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Abstract An uncertainty aggregation and reduction frame-
work is presented for structure–material performance pre-
diction. Different types of uncertainty sources, structural
analysis model, and material performance prediction model
are connected through a Bayesian network for systematic
uncertainty aggregation analysis. To reduce the uncertainty in
the computational structure–material performanceprediction
model, Bayesian updating using experimental observation
data is investigated based on the Bayesian network. It is
observed that the Bayesian updating results will have large
error if the model cannot accurately represent the actual
physics, and that this error will be propagated to the pre-
dicted performance distribution. To address this issue, this
paper proposes a novel uncertainty reduction method by
integrating Bayesian calibration with model validation adap-
tively. The observation domain of the quantity of interest is
first discretized into multiple segments. An adaptive algo-
rithm is then developed to perform model validation and
Bayesian updating over these observation segments sequen-
tially. Only information from observation segments where
the model prediction is highly reliable is used for Bayesian
updating; this is found to increase the effectiveness and effi-
ciency of uncertainty reduction. A composite rotorcraft hub
component fatigue life prediction model, which combines a
finite element structural analysis model and a material dam-
age model, is used to demonstrate the proposed method.
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1 Introduction

Structure–material models [1] typically combine a structural
analysis model that predicts the structural response under
different load conditions, with a material damage model that
estimates the material performance based on the structural
response. Such combination been pursued in both macro-
scale and multi-scale computations. For instance, in the
macro-scale, Liu and Mahadevan [2] proposed a high-cycle
multi-axial fatigue performance prediction model based on
a characteristic plane computation that makes use of the
structural analysis. As an example of multi-scale compu-
tation, Ghosh et al. [3] developed an adaptive multi-level
methodology to model the evolution of variables at the
macrostructure-level as well as track microstructural dam-
age, in composite and porous materials. Crouch et al. [4]
proposed a composite material fatigue damage prediction
model using a multi-scale modeling approach to damage
accumulation. Several studies have focused on improving the
accuracy and efficiency of performance prediction through
multi-scale modeling [5,6] and high performance computing
[7].

Most current structure–material models have primarily
focused on deterministic performance prediction. Consider-
ation of uncertainty has been limited to natural variability in
material properties and loading [8–10], which are modeled
through random variables and random processes. However,
there are many other types of uncertainty sources that need to
be accounted for, in particular epistemic uncertainty result-
ing from lack of knowledge. These include uncertainty in
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the distribution parameters of input random variables due to
limited data [11], discrepancy between the computer simula-
tion model and the actual physics [12], and model parameter
uncertainty [13]. These uncertainty sources are present in
both the structural analysis model and the material dam-
age model. Often, the structural analysis is a physics-based
finite element model, incorporating multiple assumptions
and approximations; on the other hand, the material damage
model is often empirical, based on material test data. Each
type of model is affected by different sources of uncertainty.
A systematic framework is therefore required to quantify the
different sources of uncertainty and to aggregate their effects
on the performance prediction.

A Bayesian network approach is adopted in this paper to
facilitate uncertainty quantification, aggregation and reduc-
tion. The Bayesian network will help not only in uncertainty
aggregation (which is a forward problem), but also in iden-
tifying the parameters that make the highest contributions to
the uncertainty of the performance prediction, and facilitate
uncertainty reduction in the performance prediction through
Bayesian updating with observed data.

Bayesian updating is a process of uncertainty reduc-
tion regarding unknown parameters of a model based on
the fusion of prior information, mathematical model, and
physical observations [14]. In current Bayesian calibration
methods for uncertainty reduction, it is typically assumed
that the prediction model (e.g., computational simulation
model) accurately represents the actual physics or that the
uncertainty between the prediction model and the actual
physics can be accurately captured by adding a discrep-
ancy term to the prediction model [15]. Thus the calibration
effort typically estimates the posterior distributions of model
parameters and the discrepancy term. For some problems,
however, the prediction model is still quite different from
the actual physics even if a discrepancy term is estimated
and added [14]. In that case, Bayesian calibration based on
observations using a low quality prediction model will lead
to low accuracy in the model prediction even if the uncer-
tainty in the prediction can be reduced. This implies that the
challenge in model calibration is two-fold: how to effectively
reduce the uncertainty and how to maintain the accuracy of
the prediction. To tackle this challenge, the validity of the
prediction model needs to be considered within Bayesian
calibration.

In a structure–material performance prediction model,
considering the model validity into Bayesian calibration is
not straightforward. There are two main challenges that need
to be solved. The first challenge is how to evaluate the validity
of the model while accounting for various sources of uncer-
tainty. The second challenge is how to include the model
validity into the Bayesian calibration. To address the first
challenge, this paper adopts Bayesian hypothesis testing for
model validation under uncertainty [16]. To address the sec-

ond challenge, an adaptive uncertainty reduction method is
proposed through an iterative integration of model validation
and Bayesian calibration. Thus the main contributions of this
paper can be summarized as: (1) a framework for uncertainty
modeling and uncertainty aggregation in structure–material
performance prediction models; (2) model validation based
on uncertainty aggregation; and (3) a novel adaptive method
for uncertainty reduction based on iterative integration of
model validation and calibration.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses the background of uncertainty aggregation
and uncertainty reduction with respect to structure–material
performance prediction. Section 3 presents the proposed
uncertainty aggregation framework. Following that, Sect. 4
proposes the new adaptive uncertainty reduction approach.
Section 5 illustrates the proposed framework using a com-
posite rotorcraft hub example. Section 6 presents concluding
remarks.

2 Background

2.1 Combination of physics-based and empirical models

Various types of models have been developed in the past
decades to predict the structural performance based on struc-
tural analysis andmaterial damagemodeling. Figure 1 shows
a schematic procedure of structure–material performance
prediction. The computational structural analysis model
predicts the structural response under different loading con-
ditions and the material damage model predicts the material
performance based on the structural response. The struc-
tural analysis andmaterial damage analysis can be performed
sequentially or coupled together.

