated geometries (e.g., engine blade) and
components at microsize level (i.e., microelectromechanical
systems) [3]. Reports indicate that the market potential of AM
techniques can reach several billion dollars [4].

Current AM techniques for metal component manufactur-
ing include stereolithography (SLA) [5], fused deposition
modeling (FDM) [6], laminated object manufacturing
(LOM) [7], selective laser sintering (SLS) [8], selective laser
melting (SLM) [9], direct metal deposition (DMD) [10], laser
metal deposition (LMD) [11], direct metal laser melting
(DMLM) [12], and others. One of the most widely used AM
process for the manufacturing of metal components is powder
bed fusion [13], where the powder is delivered to the powder
bed layer by layer and melted by the laser beam according to
specific laser paths every time a new layer of powder is added.
From powder bed forming to melting and solidification, var-
ious sources of uncertainty are involved in the processes.
These sources of uncertainty result in variability in the quality
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of the manufactured component. The quality variation hinders
consistent manufacturing of products with guaranteed high
quality. This becomes a major hurdle for the wide application
of AM techniques, especially in the manufacturing of metal
components.

To achieve the quality control of the AM process, a good
understanding of the uncertainty sources in each step of the
AM process and their effects on product quality is needed.
Uncertainty quantification (UQ) is a process of investigating
the effects of uncertainty sources (aleatory and epistemic) on
the quantities of interest (QoIs) [14–16]. Even though UQ for
models of physical hardware has been intensively studied dur-
ing the past decades and continue to address important re-
search questions, UQ in AM is still at its early stage. Only a
few examples have been reported in the literature [17–19]. In
addition, currently reported UQ methods for AM are mainly
based on experiments and are performed at the process level.
This will result in excessive material wastage, increased prod-
uct development cost, and delay in the product development
process [20] because UQ usually requires numerous experi-
ments and process optimization and UQ are implemented in a
double loop framework (i.e., UQ needs to be performed re-
peatedly when the process is changed). A generic UQ frame-
work built upon the understanding of fundamental principles
of the AM will significantly benefit the wider acceptance of
the AM process and push the AM techniques for the
manufacturing of metal products to the next stage.
Systematic UQ of AM will also provide a solid foundation
for the uncertainty management (UM) of the AMprocess, thus
allowing effective allocation of limited resources tomeet qual-
ity requirement and robustness targets.

This paper aims to provide insights into UQ and conse-
quently UM in the AM process, based on the review of cur-
rently AM process models and UQ approaches. The chal-
lenges related to the UQ of AM process are first discussed.
Solutions of these challenges will then be presented through
the employment of the state of the art UQ techniques. Future
needs in UQ and UM of AM will be investigated as well.
Finally, a laser sintering model of iron nanoparticles, an im-
portant step in the micro-AM, is used to illustrate the applica-
tion of UQ techniques in AM of metal products. The contri-
butions of this paper are summarized as follows: (1) a brief
review of laser powder bed fusion-based AM process models;
(2) a brief review of current state of the art of UQ in AM; (3)
insights on UQ and UM of the AM process for manufacturing
of metal products; (4) illustration of the application of state-of-
the-art UQ techniques to the laser sintering of nanoparticles;
and (5) identification of future needs for UQ/UM in AM.

The remainder of the paper is organized as follows.
Section 2 provides a brief literature survey of the AM
models for laser powder bed fusion-based manufacturing
of metal products. Section 3 presents the state of the art in
UQ and UM of AM processes. Section 4 discusses the

insights and future needs for UQ and UM in AM. Laser
sintering of nanoparticles is used to demonstrate some of
the main UQ methods in Sect. 5, and concluding remarks
are given in Sect. 6.

2 Literature survey of AM models

Figure 1 shows an illustration of the laser powder bed fusion
system. Even if the actual AM system may be different for
different manufacturing applications, the systems can be sim-
plified similar to Fig. 1.

During the manufacturing process, the 3D model of a to-
be-manufactured product is created first in a computer-aided
design (CAD) software [21]. The 3D model is then converted
into an STL file, which is sliced into layers according to the
building orientation and slice thickness. This information is
then converted into digital data for laser path planning. To
form the metal powder bed for laser sintering, the powder
delivery system will deliver a layer of powder to the fabrica-
tion system using the delivery piston and powder recoater
mechanism. The powder is then melted by the laser following
the laser paths. The fabrication system will decline to a certain
level once the sintering of current layer is finished, and a new
layer of powder is added for melting. This process is repeated
until the manufacturing is finished. During this process, the
scanner system and temperature sensor are used tomonitor the
process and a control system is used to coordinate the move-
ments of the manufacturing system components.

There are several controllable process parameters in the
AM process, such as laser scan speed, laser power, laser
beam diameter, laser type, material type, radius of the
powder, hatch spacing, building orientation, slice thick-
ness, powder bed temperature, and others. Changing these
parameters will not only affect the quality of the manufactured
product but also influence the energy and material used during
the manufacturing process. In order to determine the optimal
process parameters, a good understanding of the AM pro-
cess is required. During the past decade, AM process
models have been developed mainly from the following six
perspectives.

Energy consumptionmodel The energy consumption mod-
el quantifies the total energy used to manufacture a com-
ponent [22]. The total energy is roughly divided into five
parts [22, 23], namely energy used by the laser system,
energy used in moving the part and pistons of the delivery
and fabrication systems, energy used in forming the pow-
der bed, energy spent in heating the powder bed, and other
miscellaneous energy consumption. The energy consump-
tion model was first expressed as a function of laser system
parameters [24] and then extended by Paul and Anand [23]
to connect energy consumption with process parameters
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and part geometry. For instance, the laser energy consump-
tion is modeled as [23]

EL ¼ 2αP= πdvð Þð ÞTAS ð1Þ

where EL is the energy used by the laser system, α is the
absorptive coefficient of the powder, P is the laser power, d
is the laser beam radius measured on the powder bed, v is the
laser scan speed, and TAS is the total area of sintering (TAS).
The energy model is connected to the process parameters and
component geometry through the TAS, which depends on the
part geometry, slice thickness, and building orientation [23].

The energy consumption model has been applied to optimize
the process parameters such as slice thickness and building ori-
entation by minimizing the energy consumption. These energy
models, however, are developed based on several assumptions
and simplifications. For example, the absorptive coefficient is a
parameter which is not straightforward to measure or estimate.
This causes uncertainty in the output of the prediction model.