The structure model is usually a physics-based finite
element model as shown in Fig. 1. It incorporates model-
ing assumptions regarding the structural behavior, boundary
conditions etc., and further employs numerical approxima-
tions (e.g., discretization) to compute the structural response.
The model includes parameters (e.g., mechanical properties)
which may be obtained from test data.

The material damage is often empirical (especially at the
macro-level), based on curve fitting of material test data.
Consider, for example, Paris’ law that is commonly used
to predict long crack growth in structures. The relationship
between the number of cycles (N ), the crack size (a), and
the stress intensity factor range (�K ) is written as [17]

da/dN = C�Kn
(
1 − �Kth

�K

)p

, (1)

where C, n, p, and �Kth are model parameters estimated
from test data that measure crack size versus number of load-
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Fig. 1 Illustration of the
structure–material performance
prediction model

Structural analysis 
model

Material damage 
model

Performance 
prediction

Crack growth

ing cycles under different loading conditions. n controls the
slope of the Paris regime and p controls the curvature in the
near-threshold regime. For a structure of interest as in Fig. 1,
�K is computed by the structural analysis model and input
to the material model in Eq. (1) to predict the crack growth
under a loading condition of interest.

The above is a simple illustrative example. In the lit-
erature, many sophisticated models have been developed
to predict the performance of structures using computa-
tional structural analysis model and material damage model.
These range from macro-level fatigue damage prediction
methods to handle different fatigue conditions (e.g., the
characteristic plane approach for multi-axial fatigue [2]), to
multi-scale modeling of material damage [18]. The focus
of this paper, however, is not the details of such models,
but on how to quantify and reduce the uncertainty in per-
formance prediction when multiple models are combined.
Our particular focus is on aggregating the uncertainty arising
from multiple aleatory and epistemic sources, and on reduc-
ing the uncertainty in performance prediction. The developed
methodology in this paper is applicable not only to structure–
material performance prediction models, but also to other
computer simulation models.

2.2 Sources of uncertainty

Model uncertainty sources can be classified into two groups:
aleatory and epistemic.

• Aleatory uncertaintyThis is natural variability and is irre-
ducible. Natural variability may be present in loading,
material properties, component geometry, and boundary
conditions. The variability may be across specimens, as
well as over time and space.

• Epistemic uncertainty This type of uncertainty comes
from lack of knowledge, which is reducible when more
information is available. Depending on the source, it
can be further classified into two groups: (1) Data
uncertainty, which arises from limited, imprecise, qual-
itative, erroneous or missing data. It causes uncertainty
in the parameters of the probability distributions used to
describe the aleatory model inputs. For instance, we may
not be able to precisely determine the mean and variance

of the material property random variable (e.g., Young’s
modulus) when we only have limited experimental data.
(2) Model uncertainty, which arises from three types
of sources, namely, model form, model parameters, and
solution approximations. Model form error arises during
mathematical representation of physical reality (due to
simplifying assumptions), whereas solution approxima-
tion errors arise in numerically solving the mathematical
equations (e.g., discretization, reduced order model-
ing, surrogate modeling, and sampling). Since model
parameters are often not directly measurable but only
inferred from the observations of model inputs and out-
puts, limited or imprecise observations cause uncertainty
regarding the model parameters (e.g., the fatigue limit
parameter in the crack growth model).

All these sources of uncertainty affect the prediction of the
structure–material performance prediction model. A system-
atic approach is needed to quantify the individual sources as
well as aggregate their effects on the overall uncertainty in
the model prediction.

3 Uncertainty aggregation

3.1 Modeling of uncertainty sources

A commonly used strategy for the modeling of aleatory
uncertainty is to use random variables for time-independent
uncertainty, stochastic processes for time-dependent uncer-
tainty, and randomfields for quantitieswith spatial variability
[19,20]. Standard approaches are available for the model-
ing of aleatory uncertainty, such as probability distributions,
time-series models, and Karhunen–Loève expansion. Details
of these methods can be found in many textbooks, such as
Ref. [19]. Here, we mainly focus on the modeling of epis-
temic uncertainty.

3.1.1 Data uncertainty

Multiple mathematical frameworks have been proposed to
handle epistemic uncertainty, such as the Bayesian approach,
imprecise probabilities, fuzzy sets, evidence theory, and
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information gap theory. This paper follows the Bayesian
framework, where the analyst’s lack of knowledge regarding
an unknown quantity is represented by a probability distri-
bution. The unknown quantity may either be deterministic,
or the parameter of a stochastic quantity (random variable,
random process or random field). When new data D is avail-
able, the uncertainty regarding the unknown quantity θ can
be updated using Bayes’ theorem as [21]

f (θ|D) = L(D|θ) f (θ)∫
θ
L(D|θ) f (θ)dθ

∝ L(D|θ) f (θ), (2)

where L(D|θ) is the likelihood of observing the dataD, f (θ)
is the prior distribution (i.e., before observing data D),
f (θ|D) is the posterior distribution (i.e., after observing data
D), and “∝” stands for “proportional to”. Methods for com-
puting L(D|θ) are different, depending on the modeling of θ.
For example, the likelihood function L(D|θ) is quite different
for random variables and time-series models [22].

3.1.2 Model discrepancy

The model discrepancy between the prediction model and
the experiment data may come from different sources. For
instance, model form assumptions made in the mathematical
model result in the discrepancy between prediction model
and experiment. Further, numerical approximations such as
the discretization error in the finite element simulation cause
discrepancy between the prediction model and the experi-
ments. If a surrogate model is used in place of the original
physicsmodel, then surrogatemodel uncertainty is also intro-
duced into the discrepancy term. Consider a single scalar
physical quantity of interest (QOI) yph; the simulation model
output ysim, which is the prediction of yph, is given by

ysim = Gsim(x), (3)

where x = [x1, x2, . . . , xnx ] ∈ R
nx is the vector of inputs

of the computer simulation model.
The model discrepancy terms are used to correct the com-

puter simulation model (ysim) to achieve closer agreement to
the actual physics (yph) as

yc(x) = ysim(x) + εnum(x) + δ(x), (4)

where yc(x) is the corrected computer simulationmodel, δ(x)
is the model form error, and εnum(x) is the numerical error
due to solution approximations. The numerical error could be
further decomposed to discretization error, truncation error
(in reduced-order modeling), round-off error etc. The differ-
ent error terms may combine in different ways in different
problems, such as linear, nonlinear, nested, or iterative. A
Bayesian network has been proposed to aggregate the various

model error terms in a systematic manner, without imposing
any assumptions such as root-mean-square (RMS) regarding
their combination [23].

With more and more model error terms being properly
added to Eq. (4), the corrected computer simulation model
yc(x) will become more and more close to the true physics
yph. For different sources of model uncertainty, the quantifi-
cation methods are different. For example, a commonly used
method for the modeling of discretization error is Richard-
son extrapolation [24,25]. For a given input setting d, the
discretization error in the output ysim(d) of an FEA simula-
tion with mesh size h1 can be quantified based on two more
FEA simulations with finer mesh size h2 and finest mesh size
h3 as follows [24,25]:

εFEA(d) =
[
y(1)
sim(d) − y(2)

sim( d)
] / (

r pcmesh − 1
)
, (5)

where y(k)
sim( d) is the result of FEA simulation with inputs

d and mesh size hk, rmesh = h2/h1 = h3/h2 is the mesh
refinement ratio, and the convergence pc is estimated as

pc = ln
[(

y(3)
sim(d) − y(2)

sim(d)
) /(

y(2)
sim( d) − y(1)

sim(d)
)]/

ln rmesh.

(6)

Liang and Mahadevan [26] provide methods for quan-
tifying different types of model errors in computational
simulation.

3.1.3 Model parameter uncertainty

Similar to the modeling of distribution parameter uncer-
tainty, the Bayesian approach in Eq. (2) can be used for
the quantification of physics model parameter uncertainty
with input–output observations. The likelihood function for
Bayesian calibration needs to be defined according to the pre-
dictionmodel.Whenmodel parameter uncertainty andmodel
discrepancy are both present, a common approach for quan-
tifying both simultaneously is to implement the Kennedy
and O’Hagan framework [27] which uses a Gaussian process
model to represent the model discrepancy. Depending on the
objectives of the analyst, one might either calibrate an over-
all model discrepancy term (which will include both model
form and numerical errors), or first quantify the numerical
errors and correct the simulation model in order to isolate
the model form error during the calibration step [28].

3.2 Uncertainty aggregation

A Bayesian network (BN) approach is used in this paper to
aggregate the contributions of various sources of uncertainty
towards the overall model output of interest. BN is a flexible
tool for modeling themultivariate joint probability density of
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n random variables X1, X2, . . . , Xn in terms of conditional
probabilities as [21]

P(X) = P(X1, X2, . . . , Xn) =
n∏

i=1

P( Xi | πi ), (7)

where πi is the set of parent nodes of node Xi and P( Xi | πi )

is the conditional probability density function (PDF) of node
Xi for a given realization of its parents. The nodes without
parents are called root nodes.

Consider a structural analysis model

gs = GS

(
x, ωa, θ

S
ae, θ

S
e

)
, (8)

where x is a vector of deterministic inputs, ωa is a vector
of aleatory inputs, θ

S
ae is a vector of epistemic parame-

ters of ωa due to data uncertainty, and θ
S
e is a vector of

physics model parameters with epistemic uncertainty. gs =
GS(x, ωa, θ

S
ae, θ

S
e ) can be a computational simulation

model, or an empirical data-driven model.
Similarly, consider a material damage model

T = GM

(
θ
M
e , gs

)
, (9)

where θ
M
e is a vector of model parameters with epistemic

uncertainty.
In addition to these two models, according to Eq. (4),

we also have the model discrepancy term δS(x, ωa) of the
physics-based structural model, and the stochastic residual
term εM (gs) (from curve-fitting) for the empirical mate-
rial model. (The latter term could be dependent on gs as
shown, in case a Gaussian process model is fit to the material
data, or independent of gs , as is common in simple regres-
sion models where zero-mean normally distributed residuals
with constant variance are assumed). Here δS(x, ωa) refers
to the overall model discrepancy term which includes both
numerical error and model form error. Note that the model
discrepancy term is not a function of model parameters
because the epistemic uncertainty parameters are integrated
out in the KOH framework [27].

Often surrogate models such as Kriging model [29]
and polynomial chaos model [30] are used to replace the
original prediction models, in order to save computational
expense, especially in inverse problems as in model cali-
bration. The use of a surrogate model introduces surrogate
model uncertainty. For example, if a Kriging surrogatemodel
ĜS(x, ωa, θ

S
ae, θ

S
e ) is used to replaceGS(x, ωa, θ

S
ae, θ

S
e ),

then the prediction of the surrogatemodel is a normal random
variable for a given realization of the inputs and parameters
xGS = [x, ωa, θ

S
ae, θ

S
e ], with mean of the prediction given

as

μĜS
(xGS ) = h(xGS )

Tυ + r(xGS )
TR−1(g − Hυ), (10)

where υ = [υ1, υ2, . . . , υp]T is a vector of coef-
ficients estimated from surrogate modeling, h(xGS ) =
[h1(xGS ), h2(xGS ), . . . , h p(xGS )]T is a vector of regres-
sion functions,h(xGS )

Tυ is the trend of prediction, r(xGS ) =
[R(xGS , xGS1), R(xGS , xGS2), . . . , R(xGS , xGSns )],
R(xGSi , xGS j ) is the correlation function, x1, . . . , xns are
the training points, and R, g, andH are R(xGSi , xGS j ),GS ,
and h(x) evaluated at the training points.