Heat sourcemodelThe heat sourcemodel plays a vital role in
understanding the effects of the heat source on the quality of
the manufactured component. The horizontal intensity of the
laser beam is usually modeled as a Gaussian distribution [25].
The vertical absorption distribution is more difficult to model
since it is related to many factors such as material, distribution
of particle size, laser beam size, and particle shape. Both direct
measurements and simulation based methods have been ex-
plored for the estimation of powder absorptivity. For example,
Rubenchik et al. [26] proposed a simple calorimetric scheme
for the direct measurement of absorptivity of the powder bed.
A detailed review of the direct measurement of powder ab-
sorptivity is available in Ref. [27]. The commonly used sim-
ulation method is the ray tracing method to evaluate the pow-
der absorption. This method is similar to Monte Carlo simu-
lation (MCS) and tracks the trajectories of single photons [28].
From the heat source modeling, it is found that the powder
configuration and size distribution will affect the absorptivity
of the powder bed significantly [29, 30].

Powder bed model The powder bed model provides informa-
tion about the powder packing, such as packing density, particle
size distribution, radial distribution, and porosity of the powder
bed. It has been investigated using a raindrop model [31] and
discrete element method (DEM) [32]; the latter is widely used
at present. An open-source software LIGGGHTS is available to
performDEM for powder bed forming when the van derWaals
forces can be overlooked [33, 34]. For example, Xin et al. [34]
investigated the effects of a contact force and size distribution
on the packing of microsized particles. Xiang et al. simulated
the powder bed forming process using a nonlinear Hertzian
contact model [35]. Herbold et al. [36] at Lawrence
Livermore National Laboratory (LLNL) also developed a soft-
ware for the simulation of powder layer deposition inAMusing
the DEMmethod. In these methods, it is typically assumed that
the metal particles are spherical. In reality, however, the parti-
cles are often not perfect spheres [37].

Another challenge in powder bed modeling is the evolution
of powder size distribution over time when the powders are
recycled. The laser sintering will affect the powder size distri-
bution if the powders are recycled. The information obtained
from the powder bed model will be used in the heat source
model and the melting pool model.

Melting pool model The melting pool model is one of the
crucial models to investigate the effects of AM process on the
microstructure and mechanical properties of the AM products.
It is a multi-physics model related to thermodynamics and
hydrodynamics. The currently available melting pool model-
ing approaches include lattice Boltzmann (LB) [38], a com-
bined finite element (FE) and finite volume (FV) [39], a ther-
mal model based on assumptions and simplifications [40], and
a computational fluid dynamics (CFD) model by including
heat transfer, melting, and Marangoni force [41]. The flow
characteristics in the melting pool, surface tension, heat re-
quired for melting, influence of gravity, and the Marangoni
convection all need to be accounted for in the melting pool
model. The LB approach for melting pool model has been
investigated using both 2D and 3D numerical methods [42].
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Fig. 1 Illustration of laser
powder bed fusion

Int J Adv Manuf Technol



When the 3D numerical method is used, the computational
effort will be increased significantly. Software and toolboxes
have also been developed for the melting pool model such as
the routines in OpenFOAM [43] and ALE3D [44]. When AM
is applied to the manufacturing of microsized components, the
melting pool model needs to be modeled at the nanometer
length scale. In that situation, a molecular dynamic simulation
model can be employed for the simulation of melting [45].

From the melting pool simulation model, we can predict
the porosity, surface roughness, melting pool shape, and ther-
mal boundary conditions. The information obtained from the
melting pool model will be used in the solidification and re-
sidual stress models to investigate the mechanical properties
of the manufactured component.

Solidification model The solidification model investigates the
microstructure evolution of the melting pool due to cooling
after the laser sintering process, and is important for the predic-
tion of the thermo-mechanical properties of the manufactured
material. The grain size and grain morphology are simulated
using the information of the temperature field obtained from the
melting pool model. The widely used methods for the simula-
tion of solidification are the phase field (PF) approaches, such
as coupling of the LB approach with the cellular automaton
(CA) models [46], and coupling of thermal FE and CA models
[47, 48]. The metallurgical properties obtained from the solid-
ification model will be used in the residual stress model. For
example, the grain size which depends on the cooling rate will
affect the hardness and tensile strength of the product. The
information on tensile strength can be used for failure analysis
in the macro-scale model. Experiment-basedmethods have also
been investigated to study the solidification of metal fluid and
validate the simulation models [49].

Residual stress model The residual stress model is used to
evaluate the residual stress and product deformation due to
heating and cooling during the manufacturing [50]. This mod-
el is usually developed at the macro-length scale. For micro-
AM problems, it is at the microlength scale. Even though a
mathematical model has been developed for the residual stress
model based on simplifications and assumptions [51], the
commonly used method is the thermo-mechanical FE analysis
[52, 53]. The heat transfer analysis provides transient temper-
ature field data, which is input to the mechanical analysis [54].
The residual stress model is connected with several QoIs such
as manufacturing errors [55], fatigue life of the manufactured
product, and failure strength of the product.

The above is a brief survey of AM models. More detailed
reviews of two of the above reviewed models (i.e., melting
pool model and solidification model) can be found in Refs.
[27, 28, 54]. In Table 1, we summarize the models in the AM
process in the context of the methods used to study the model
and some of the main inputs and outputs of the models. This

information will be used in Sect. 4 for the discussion of UQ
and UM methods in AM.

The above review shows that all the AM models are con-
nected with each other through various inputs and outputs.
The integration of all the models will make the optimization
of process parameters using computer simulation possible.
Model-based AM process optimization through the integra-
tion of the simulation models is a promising research direction
in future. Figure 2 illustrates the connections between differ-
ent models and the relationships between process parameters
and the QoIs. The length scales of different models are also
provided in Fig. 2 for both normal AM and micro-AM.

3 UQ and UM in AM: state of the art

As discussed in Sect. 1, the variation in the quality of compo-
nents produced from AM is a major barrier that impedes the
realization of the full potential of AM techniques. To address
this issue, UQ and UM have gained increasing attention in
recent years. Current research efforts in UQ and UM of AM
processes can be roughly classified into three groups: (1) UQ
of AM using experiments, (2) UQ of melting pool model, and
(3) UQ of solidification (microstructure) model. Detailed re-
views of the three groups of efforts are given as follows.

Experiment-based UQ of AM process Most currently re-
ported UQ research efforts in AM use physical experiments.
This is due to the fact that advanced modeling and simulation
techniques for AM process have been developed only in re-
cent years. For UQ at the process level, AM experiments are
performed repeatedly at different process parameter settings.
Based on the data of QoIs collected at different input settings
from physical experiments, the effects of process parameters
on the quality of manufactured products are analyzed using
statistical analysis [17, 79]. For instance, Delgado et al. [80]
used analysis of variance (ANOVA) to evaluate the effects of
scan speed, layer thickness and building orientation on dimen-
sional error and surface roughness. Raghunath and Pandey
[81] investigated the influence of process variables such as
laser power, beam speed, hatch spacing, and scan length on
the shrinkage of the product using signal-to-noise (S/N) ratio
and ANOVAmethods. By identifying the factors that have the
most significant effects on the variation of product quality, the
quality of AM can be improved by implementing quality con-
trol on the influential factors. Since physical experiments are
usually expensive, research efforts on UQ ofAMprocess have
focused on effective design of experiments (DoE) [13].
Different sampling strategies, such as random sampling, strat-
ified sampling, and Poisson disk sampling, have been inves-
tigated to improve the quality of samples in the design space
[17]. The Taguchi method has also been employed to design
experiments for the uncertainty analysis of AM [81, 82]. In
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order to build models for the experimental response, methods
of Gaussian process modeling and other response surface
models have been applied [17]. Correlation-based feature se-
lection method has also been investigated to process the data
obtained from physical experiments [27].