The variance of the prediction is given by [38]

σ 2
ĜS

(xGS ) = σ 2
ε {1 − r(xGS )

TR−1r(xGS )

+[HTR−1r(xGS ) − h(xGS )]T (HTR−1H)−1

×[HTR−1r(xGS ) − h(xGS )], (11)

where σ 2
ε is a parameter estimated during the surrogate mod-

eling.
Based on the above definitions, the data uncertainty,

model discrepancy, and model parameter uncertainty in the
structure–material performance prediction model can be
aggregated into the uncertainty of the performance predic-
tion T using the BN shown in Fig. 2.

In the above BN, the elliptical nodes represent random
variables, and the square nodes represent observations. εobs
is the measurement error, which is an aleatory uncertainty
source, and Tobs is the observed structure–material perfor-
mance measure (e.g., fatigue life). As shown in Eq. (7),
different nodes in the BN are connected to each other through
the conditional PDF to model the joint PDF of all the
uncertain variables associated with both models. Forward
propagation of the uncertainties through the BN usingMonte
Carlo simulation (MCS) helps to quantify the uncertainty
in the performance prediction and thus achieve uncertainty
aggregation. Therefore, the key step in uncertainty aggrega-
tion is the construction of the BN. The BN given in Fig. 2
can be constructed either using physics models which are
connected through the inputs and outputs of the models or
using data from which the connections are learned. In the
structure–material prediction model, the BN is constructed
using a combined physics and data driven models.

The BN approach provides two additional benefits. First,
it can help us to identify the uncertainty sources that make
the highest contributions on the uncertainty in the prediction.
Second, it can significantly facilitate uncertainty reduction as
will be discussed in Sect. 4.

Global sensitivity analysis (GSA) can be employed to
identify the contributions of different uncertainty sources on
the overall uncertainty in performance prediction. Variance-
based GSA ranks the contribution of each input random
variable (X) on the variance Var(Y ) of an output QOI (Y ).
Sobol’ indices are commonly used in this context and two
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Fig. 2 Uncertainty aggregation
in the structure–material
performance prediction model

kinds of indices are used to quantify the uncertainty con-
tributions: first-order indices and total effects indices. The
first-order index measures the contribution of an individual
variable without considering its interactions with other vari-
ables and is given by [31]

SIi = VarXi (EX∼i (Y | Xi ))

Var(Y )
, (12)

where Xi is the i th input variable, X∼i is the vector of vari-
ables excluding variable Xi ,Var(Y ) is the variance of QOI
(Y ), and EX∼i (Y |Xi ) is the expectation by freezing Xi . The
total effects index measures the contribution of an individual
variable and its interactions with other variables. The total
effects index is given by

STi = 1 − VarX∼i (EXi (Y | X∼i ))

Var(Y )
, (13)

Note that the above GSA method is for a single prediction
model. To apply GSA to the BN given in Fig. 2 which com-
bines multiple models, a BN-based GSA method has been
recently developed [32]. After the contributions of various
uncertainty sources on the uncertainty of the output are iden-
tified, appropriate computational and experimental resources
can be allocated to reduce the dominant uncertainty sources
and thus reduce the uncertainty in the model prediction [33].
Here we do not focus on resource allocation; instead, we
focus on how to perform effective uncertainty reduction
based on the observed data already collected from experi-
ments or field observations.

4 Uncertainty reduction

4.1 Bayesian updating for uncertainty reduction

A Bayesian approach is employed in this section for uncer-
tainty reduction. The epistemic uncertainty sources modeled
in Sect. 3.1 and as shown in Fig. 2 are updated using obser-
vation data. For the sake of illustration, we denote all the
updating (calibration) parameters as θ

Cali, which include the
parameters of both structural and material models. Suppose
we have nt observation data of the structure–material perfor-
mance as te = [te1 , te2 , . . . , tent ] as follows

tei = GS−M (x(i), xM (i), θ
Cali) + ε∗

obs, (14)

where GS−M (x(i), xM (i), θ
Cali) is the actual response

under the i th experiment input setting x(i) and xM (i), tei is
the i th observation, ε∗

obs is a realization of the observation
noise εobs, and εobs ∼ N (0, σ 2

obs) is the observation noise.
The PDF of θ

Cali can be updated using Bayesian calibra-
tion as

f
(
θ
Cali

∣∣∣ te) = L( te| θCali) f (θCali)∫
θCali

L( te| θCali) f (θCali)dθCali

∝ L( te
∣∣ θCali) f (θCali), (15)

where f (θCali) is the prior distribution of the calibration
parameters which are obtained from the uncertainty model-
ing of epistemic uncertainty sources in Sect. 3.1, f (θCali

∣∣ te)
is the posterior distribution of θ

Cali after uncertainty reduc-
tion using observations te, and L( te| θCali) is the likelihood
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function of observing te for given θ
Cali.L( te| θCali) is com-

puted by

L( te
∣∣ θCali) =

nt∏
i=1

L
(
tei

∣∣ θCali), (16)

in which L( tei
∣∣ θCali) is computed using the BN given in

Fig. 2 by fixing the epistemic uncertainty sources at θCali as
follows

L
(
tei

∣∣ θCali)

= f
(
tei

∣∣GM
)
f
(
GM | θMe , εM , GS

)
f ( εM |GS) ×

f
(
GS | θ S

e , δS, ωa, x(i)
)
f ( δS | ωa, x(i)) f

(
ωa | θ S

ae

)
.

(17)

Note that Eq. (14) is not used to compute the likelihood
given in Eq. (15) because we do not know the true physics,
but only the structure–material prediction model. Since the
dimension of θ

Cali is usually high, directly solving Eqs. (15)
through (17) is computationally very expensive. To overcome
this challenge, sampling-basedmethods have been developed
to approximate the posterior distributions given by Eq. (15),
such as the Markov Chain Monte Carlo (MCMC) [34] and
the particle filter (PF) [35] methods. In this paper, the PF
method is used. The PF represents the posterior distribution
of the state variables by a set of particles that evolve and adapt
recursively as new information is available. In each iteration,
the particles are re-sampled according to the weights of the
particles given by

weight(θCali(i)) = L( te| θCali(i))
nPF∑
i=1

L( te| θCali(i))
, (18)

where θ
Cali(i) is the i th particle generated from the prior

distributions and nPF is the number of samples in the PF.
By updating the prior distributions to the posterior distri-

butions, the uncertainty in the epistemic uncertainty parame-
ters is reduced as illustrated in Fig. 3. However, we encounter
a new challenge discussed below during the uncertainty
reduction. As shown in Fig. 3, if the model used for the
updating does not adequately capture the physics, the updated
posterior distribution may be far away from the true value
of the calibration parameter even if the uncertainty in the
parameter is reduced. This implies that Bayesian updating
cannot always guarantee the accuracy of calibration (i.e.,
reduction of bias) even if it can reduce the variance. Next,
we will analyze where this issue comes from and why it
matters.

True value Caliθ

Posterior 
distribution

PDF

Prior 
distribution

Fig. 3 Illustration of variance reduction versus bias in Bayesian cali-
bration

4.1.1 Where does the error come from?

To identify where the error of Bayesian calibration comes
from,we first look at Eq. (15). In Eq. (15), there are two terms
that affect the posterior distribution, namely prior distribu-
tion ( f (θCali)) and likelihood function (L( te| θCali)). For the
Bayesian calibration example shown in Fig. 3, the prior dis-
tribution is able to cover the location of the true value. In
that case, the error issue should be mainly attributed to the
likelihood function.

As shown in Eq. (17), the likelihood function is computed
using the BN given in Fig. 2 by fixing the calibration param-
eters θ

Cali. According to the BN and Eq. (5), we can define
the corrected material damage model as

GMC = GM

(
θ
M
e , gsc

)
+ εM (gsc), (19)

where

gsc = GS(x, ωa, θae, θe) + δS, (20)

in which gsc is the corrected output of the structural analysis
model.

Using the BN given in Fig. 2 to compute the likelihood
function, we are trying to approximate the unknown statisti-
calmodel of the actual physicsGS−M (x, xM , θ

Cali) given in
Eq. (14) using the BN built based on the corrected structure–
material predictionmodel given in Eqs. (19)–(20) or the node
GM in Fig. 2. This approximation may work in some design
regions. But in some design region, it is quite often that

LS−M

(
tei

∣∣ θCali) = L
(
tei

∣∣ θCali) + δL

(
tei

∣∣ θCali) , (21)

where LS−M ( tei
∣∣ θCali) is the likelihood of observing tei from

the true physics if the calibration parameters equal to θ
Cali

and δL(tei ) is the error of the likelihood computation using
the BN.
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Calibration Calibration

Prediction 

(a) (b)

Fig. 4 Error propagation and reduction from calibration to prediction. a Direct Bayesian calibration and b adaptive Bayesian calibration

As a result, we also have error in the computed L( te| θCali)
as follows

LS−M ( te
∣∣ θCali) = L( te

∣∣ θCali) + δL( te
∣∣ θCali), (22)

If the true physics (Eq. 13) is used for Bayesian calibration,
we have

facc(θ
Cali

∣∣∣ te)
=

[
L( te| θCali) + δL( te| θCali)] f (θCali)∫

θCali

[
L( te| θCali) + δL( te| θCali)] f (θCali)dθCali

,

∝
[
L( te

∣∣ θCali) + δL( te
∣∣ θCali)] f (θCali), (23)

where facc(θCali
∣∣ te) is the accurate posterior distribution

obtained using the true physics.
It is apparent that facc(θCali

∣∣ te) and f (θCali
∣∣ te) will be

different due to the error in the likelihood computation. The
fundamental reason is that the likelihood function given in
Eq. (15) is computed using predictionmodel while the obser-
vation data are collected from the actual physics. Even if the
model discrepancy and bias correction terms are applied to
correct the prediction model, it cannot be guaranteed that
the statistical property of the corrected calibration model is

always close to that of the actual physics. In Fig. 4a, we use
a simple one-dimensional example to illustrate this point. In
this figure, we have a calibration model after bias correction,
which is used to approximate the actual physics. We want
to calibrate xtrue based on an observation yobs obtained from
the experiment (i.e., true physics). Since there is aleatory
uncertainty in the experimental observation, yobs can follow
a probability distribution. We then solve the inverse problem
based on the calibration model. As shown in the upper half
of Fig. 4a, due to the difference (i.e., bias) between the cali-
bration model and the actual physics, the obtained posterior
distribution ( f (θCali

∣∣ te)) is quite away from the true value
xtrue and the accurate posterior distribution ( facc(θCali

∣∣ te))
obtained from Bayesian calibration using the actual physics.

Does the discrepancy between the posterior distribution
and the true value matter? Next, we will analyze when and
why it matters.

4.1.2 Why does it matter?

The discrepancy between the posterior distribution and the
true value may not always matter for uncertainty quantifi-
cation in the prediction. In calibration, we are solving the
inverse problem corresponding to Eq. (23):
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tei = GMC

(
x(i), xM (i), θ

Cali
MC

)
+ ε∗

obs, (24)

where GMC(·) is the combined structure–material prediction
model, and θ

Cali
MC are θ

Cali in the calibration model. However,
if we knew the true physics, we would solve the following
inverse problem:

tei = GS−M

(
x(i), xM (i), θ

Cali
S−M

)
+ ε∗

obs, (25)

where θ
Cali
S−M are θ

Cali corresponding to the actual physics.
If there is a one-to-one relationship between the calibra-

tion parameters and the prediction QOI, due to the link of tei ,
we have the following relationship

θ
Cali
MC = G−1

MC

(
x(i), xM (i), GS−M

(
x(i), xM (i), θ

Cali
S−M

))
,

(26)

or

θ
Cali
MC = fmap

(
x(i), xM (i), θ

Cali
S−M

)
, (27)

LS−M

(
tei

∣∣ θCaliS−M

)
= L

(
tei

∣∣ θCaliMC

)
, (28)

where fmap( x(i), xM (i), θ
Cali
S−M ) stands for a function map-

ping θ
Cali
S−M to θ

Cali
MC .