Even if the UQ of AM process based on physical experi-
ments can achieve quality control to some extent, it has sev-
eral disadvantages. For instance, it does not take advantage of
currently available advanced simulation models of the AM
process; this will result in a lot of material waste and delay
in the product development process since experiments need to
be performed repeatedly. The results cannot be applied to new
components and designs because the effects of process param-
eters may change with problems. It is difficult to design an
AM process to be robust to the variations in the environment
using an experiment-based UQ approach. Effective analysis
methods need to be developed for UQ based on a better un-
derstanding of the AM process using simulation models. In
the context of model-based UQ, research efforts have been

reported with respect to melting pool and solidification
models.

UQ of melting pool As one of the most important models in
the AM process, UQ of melting pool is of great interest to the
researchers. For example, Schaaf performed uncertainty and
sensitivity analysis for the melting pool model to identify the
most sensitive parameters in the model [83]. Anderson pro-
posed to use DAKOTA [84] and ALE3D software to explore
UQ of the melting process [85]. Most recently, Lopez et al.
[18] performed UQ for the metal melting pool model based on
a thermal model developed by Devesse et al. [40]. They iden-
tified four sources of uncertainty in the melting pool model,
namely model assumptions, unknown simulation parameters,
numerical approximations, and measurement error [86]. In
order to reduce the uncertainty, they incorporated the online
measurement data into the model. Based on these efforts, the
effects of uncertain parameters on the shape of the melting
pool are studied.

Table 1 Commonly available models in AM

Model Methods Inputs Outputs

Energy [23, 55–60] Connect energy consumption with total
area of sintering (TAS) [23, 55, 59, 60],
which is a function of slice thickness
and building orientation

⋅ Laser power
⋅ Beam diameter
⋅ Scan speed
⋅ Absorptivity of powder
⋅ Slice thickness
⋅ Building direction
⋅ Bed temperature

⋅ Energy of laser system
⋅ Energy of moving powder and

other systems
⋅ Energy of bed heating
⋅ Miscellaneous energy

Heat source [25, 26, 30, 61–66] ⋅ Gaussian distribution for horizontal intensity
⋅ Direct measurement [26, 67]
⋅ Trajectory tracking of photons
⋅ Monte Carlo simulation (MCS)

⋅ Material type
⋅ Powder distribution
⋅ Beam diameter
⋅ Laser power
⋅ Powder shape
⋅ Thermal diffusivity
⋅ Scan speed

⋅ Absorbed energy
⋅ Absorption coefficients of materials
⋅ Vertical absorption distribution

Powder bed [34–36, 68, 69] ⋅ Raindrop model
⋅ Discrete element method (DEM)
⋅ Nonlinear Hertzian contact model

⋅ Sliding friction coefficient
⋅ Rolling friction coefficient
⋅ Young’s modulus
⋅ Radius distribution
⋅ Hamaker constant
⋅ Damping coefficient
⋅ Restitution coefficient

⋅ Packing density
⋅ Radial distribution function (RDF)
⋅ Porosity of the powder bed

Melting pool [18, 27, 40, 42,
54, 61, 70–74]

⋅ Thermal model for melting
⋅ Lattice Boltzmann (LB)

approach (2D and 3D)
⋅ Extended LB approach
⋅ Computational fluid dynamics (CFD) by

including heat transfer, melting,
and Marangoni force

⋅ OpenFOAM

⋅ Scan speed
⋅ Laser power
⋅ Particle radial distribution
⋅ Absorption coefficient
⋅ Melting temperature
⋅ Thermal diffusivity
⋅ Layer thickness
⋅ Beam diameter

⋅ Melt pool width
⋅ Melt pool shape
⋅ Diffusion efficiency
⋅ Cross-sectional area
⋅ Length-to-depth ratio
⋅ Porosity and layer bonding defects
⋅ Thermal boundary conditions
⋅ Surface roughness

Solidification [28, 47, 75, 76] ⋅ Microscopic cellular automaton (CA)
coupled with Macroscopic finite
element (FE) approach

⋅ Phase field (PF) approach

⋅ Cooling rate
⋅ Thermal history
⋅ Material properties

⋅ Grain size
⋅ Thermo-mechanical properties

of materials
⋅ Metallurgical properties

Residual stress [54, 77, 78] ⋅ Couple finite volume (FV) with FE approach
⋅ Thermal-mechanical FE models

⋅ Thermal boundary condition
⋅ Mechanical boundary condition
⋅ Material properties

⋅ Residual stress
⋅ Shrinkage
⋅ Deformation
⋅ Fatigue life
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UQ of solidificationAlong with the research efforts in UQ of
the melting pool model, efforts have also been devoted to UQ
of the solidification model in recent years. Ma et al. [87] used
design of experiments and FE models to identify the critical
variables in laser powder bed fusion. Loughnane [88] has
developed a UQ framework for microstructure characteriza-
tion in AM. This framework accounts for sources of charac-
terization errors, which are modeled using phantoms. Based
on the modeling of error sources, effects of the errors on the
microstructure statistics are analyzed. Statistical analysis and
virtual modeling tools are also developed for the analysis of
the microstructure. Park et al. [89] used a homogenization
method to investigate the effect of microstructure on the me-
chanical properties in the macro-model. Cai and Mahadevan
[90] studied the effect of cooling rate on the microstructure
and considered various sources of uncertainty during the pro-
cess of solidification.

The above literature review indicates that UQ and UM of
AM process are still at its early stages. Figure 3 summarizes
the three main UQ research efforts in the AM process and the
associated methods.

A clear roadmap is needed for the development of UQ and
UMmethods in AM in order to realize the significant potential
of AM of metal components. Inspired by this motivation, we
provide insights and future needs on this research topic in the
next section.

4 UQ and UM in AM: insights and future needs

In this section, we fist discuss the modeling of various
sources of uncertainty in the AM process. Following that,
UQ methods will be investigated. Based on the uncertain-
ty modeling and UQ, we discuss future needs for UM in
AM.

4.1 Modeling of uncertainty sources

We first identify the uncertainty sources in the AM and then
discuss the modeling of these uncertainty sources.

4.1.1 Uncertainty sources analysis

Similar to many other UQ problems, the uncertainty sources
in the AM process can be classified into two categories: ale-
atory uncertainty and epistemic uncertainty [91]. Aleatory
uncertainty refers to natural variability, such as variability in
the radius of the powder and fluctuation of laser scan speed,
which is irreducible. Epistemic uncertainty refers to the uncer-
tainty caused due to lack of knowledge, for example, differ-
ence between simulations and experiments and the numerical
discretization errors in the lattice Boltzmann simulation.
Epistemic uncertainty can be reduced by collecting more in-
formation. Both aleatory and epistemic uncertainty sources
are involved in the AM process models (energy model, heat
sources model, powder bed model, melting pool model, solid-
ification model, and residual stress model) as reviewed in
Sect. 2. These two categories of uncertainty sources in AM
process are briefly summarized as follows.

Aleatory uncertainty Aleatory uncertainty sources are inher-
ent in the AM process. It comes from the natural variability of
parameters and variables. There are numerous sources of ale-
atory uncertainty. We only list several examples here. Some of
the aleatory uncertainty sources include the variation of pow-
der particle radius, the fluctuation of laser scan speed, diffu-
sion coefficient of the material, friction coefficient, uncertain-
ty of absorption coefficient, variation in the temperature
boundary condition, and measurement errors. In Sect. 4.1.2,
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we will discuss how to model these sources of aleatory
uncertainty.

Epistemic uncertainty As shown in Fig. 4, epistemic un-
certainty can be further divided into two groups, namely
data uncertainty and model uncertainty [92]. Data uncer-
tainty may come from limited measurement data or im-
precise measurements. For example, when the friction co-
efficients are modeled as random variables to represent
the natural variability (aleatory uncertainty), there will
be epistemic uncertainty in the distribution type and dis-
tribution parameters of the random variables if the amount
of data is sparse. This case is quite common since in
reality it is quite often the amount of data available is
limited by resources. Even if some quantity is determin-
istic, we may not be able to precisely measure its value
due to measurement error. In that situation, there is also
epistemic uncertainty in the modeling of the AM process
parameter, such as the absorptive coefficient of the
material.

Along with the data uncertainty, the other important source
of epistemic uncertainty is model uncertainty. Model uncer-
tainty is used to model the difference between the computer
simulation model and the experiment. Its quantification plays
a role in correcting the simulation model to improve the accu-
racy of the simulation. The model uncertainty can be further
classified into three groups, namely model form uncertainty,
solution approximation (including surrogate model
uncertainty), and model parameter uncertainty.

Model form uncertainty
& Model form uncertainty comes from the assumptions and

simplifications made in the simulation models, for in-
stance, the simplification made in the lattice Boltzmann
approach for the modeling of melting pool and the as-
sumptions made in the discrete element method for the
simulation of powder bed model.

Solution approximation
& It comes from the numerical discretizations, reduced or-

der modeling, or approximated solution methods in the
simulation models. For example, the finite element or
finite different simulations models solve the partial dif-
ferential equations using numerical discretization. The
computer simulation models are usually computationally
expensive. Surrogate models are widely used to substitute
the expensive simulation models. When the surrogate
models are used, another source of model uncertainty
called surrogate model uncertainty will be introduced.
Since surrogate model is an approximation of the original
model, it also belongs to the solution approximation.

Model parameter uncertainty
& In some simulation models, we are not able to exactly

determine the values of some parameters. For example,
we may not know the absorption coefficients of materials
precisely. In this situation, we have uncertainty about the
simulation models due to the uncertainty in the model
parameters.

Next, we will discuss how to model various sources of
uncertainty.

4.1.2 Modeling of uncertainty sources

(a) Modeling of aleatory uncertainty

A natural way ofmodeling the aleatory uncertainty is to use
random variables for time-independent quantities and stochas-
tic processes for time-varying quantities based on the classical
frequency statistical theories [91]. When there is spatial vari-
ability, such as the spatially varying material properties in the
melting pool model, the random field approach can be used to
model the aleatory uncertainty. The combination of stochastic
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process and random field methods can be applied to the
modeling of aleatory uncertainty with both spatial and tempo-
ral variability [93].

(b) Modeling of data uncertainty

When the data for the modeling of aleatory uncertainty is
too limited, the epistemic uncertainty in the parameters of the
random variables, stochastic processes, random fields, or
time-dependent random fields is modeled using the Bayes’
theorem as [94]

f θjDð Þ ¼ P Djθð Þ f θð Þ= ∫θP Djθð Þ f θð Þdθ� �
∝P Djθð Þ f θð Þ ð2Þ

where D is the observation data, θ is the vector of parameters
of random variables, P(D|θ) is the likelihood of observing the
data D, f(θ) is the prior distributions, f(θ|D) is the posterior
distributions, and “∝” stands for “proportional to.”

When there is uncertainty in both distribution type and
distribution parameters, the posterior distributions of the ith
distribution and its associated parameters can also be obtained
using the Bayes’ theorem as [95]

f θi; MijDð Þ ¼ P Djθi; Mið Þ f θijMið ÞP Mið Þ
∑
m

j¼1
P M j
� �

∫θP Djθ j; M j
� �

f θ j
��M j

� �
dθ j

∝P Djθi; Mið Þ f θijMið ÞP Mið Þ ð3Þ

whereMi is the ith distribution type, θi is the vector of param-
eters of the ith distribution type, f(θi|Mi) is the probability that
the parameters of the ith distribution type is θi, and m is the
total number of distribution types.

The data uncertainty in the aleatory variables can also be
modeled using evidence theory [96], likelihood-based method
[97], and interval variables [98] depending on the degree of
uncertainty in the collected data. For example, we may only
know that the absorption coefficient of a material is within a
certain range. In that case, we can describe the uncertainty in
the absorption coefficient as an interval variable.

The aforementioned methods focus on how to deal with
aleatory uncertainty and epistemic uncertainty due to data un-
certainty. The modeling of model uncertainty is more compli-
cated than that of data uncertainty. In the subsequent section, we
introduce the modeling of various sources of model uncertainty.