Note that the above equations are based on the assumption
that the difference between the actual physics and the calibra-
tion model is only the mean prediction. Equations (26)–(28)
illustrate that this difference is accounted for by mapping
θ
Cali
S−M in actual physics to θ

Cali
MC in the calibration model. It is

also this mapping that causes the difference between the pos-
terior distribution obtained from the calibration model and
the accurate posterior distribution obtained from the actual
physics. When the posterior distribution f

(
θ
Cali
MC

∣∣ te) is used
for uncertainty quantification in the same calibration model,
we have

f MC
pre (t) =

∫

θ
Cali
MC

L
(
t | θCaliMC

)
f
(
θ
Cali
MC

∣∣∣ te)dθ
Cali
MC . (29)

Similarly,when the trueposterior distribution f (θCaliS−M

∣∣ te)
is used for uncertainty quantification in the actual physics,
we have

f S−M
pre (t) =

∫

θ
Cali
S−M

LS−M

(
t | θCaliS−M

)
f
(
θ
Cali
S−M

∣∣∣ te) dθ
Cali
S−M .

(30)

According to Eq. (27), the uncertainty of θCaliMC is governed
by the uncertainty of θ

Cali
S−M and thus we can rewrite Eq. (29)

as

f MC
pre (t) =

∫

θ
Cali
S−M

LS−M

(
t | θCaliS−M

)
f
(
θ
Cali
S−M

∣∣∣ te) dθ
Cali
S−M .

(31)

Comparing Eqs. (30) and (31), we have f S−M
pre (t) =

f MC
pre (t). It means that the discrepancy between the poste-

rior distribution and the accurate posterior distribution does
not matter for uncertainty quantification if the mean predic-
tion is the only difference between the actual physics and
calibration model, there is a one-to-one relationship between
the calibration parameter and response, and the posterior dis-
tribution is used for prediction of the same calibrationmodel.
As shown in upper half of Fig. 4a, when the posterior dis-
tribution from calibration is applied to the same calibration
model, the predicted distribution will be close to that from
the physics.

But this is not always the case. Most of the assumptions
made in the above derivations (Eqs. 24–31) will not hold for
most problems. Since we can only obtain f

(
θ
Cali
MC

∣∣ te) from
Bayesian calibration which is the posterior distribution after
mapping as indicated in Eq. (26), f

(
θ
Cali
MC

∣∣ te) may be used
as inputs of another model (prediction model) for prediction.
This prediction model can be a completely different model
for a different structure with the same material, or the pre-
diction model of the same structure (calibration model) but
under different application conditions, such as the structural
analysis model under a different load condition. Due to the
fact that the mapped posterior distribution ( f

(
θ
Cali
MC

∣∣ te)) is
away from the true value, prediction based on that will have
large errors. As depicted in the lower half of Fig. 4b, the dis-
crepancy of the posterior distribution results in a large error in
the prediction of the prediction model. This indicates that the
discrepancy between the posterior distribution and the true
value matters when the posterior distribution is applied in a
different prediction model, i.e., model of a different struc-
ture, or the model of the same structure but under different
conditions.

Motivated by this, in this paper, we propose an adaptive
Bayesian calibration method to mitigate the effects of the
statistical bias between the calibration model and the actual
physics on the posterior distributions obtained fromBayesian
calibration. The adaptive Bayesian calibration method has
two features: (1) integration of Bayesian calibration and
model validation, which is an extension of the integration
method presented in Ref. [28]; and (2) an adaptive scheme
to selectively choose among the observation data in order to
maximize the accuracy of Bayesian calibration. As shown
in Fig. 4b, in the proposed method, we want to reduce the
discrepancy between the posterior distribution and the true
value and thus increase the accuracy of the prediction when
the calibrated parameter is applied to a new prediction model
(as indicated in the lower half of Fig. 4b). In the new adaptive
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Bayesian calibration method, we not only reduce the uncer-
tainty, but also maximize the accuracy of the calibration.
Details of the proposed method are given in the subsequent
section.

4.2 Proposed adaptive Bayesian calibration

In this section, we first give the main idea of the proposed
adaptive Bayesian calibration method. Following that, we
provide details of the implementation procedure.

4.2.1 Overview of the adaptive Bayesian calibration method

Considering that the discrepancy between the posterior dis-
tribution and the true value of the calibration parameter is
caused by the error in the likelihood function L( tei

∣∣ θCali),
we can improve the accuracy of Bayesian calibration by
improving the accuracy of the likelihood function. Since the
likelihood function is affected by the statistical bias between
the prediction model and the actual physics as illustrated in
Fig. 4a and the bias varies over the prediction domain, the
accuracy of the likelihood function will also vary over the
prediction domain. If the likelihood function is accurate in
certain prediction regions, Bayesian calibration based on that
using Eq. (15) is able to reduce the uncertainty accurately.
Otherwise, the uncertainty is reduced incorrectly, i.e., bias of
the posterior distribution is increased even if the variance is
reduced. Since the physics model uncertainty is unknown, it
is hard to exactly determine whether the likelihood compu-
tation is accurate or not. To address this issue, we consider
the probability that the likelihood computation is accurate.

Based on the above analyses, according to the range of
the collected observation data, we first discretize the perfor-
mance prediction domain into several segments [t Li , tUi ],
where t Li is the lower bound of the i th segment, tUi is the
upper bound of the i th segment, i = 1, 2, . . . , NT , and NT

is the number of segments. Defining te ∈ [t Li , tUi ] as tei , the
corrected posterior distribution of θ

Cali after considering the
probability that the likelihood computation is accurate can
be written as

fnew
(
θ
Cali

∣∣∣ tei
)

= Pr(Li ) f
(
θ
Cali

∣∣∣ tei , Li

)

+[1 − Pr(Li )] f (θCali), (32)

where Pr(Li ) is the probability that the likelihood function
computation is accurate for [t Li , tUi ], f (θCali

∣∣ tei , Li ) is
the posterior distribution obtained from Bayesian calibration
using tei and Eq. (15), f (θCali) is the prior distribution, and
fnew(θ

Cali
∣∣ tei ) is the new posterior distribution.

Equation (32) is a form of Bayesian model averaging
which uses the probability that the likelihood computation
is accurate as a weighting factor; as a result, fnew(θ

Cali
∣∣ tei )is

the distribution of θCali provided to the predictionmodel, and
not simply the posterior distribution f (θCali

∣∣ tei , Li ). If the
probability that the likelihood function is accurate is high, this
formula assigns higher weight to the posterior distribution;
otherwise the prior distribution gets a higherweight, since the
posterior distributionobtained from thewrong likelihoodwill
bring wrong information regarding the calibration parame-
ters. The integrated Bayesian calibration method given in
Eq. (31) enables us to use only the correct information (i.e.,
accurate likelihood) to reduce the uncertainty in our simula-
tion and thus enhance the accuracy of Bayesian calibration.

In addition, since the range of observation data is divided
into multiple segments, the posterior distribution obtained
from the observation data in one segment can be employed
as the prior when using data from another segment for sub-
sequent calibration. Based on this idea, we rewrite Eq. (32)
as follows

fnew
(
θ
Cali

∣∣∣ tei
)

= Pr(Li ) f
(
θ
Cali

∣∣∣ tei , Li

)

+[1 − Pr(Li )] fnew
(
θ
Cali

∣∣∣ tej
)

, (33)

where fnew(θ
Cali

∣∣ tej ) is the posterior distribution obtained
using Eq. (31) based on the observation data of the previous
segment [t Lj , tUj ].

When Pr(Li ) is very small (e.g., Pr(Li ) < 0.05), it means
that the posterior distribution f (θCali

∣∣ tei , Li ) is not useful at
all. Since Bayesian calibration is computationally expensive,
to save computational effort, we rewrite Eq. (33) as

fnew
(

θ
Cali

∣∣∣ tei
)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pr(Li ) f
(
θ
Cali

∣∣ tei , Li
)

+[1 − Pr(Li )]
fnew(θ

Cali
∣∣ tej ), if Pr(Li ) ≥ 0.05

fnew
(

θ
Cali

∣∣ tej
)

, otherwise .

(34)

A key step in implementing the adaptive Bayesian calibra-
tion method given in Eq. (34) is the computation of Pr(Li ).
However, estimatingPr(Li ) is very difficult given the fact that
the actual physics is unknown. L( tei

∣∣ θCali) is computed using
the PDF of the structure–material performance prediction at
tei ; since the PDF is the first derivative of the cumulative den-
sity function (CDF) of the prediction, we assume that the
PDF computation (and thus the likelihood computation) is
accurate if the CDF computation from the prediction model
is accurate. Based on this assumption, we have

Pr(Li ) ≈ Pr(Ci ), (35)

whereCi is the event that the CDF computation over segment
[t Li , tUi ] is accurate and Pr(·) is the probability operator.
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Equations (32) and (34) are then rewritten as

fnew
(
θ
Cali

∣∣∣ tei
)

= Pr(Ci ) f
(
θ
Cali

∣∣∣ tei , Ci

)

+[1 − Pr(Ci )] f (θCali), (36)

fnew
(

θ
Cali

∣∣∣ tei
)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pr(Ci ) f
(
θ
Cali

∣∣ tei , Li
)

+ [1 − Pr(Ci )]
fnew

(
θ
Cali

∣∣ tej
)

, if Pr(Ci ) ≥ 0.05

fnew
(

θ
Cali

∣∣ tej
)

, otherwise

.

(37)

Model validation can be employed to estimate Pr(Ci ). In
the following section, we discuss how to estimate Pr(Ci )

using model validation; then in Sect. 4.2.3 we discuss how
to implement the adaptive Bayesian calibration in detail.

4.2.2 Model validation for estimation of Pr(Ci )

Model validation is a process of quantifying the agreement
between the prediction model and experiment observations
for the intended use of the model [36,37]. Several model
validation metrics have been studied, include classical and
Bayesian hypothesis testing [38], reliability metric [37,39],
area metric [40], and others. Bayesian hypothesis testing
(BHT) and the reliability metric give the model validation
result as a probability measure, and thus are suitable for
implementing Eqs. (36) and (37); BHT is illustrated here.

In the BHT method, we check the plausibility of two
hypotheses: the null hypothesis (H0) and the alternative
hypothesis (H1). For given observation data tei , the likeli-
hood ratio of the two hypotheses, known as Bayes factor
(B), is computed as [37]

B = Pr
(
tei

∣∣ H0
)

Pr
(
tei

∣∣ H1
) , (38)

The Bayes factor is originally developed to compare the data
support for twomodels. It can be extended to assess the valid-
ity of a model (M) as follows

B = Pr
(
tei

∣∣ M is valid
)

Pr
(
tei

∣∣ M is not valid
) , (39)

To evaluate the accuracy of the CDF estimate over a certain
segment of the output quantity of interest (e.g., life interval in
the context of life prediction), Bayes factor has been further
extended by Zhang and Mahadevan as [16]

B(Ci ) = P
(
tei |H0 : Citrue = Ci

)
P

(
tei |H1 : Citrue �= Ci )

, (40)

where Citrue is the true CDF over [t Li , tUi ], and Ci is the
predicted CDF.