4.1.3 Modeling of model uncertainty

(a) Model solution approximation

Model discretization error is one source of model uncer-
tainty due to solution approximation. It comes from the nu-
merical discretizations in the simulation model. One of the
commonly adoptedmethods for themodeling of discretization
error is the Richardson extrapolation method [99, 100]. For a
given input setting d, the discretization error of the simulation
results ys(d), of an Finite element analysis (FEA) simulation
with mesh size h1 can be quantified based on two more FEA
simulations with finer mesh size h2 and finest mesh size h3 as
follows [99, 100]

εFEA dð Þ ¼ y 1ð Þ
s dð Þ−y 2ð Þ

s dð Þ
h i.

rpcmesh−1
� �

; ð4Þ

where y kð Þ
s dð Þ is the result of FEA simulation with inputs d

and mesh size hk, rmesh = h2/h1 = h3/h2 is the mesh refinement

ratio, and the convergence pc is estimated as pc ¼ ln

y 3ð Þ
s dð Þ−y 2ð Þ

s dð Þ� ��
= y 2ð Þ

s dð Þ�
−y 1ð Þ

s dð ÞÞ� =lnrmesh.
There are also other sources of uncertainty due to solution

approximations, for example, the uncertainty due to reduced
order modeling and uncertainty due to the use of surrogate
models in the analysis. Since the melting pool model and the
solidification model are computationally very expensive, sur-
rogate models are often needed to substitute these simulation
models. Due to the limited number of training points, we will
have surrogate model uncertainty at untrained input settings
when the surrogate model is used to perform predictions.
Modeling of the surrogate model uncertainty will be discussed
in detail in the following section.

(b) Model discrepancy and model parameter uncertainty

Model discrepancy or model form uncertainty comes from
the assumptions and simplifications made in various simula-
tion models. For example, the assumption of sphere particles
of the powder in the DEM simulation, the simplification of
melting pool models by ignoring the heat radiation and evap-
oration, and the simplification of Marangoni forces in the FV
and FE combined melting pool model. If there is only model
discrepancy or model form uncertainty, the model discrepancy
can be modeled as a surrogate model by comparing the differ-
ence between the simulation model and the experiment at
different input settings.

However, it is quite often that the model parameter uncer-
tainty and model discrepancy are presented simultaneously in
the simulation model. Since the some parameters are un-
known due to the model parameter uncertainty and the model
form uncertainty is a function of these model parameters, it is
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very difficult to accurately model these two sources of model
uncertainty together. Awidely used approach for dealing with
this kind of problem is the employment of model calibration
approach under the Kennedy and O’Hagan framework (KOH
framework) [101]. In the KOH framework, the model discrep-
ancy term is modeled as a Gaussian process model. The hyper
parameters of the Gaussian process model are then estimated
based on the maximum likelihood estimation (MLE) approach
using the prior information of the unknownmodel parameters.
After the model discrepancy is approximated using a Gaussian
process model, the unknown model parameters are estimated
using the Bayesian calibration method based on the surrogate
model of model discrepancy term. More details of the KOH
framework are available in Ref. [101].

4.2 Uncertainty quantification

The purpose of UQ is to investigate the effects of uncertainty
sources on the variation of the QoIs. Based on the modeling of
uncertainty sources described in the last subsection, we inves-
tigate the UQ of AM process from two main perspectives,
namely UQ of a single model and uncertainty aggregation
across multiple models.

4.2.1 UQ of a single model

UQ of a single model can be performed for each individual
model as summarized in Sect. 2. There are two types of UQ
activities in the UQ of a single model: local UQ and global
UQ. In local UQ, we are usually interested in the quantity of
interest in a specific region while the whole domain is our
interest in global UQ. Reliability analysis, which quantifies
the probability that a quantity of interest is larger than a certain
threshold, belongs to local UQ. Analyzing the statistical prop-
erties, such as mean, standard deviation, and other moments,

falls into global UQ. Both local UQ and global UQ can be
performed using brute force MCS. However, MCS is compu-
tationally expensive for most computer simulation models. In
order to make the UQ of computer simulation models possi-
ble, a surrogate model is widely used in UQ to substitute the
original simulation model. The widely used surrogate models
in UQ studies include Gaussian process model (Kriging mod-
el) [102], polynomial chaos expansion (PCE) [15], support
vector machine (SVM) [103], and neural networks. Here, we
briefly introduce the Kriging model and PCE.

(a) Kriging surrogate modeling

A Kriging model approximates the response of a simula-
tion model by assuming the approximated response as a
Gaussian stochastic process [104, 105]. The Kriging model
of a simulation model g(d) is given by [104]

g dð Þ ¼ h dð ÞTvþ ε dð Þ ð5Þ
where d is the vector of input variables, v = [v1, v2, ⋯, vp]

T

is a vector of unknown coefficients, h(d) = [h1(d), h2(d),
⋯, hp(d)]

T is a vector of regression functions, h(d)Tv is the
trend of prediction, and ε(d) is usually assumed to be a
Gaussian process with zero mean and covariance
Cov(ε(di), ε(dj)) given by

Cov ε dið Þ; ε d j
� �� � ¼ σ2

εR di; d j
� � ð6Þ

in which σ2
ε is the process variance and R(di, dj) is the cor-

relation function.
For a new point d, the prediction of the Kriging model

follows a Gaussian distribution with the mean and variance
of the prediction given by

g dð Þ ¼ h dð ÞTvþ r dð ÞTR−1 g−Hvð Þ ð7Þ

MSE dð Þ ¼ σ2
ε 1−r dð ÞTR−1r dð Þ þ HTR−1r dð Þ−h dð Þ� �T

HTR−1H
� �−1

HTR−1r dð Þ−h dð Þ� �n o
ð8Þ

where r dð Þ ¼ R d; d1ð Þ; R d; d2ð Þ; ⋯; R d; dnsð Þ½ �, di

is the ith training point, ns is the number of training
points, R is the correlation function evaluated at the train-
ing points, and H is the regression function h(d) evaluated
at the training points.

The hyper-parameters of the Kriging model, which include
unknown coefficients υ, σ2

ε , and parameters of R(di, dj) can
be estimated using either maximum likelihood or least
squares. More details about Kriging method can be found in
[104, 105], and a Kriging toolbox is available in both Python
and MATLAB [106].

(b) Polynomial chaos expansion (PCE)

The PCE surrogate modeling method uses a polynomial
orthogonal basis to approximate a simulation model. The
PCE surrogate model is given by [15]

g ξð Þ ¼ ∑
j¼0

nb

ω jΨ j ξð Þ ð9Þ

where Ψj(ξ) is the ith orthogonal basis function, ωj is the
coefficient of the ith orthogonal basis function, and ωj is the
number of basis functions used. For different random
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variables, different basis functions should be used. The or-
thogonal basis functions have the following property

∫Ψ j ξð ÞΨk ξð Þρ ξð Þdξ ¼ δ j;k ð10Þ

where δj , k is Kronecker delta, and ρ(ξ) is PDF of random
variables.

The coefficients of the PCE model are solved using the
following equation [15]

ωk ¼ g; Ψkh i
Ψk ; Ψkh i ¼

1

∫Ψ2
k ξð Þρ ξð Þdξ ∫g ξð ÞΨk ξð Þρ ξð Þdξ ð11Þ

The above equation shows that the solving the coefficients
ωk and k = 1 , 2 , ⋯ , nb is basically solving the integra-
tion given in Eq. (11). Since the simulation model g(ξ) is
involved in the integration, tensor grid and sparse grid ap-
proaches have been investigated to solve the integration
[107]. Equation (11) has also been formulated into an optimi-
zation problem to minimize the overall regression error by
estimating the coefficients using compressive sensing or least
square methods [108]. Due to the orthogonal properties of the
basis functions, the mean and standard deviation of the re-
sponse variable can be estimated analytically.

The Kriging surrogate modeling method has also been in-
tegrated with PCE method to develop a PCE-Kriging surro-
gate modeling method in recent years. Advanced Kriging sur-
rogate modeling methods have also been proposed to effec-
tively perform local UQ [16, 109].

There are several research issues that are worth pursuing in
the UQ of single model in the AM models. First, there are
many sources of uncertainty in the AM process, even for a
single simulation model such as the melting pool model. How
to effectively reduce the number of training points required for
the surrogate modeling given numerous sources of uncertainty
is a challenge. Second, there are usually inevitable noises in
the simulation models and experiments, such as the powder
bed simulation model. Given the noises in the results of sim-
ulations and experiments, how to effectively perform UQ of a
single model is a challenging issue.

The first challenge can be resolved by resorting to
statistical-based surrogate modeling method and taking ad-
vantage of currently high-performance computing and big da-
ta techniques. The second challenge can be addressed by
using Bayesian Gaussian process model or Bayesian PCE
model. The noises in the response can be accounted for
through the uncertainty in the parameters of the surrogate
models. Based on the UQ of single models, we discuss how
to effectively perform UQ of the whole AM process.

4.2.2 Multi-level UQ and uncertainty aggregation

As shown in Fig. 2, the modeling of the entire AM process is a
multi-level problem. The outputs of lower level models

(powder bed model, heat source model) are inputs to the upper
level models (i.e., melting pool model and solidification mod-
el). In order to propagate uncertainty from process parameters
and other environmental parameters to the QoIs at the top
level, multi-level UQ methods are required.

As a flexible tool for the multivariate joint probability den-
sity modeling, Bayesian networks (BNs) play a vital role in
the multi-level UQ of AM process. BNs express the joint
probability density of n random variables X1 , X2 , ⋯ , Xn

in terms of conditional probabilities as [94]

P Xð Þ ¼ P X 1; X 2; ⋯;X nð Þ ¼ ∏
n

i¼1
P X ijπið Þ ð12Þ

where πi is the set of parents nodes of node X2, and P(Xi|πi)
is the conditional probability density function of node X2 for
given realization of its parents. The nodes without parent
nodes are called root nodes, such as the process parameters
including scan speed, hatch spacing, and others. The proba-
bility density functions of the root nodes are obtained from the
uncertainty sources modeling discussed in Sect. 4.1.2.

In the multi-level UQ of AM process, each individual sim-
ulation model can also be a BN embedded in overall network
of the AM process. The surrogate models as discussed in Sect.
4.2.1 can also be subnetworks in the overall BN. The benefits
of using BN for the UQ in AM process are multi-fold, as listed
below.

& BN can effectively connect various simulation models and
mathematical models to facilitate the UQ of the entire AM
process.

& BN can also connect simulation models with models
established from experiments and expert opinion to per-
form the UQ.

& Heterogeneous sources of information can be aggregated
through BNs to quantify the uncertainty in the quantity of
interest.

& BN can also facilitate UM in the AM process to improve
the product quality of AMprocess. Use of BN for UMwill
be discussed in Sect. 4.3.

Based on the models summarized in Table 1, we provide a
schematic network in Fig. 5 to illustrate how various models
and parameters can be connected through a BN. Note that a
model cannot be node of a BN. Each model in the network is
also a BN connecting the input variables and output variables
of the model.

In the above network, various parameters and outputs of
models are connected with each other through conditional
probability density (CPD) functions. In addition to multi-
level UQ, there may also be coupling between different sim-
ulation models in some of the analysis models (e.g., coupling
between finite element model and the cellular automatonmod-
el). To address the challenge introduced by the coupling
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between different simulation models, decoupling strategies
can be employed, such as the first-order reliability method
based method and the likelihood-based approach for multi-
disciplinary analysis (LAMDA) [110]. Next, we will discuss
the model verification and validation based on the uncertainty
aggregation.

4.2.3 Model V&V

Model verification and validation (V&V) is the process of
determining the agreement to which a model is an accurate
representation of the real world from the perspective of the
intended use of the model [111, 112]. Before applying the
multi-level modeling of the AM process to the design optimi-
zation of AM process and UM, the models need to be verified
and validated to ensure that the models can be used to repre-
sent the actual physics. Model validation can be performed
qualitatively or quantitatively. Qualitative validation methods
(i.e., graphical comparison) describe the agreement visually,
while quantitative methods (using a validation metric) numer-
ically characterize the degree of agreement [113]. Commonly
studied quantitative validation metrics include mean-based
methods [114, 115], hypothesis testing-based methods [113],
area metric [116], and distance or reliability metric [112, 117].
A detailed review of different validation metrics can be found
in Ref. [112]. The uncertainty quantified in this section can be
effectively incorporated in the validation process using the
aforementioned validation metrics.

In the following section, wewill discuss how tomanage the
uncertainty sources in the AM.

4.3 Uncertainty management

This section investigates the UM in AM to answer the follow-
ing three questions: (1) How to reduce the number of variables
in UQ analysis? (2) How to reduce the uncertainty prediction
of AMmodels? (3) How to optimize the process parameters to
reduce the effects of uncertainty sources on the AM product
quality?

4.3.1 Dimension reduction of random variables

Dimension reduction of the random variables aims to reduce
the number of variables considered in the UQ and UM of AM
process since not all of the variables are important. An effec-
tive method for dimension reduction is global sensitivity anal-
ysis (GSA), which ranks the contribution of each input vari-
able (X) on the varianceVar(Y) of an output quantity of interest
(Y). Sobol’ indices are commonly used in this context, which
quantify the uncertainty contribution using two kinds of indi-
ces: first-order indices and total indices. The first-order index
measures the contribution of an individual variable without
considering its interactions with other variables and is given
by [118]

SIi ¼
VarX i EX∼i Y jX ið Þð Þ

Var Yð Þ ð13Þ

where Xi is the ith input variable, X~i is the vector of vari-
ables excluding variable Xi, Var(Y) is the variance of quantity
of interest (Y), and EX ~ i(Y|Xi) is the expectation by freezingXi.
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The total index measures the contribution of an individual
variable and its interactions with other variables. The total
effect index is given by

STi ¼ 1−
EX ∼i VarX i Y jX ∼ið Þð Þ

Var Yð Þ ð14Þ

Based on the results of GSA, the less important random
variables can be fixed at certain specific values (usually nom-
inal or mean values) without considering their variability.
GSA can be performed both locally and globally. Locally,
GSA can be performed for individual node of the network as
given in Fig. 5. Note that a node of the BN can be the output of
a simulation model, a mathematical model, or a surrogate
model. When the output of a surrogate model is used, analyt-
ical expressions have been derived for the first-order Sobol’
indices based on Kriging surrogate model [119] and polyno-
mial chaos expansion [120] methods. Globally, the GSA can
be performed directly on the BN from the final quantity of
interest point of view. To achieve the purpose of GSA on BN,
sampling-based method has been recently developed [121].

4.3.2 Resource allocation for uncertainty reduction

As discussed in Sect. 4.1, there are two types of uncertainty in
the AM process. The aleatory uncertainty is irreducible while
epistemic uncertainty is reducible. For different types of epi-
stemic uncertainty, the methods of uncertainty reduction are
different. For instance, the epistemic uncertainty in the param-
eters of a random variable can be reduced by collecting more
experiment data; and the epistemic uncertainty in surrogate
model can be reduced by performing more computer simula-
tions (i.e., adding more training points).

In reality, we are usually limited by the available resources
(computational and experimental). Given the limited re-
sources, how to effectively reduce the epistemic uncertainty
is an important ongoing research issue. It is also an important

topic for the uncertainty reduction in the modeling of AM. To
achieve this purpose, the following research directions need
be pursued.

& Experimental design for model calibration: Bayesian cal-
ibration represents the epistemic uncertainty in parameters
and variables based on prior information and observation
data collected from experiments. To maximize the infor-
mation gain (reduction in the epistemic uncertainty), the
experiment input settings need to be optimized [122–124].

& Adaptive surrogate modeling: Computer simulation
models are usually computationally expensive. To reduce
the epistemic uncertainty (bias and variance) introduced
by the surrogate model, we need to adaptively determine
the optimal input settings for computer simulations and
thus maximize the information we obtained from the sim-
ulation model for training the surrogate model [16, 109].

& Resource allocation for experiments and surrogate
modeling: Since both experiments and simulation models
are expensive, given the limited computational and exper-
imental resources, how to maximize the reduction of epi-
stemic uncertainty and thus increase the quality of AM
process model prediction is a research topic that needs to
be investigated [125, 126].

& Experimental design for model validation: As discussed in
Sect. 4.2.3, model validation needs to be performed to
validate the credibility of the models. During the process
of model validation, validation experiments need to be
performed to collect data for validation. However, not all
the data are useful for model validation. How to effective-
ly collect data for validation and thus accelerate the prod-
uct certification process is an important issue that needs to
be addressed. In this regard, the validation experiment
design methods developed in Ref. [127] can be explored
to perform validation experiment design for AM models.

& Resource allocation based on integration of model cali-
bration, validation, and UQ: In the UQ of AM process,

Fig. 6 A 3Dmodel with different
building orientations
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model calibration, validation, and forward uncertainty pre-
diction are needed. Different techniques have different
motivations. Integration of the results of calibration, vali-
dation, and uncertainty prediction can enhance our confi-
dence in the UQ of AMprocess. To achieve the purpose of
integration of calibration, validation, and uncertainty pre-
diction, a roll-up method [128] has been recently devel-
oped. Resource allocation based on integration of model
calibration, validation, and UQ can reduce the uncertainty
in AM models in a symmetric way.

4.3.3 AM process optimization under uncertainty

Since the aleatory uncertainty is irreducible, the process pa-
rameters need to be optimized to reduce the effects of aleatory
uncertainty on the variability of quantity of interest. As shown
in Fig. 6, the optimal building orientation and slice thickness
need to be determined to minimize the manufacturing error
and standard deviation of the geometry error. The AM process

optimization under uncertainty can be pursued in two direc-
tions: reliability-based design optimization (RBDO) [129] and
robust design optimization (RDO) [130].

In RBDO, the process parameters are optimized while the
optimization is subjected to reliability constraints regarding
the QoIs. In RDO, the process parameters are optimized such
that the QoIs are not sensitive to the variations in the
manufacturing environment. During the optimization process,
the UQ framework developed in Sect. 4.2 is used to estimate
the variations in the QoIs with process parameters as the input
variables.

In addition to the conventional RBDO and RDO, advanced
RBDO and RDO methods also need to be developed consid-
ering that the epistemic uncertainty cannot be completely
eliminated and multiple QoIs need to be considered during
the optimization process. Such advanced RBDO and RDO
methods need to consider both aleatory and epistemic uncer-
tainty [131] and multiple optimization objectives [132, 133].

In the next section, we will summarize the proposed UQ
and UM framework for quality control of the AM process.

Fig. 8 Illustration of powder bed
simulation
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4.4 Summary of UQ and UM framework

Figure 7 summarizes the proposed overall UQ and UM frame-
work of the AM process as discussed in Sects. 4.1, 4.2, and
4.3. There are mainly four modules: modeling of the AM
process, UQ of the AM process based on the process model-
ing, uncertainty reduction module, and module for AM pro-
cess optimization under uncertainty. Connections between
modules of the overall framework and models in each indi-
vidual module are also presented in the figure. For example,
the AM process optimization under uncertainty module is
coupled with the UQ module because UQ needs to be per-
formed under different input settings of the process parame-
ters; the uncertainty reduction module will act as inputs to the
UQ module since the collected data from experiment design
will be used in the UQ process and affect the result of the UQ
process.

In the proposed UQ and UM framework of AM process,
some of the research topics have already been intensively
studied, such as model calibration and validation. Some of
the other research topics need to be further investigated in
future research, such as experiment design for model calibra-
tion and validation, and optimization under uncertainty of the
AM process. Next, we will use an example to illustrate the
implementation of some of the techniques presented in the
above framework.

5 Example: UQ of the selective laser sintering
of nanoparticles

In this section, laser sintering of nanoparticles, which is one of
the main steps of the micro-AM process, is used to illustrate
the application of the UQ techniques in the AM process. As
discussed in Sect. 3, powder bed simulation can be performed
first. Figure 8 gives an illustrative example of the powder bed
simulation. From the powder bed simulation, we can obtain

the radius distribution of the particles as well as the porosity of
the powder bed. This information can then be used as inputs
for the UQ of melting and solidification models.

In this paper, for the sake of illustration, we use a simplified
laser sintering model to investigate the effects of uncertainty
sources on the quantity of interest (ultimate tensile strength) of
the structure obtained from laser sintering. In the simplified
example, two spherical Fe-Fe nanoparticles are first melted
under constant heating rate and cooled down under a constant
cooling rate. After that, tensile test is performed on the struc-
ture to investigate the material properties due to melting and
cooling. Simulations of the laser sintering and tensile test of
nanoparticles are performed using Large-scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS) code
[134]. Figures 9 and 10 depict the simulations of the laser
sintering and tensile test of the nanoparticles, respectively.

To quantify the uncertainty in the simulation result, we first
identify the uncertainty sources. The aleatory uncertainty
sources include the variability of particle radii, the uncertainty
in the sintering temperature, and the gap between the particles
due to packing of powder bed. Since the LAMMPS model is
used to simulate the process of sintering and tensile test, the
epistemic uncertainty mainly comes from the simulation mod-
el. In the LAMMPS simulation, the embedded atom model

0 ps 10 ps

60 ps 260 ps

Fig. 9 Laser sintering of two Fe
nanoparticles (at different
simulation time given in
picoseconds)

Strain = 0 Strain = 0.005

Strain = 0.03 Strain = 0.135

Fig. 10 Tensile test of the nanoparticles obtained from laser sintering
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(EAM) potential given as below is used to approximate the
total energy of an atom [135].

E ¼ ∑
N−1

i¼1
∑
N

j¼iþ1
φ rij
� �þ ∑

N

i¼1
Φ ρið Þ ð15Þ

where N is the number of atoms in the system, rij is the
distance between atom i and j, and

ρi ¼ ∑
j
ψ rij
� � ð16Þ

φ rð Þ ¼ ∑
nφ

k¼1
aφk φk rð Þ ð17Þ

Φ ρð Þ ¼ ∑
nΦ

k¼1
aΦk Φk ρð Þ ð18Þ

in which

ψ rð Þ ¼ ∑
nψ

k¼1
ψk rð Þ ð19Þ

Ackland et al. [136] and Biersack and Ziegler [137] have
fitted the density function and embedded energy function of
Fe-Fe potential as follows

ψ rð Þ ¼ ∑
3

k¼1
ζk rψk −r
� �3

θ rψk −r
� �

ð20Þ

Φ ρð Þ ¼ −ρ
1

.
2 þ ω1ρ

2 ð21Þ

where rψ1 ¼ 2:4, rψ2 ¼ 3:2, rψ3 ¼ 4:2, and θ(x) are the
Heaviside step functions.

Since EAM is a regression model based on experiment
data, there is uncertainty in the coefficients (ζ1, ζ2, ζ3, and
ω1) of the EAM potentials due to uncertainty in the experi-
ment and limited experiment data. The uncertainty in the co-
efficients of EAM potentials is epistemic and can be quanti-
fied using Bayesian calibration (i.e., Sect. 4.1.2) based on the
experiment data. Along with the epistemic uncertainty in the
EAM potential coefficients, there is also uncertainty in the
LAMMPS simulation result due to the simplification and as-
sumptions made in the molecular dynamics simulations. In
this example, the aleatory uncertainty in the geometry and
sintering temperature and the epistemic uncertainty in the
EAM potential is considered. Table 2 gives the assumed ran-
dom variables in this example. Variables ζ1, ζ2, ζ3, and ω1

represent the epistemic uncertainty in the EAM potential, T
is the sintering temperature, d is the gap between two nano-
particles, and R1 and R2 are the radii of the two nanoparticles.
In this example, the distributions are assumed to be Gaussian
for the sake of illustration. The method presented in this ex-
ample is applicable to any kind of distributions. The distribu-
tions of the gap between nanoparticles and radii of nanoparti-
cles can be obtained from the powder bed simulation as illus-
trated in Fig. 8. Figure 11 shows the geometry of two
nanoparticles.

Figure 12 plots the strain-stress curve obtained from the
tensile test model under a given realization of the random

Table 2 Random variables of the laser sintering of nanoparticles

Variable R1 (Å) R2 (Å) d (Å) T (K) ζ1 ζ2 ζ3 ω1

Distribution Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian

Mean 22.25 21.75 0.05 1075 11.675 −0.0115 0.475 −3.5 × 10−4

Standard deviation 0.005 0.005 0.01 15 0.02 5 × 10−3 0.02 1.75 × 10−5

d

R1 R2

Fig. 11 Illustration of power bed simulation
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Fig. 12 R1 = 22.41 nm, R2 = 21.68 nm, T = 1052.6 K, d = 0.013 nm,
ζ1 = 11.5961, ζ2 = − 0.0081, ζ3 = 0.4836, ω1 = − 3.84 × 10−4
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variables. Based on the LAMMPS simulation runs, surrogate
models are built for the stress response using the Kriging
surrogate model method as discussed in Sect. 4.2.1. Based
on the surrogate modeling of the laser sintering model, we
then perform MCS on the surrogate model to investigate the
uncertainty in the strain-stress curve due to the aforemen-
tioned uncertainty sources. Figure 13 gives 1000 realizations
of the strain-stress curves obtained fromMCS. From the sam-
ples of the strain-stress curve, we also obtained samples of the
ultimate tensile strength of the structure after laser sintering.
Figure 14 plots the histogram of the ultimate tensile strength
of the structure. The distribution of the ultimate tensile
strength can be used in the macro-level model to perform
structural reliability analysis.

To analyze the contributions of various sources of uncer-
tainty on the variability of the ultimate tensile strength of the
structure, we also performed GSA for the ultimate tensile
strength using the method presented in Sect. 4.3.1. Figure 15

gives the first-order Sobol’ indices obtained from GSA under
different strain values. The results show that the epistemic
uncertainty in the EAM potential makes the most significant
contribution to the uncertainty in the ultimate tensile strength
for the studied case. Next, the sintering temperature also
makes major a contribution to the uncertainty of tensile
strength. In this example, the contributions of radii of nano-
particles and gap between nanoparticles are very small. One
possible reason is that the standard deviations of the radii and
gap as given in Table 2 are very small.

In this example, we illustrated the application of surrogate
modeling, MCS, and GSA in the laser sintering (melting and
cooling) of the micro-AM process. Similar procedure can be
applied to other individual models as well in the AM process.

6 Summary

AM has shown significant market potential in the production
of metal components with complicated geometries. The vari-
ation in the quality of products manufactured from AM pro-
cess, however, has impeded the wide application of the AM
technology. To resolve this issue, a better understanding of the
causes of the variation in the quality of products is required.
This paper discusses the needs and opportunities in the UQ
and UM of AM process. Research needs and directions of UQ
and UM in AM process are studied based on the review of
currently available AMprocess models. AUQ andUM frame-
work is proposed for the AM process to reduce the effects of
uncertainty sources on the AMproduct quality. An example of
laser sintering of nanoparticle is used to illustrate the imple-
mentation procedure of several techniques in the proposed UQ
and UM framework.
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Future needs include investigating new UQ and UM tech-
niques to meet the requirement of the AM process, developing
multi-scale and multi-physics models for the AM process, and
applying UQ and UM techniques to the AM process.
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