For nt independent experiments, with the CDF over
[t Li , tUi ] as Ci , if ki experiment data are observed in the
segment [t Li , tUi ], the probability of observing the data is
given by

P(ki ;Ci , nt ) =
(
nt
ki

)
Cki
i (1 − Ci )

nt−ki . (41)

If the CDF over [t Li , tUi ] is not Ci , it can be any value over
interval [0, 1]. The probability of observing the data is then
computed by

P(ki ;Citrue ∈ [0, 1], nt )
=

∫ 1

0

(
nt
ki

)
Cki
itrue(1 − Citrue)

nt−ki dCitrue

=
(
nt
ki

)
ki !(nt − ki )!

(nt + 1)! . (42)

Combining Eqs. (40)–(42), we have

B(Ci ) = P (te |H0 : Citrue = Ci )

P (te |H1 : Citrue �= Ci )

= Cki
i (1 − Ci )

nt−ki (nt + 1)!
ki !(nt − ki )! ,

= Cki
i (1 − Ci )

nt−ki (nt + 1)

(
nt
ki

)
. (43)

In Eqs. (40)–(43), Ci is computed based on the CDF of the
predictionmodel given in Fig. 2 by only considering aleatory
uncertainty as follows

Ci = FT
(
tUi

)
− FT

(
t Li

)
, (44)

where FT (t) is the CDF of the life distribution prediction
from the model.

As discussed in Sect. 3, we have epistemic uncertainty
sources θ

Cali present in the structure–material model. For
a given realization of the epistemic uncertainty sources
θ
Cali, Ci | θCali is given by

Ci | θCali = FT
(
tUi

)∣∣∣ θCali − FT
(
t Li

)∣∣∣ θCali, (45)

in which FT (tUi )
∣∣ θCali is the CDF of the life distribution by

fixing the epistemic uncertainty sources at θ
Cali and propa-

gating the aleatory uncertainty through the BN model.
The probability of observing ki experiment data in the

segment [t Li , tUi ] becomes
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P
(
H0 : CDF is accurate in interval

[
t Li , tUi

])

=
(
nt
ki

)∫
θCali

(
Cki
i

∣∣∣ θCali)

(1 − Ci | θCali)nt−ki dθ
Cali. (46)

The Bayes factor of the predicted CDF over [t Li , tUi ] after
considering epistemic uncertainty is given by

Bi = P
(
tei

∣∣H0 : CDF estimate is accurate in
[
t Li , tUi

] )
P

(
tei

∣∣H1 : CDF estimate is not accurate in
[
t Li , tUi

]) ,

=
∫

θCali

(
Cki
i

∣∣∣ θCali) (1 − Ci | θCali)nt−ki dθ
Cali

× (nt + 1)!
ki !(nt − ki )! . (47)

where Bi is the Bayes factor corresponding to the CDF esti-
mate over [t Li , tUi ] after considering epistemic uncertainty.

Note that in the above derivation of the Bayes factor,
only the number of observed experiment data in the segment
[t Li , tUi ] is used. Eq. (47) can therefore be rewritten as

Bi = P
(
ki experiment data observed in

[
t Li , tUi

] ∣∣H0 : CDF estimate is accurate in
[
t Li , tUi

] )
P

(
ki experiment data observed in

[
t Li , tUi

] ∣∣H1 : CDF estimate is not accurate in
[
t Li , tUi

]) ,

=
∫

θCali

(
Cki
i

∣∣∣ θCali) (1 − Ci | θCali)nt−ki dθ
Cali (nt + 1)!

ki !(nt − ki )! . (48)

Based on the above Bayes factor, the posterior distribu-
tion of P(H0 : CDF estimate is accurate in [t Li , tUi ]|ki
experiment data observed in [t Li , tUi ]) can be computed as
[41]

P
(
H0 : CDF estimate is accurate in

[
t Li , tUi

] ∣∣∣
ki experiment data observed in

[
t Li , tUi

])
= Bi

Bi + 1
.

(49)

Note that the above expression is obtained based on equal
prior probabilities of 0.5 for H0 and H1 (i.e., no prior informa-
tion regarding model validity). We then approximate Pr(Ci )

as

Pr (Ci | ki ) ≈ P
(
H0 : CDF estimate is accurate in

[
t Li , tUi

] ∣∣∣
ki experiment data observed in

[
t Li , tUi

])
. (50)

The above approximation may not be accurate since the
probability that the CDF estimate is accurate in [t Li , tUi ] only
provides an overall evaluation of the CDF accuracy in that
interval. If the number of experimental data is large enough,

we are able to obtain a better approximation based on other
validation methods, such as the area metric method which
compares the CDF curves directly. How to further improve
the accuracy of the approximation given in Eq. (49) is worth
studying in future research.

Substituting Eq. (50) into Eq. (36) and (37), we have

fnew
(
θ
Cali

∣∣∣ tei
)

= Pr(Ci | ki ) f
(
θ
Cali

∣∣∣ tei , Ci

)

+[1 − Pr(Ci | ki )] f (θCali), (51)

fnew
(

θ
Cali

∣∣∣ tei
)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pr (Ci | ki ) f
(
θ
Cali

∣∣ tei , Ci
)

+[1 − Pr (Ci | ki )]
fnew

(
θ
Cali

∣∣ tej
)

, if Pr (Ci | ki ) ≥ 0.05

fnew
(

θ
Cali

∣∣ tej
)

, otherwise

,

(52)

where Pr(Ci | ki ) is the probability that the CDF estimate is
accurate given that experiment data are observed in [t Li , tUi ].

Next, we discuss how to implement the proposed inte-
grated Bayesian calibration method based on the discussions
given in Sects. 4.2.1 and 4.2.2.

4.2.3 Implementation procedure

Suppose nt observations are collected and denoted as te =
[te1 , te2 , . . . , tent ]. As discussed in Sect. 4.2.1, we first dis-
cretize the response prediction domain into NT segments
as [t Li , tUi ], i = 1, 2, . . . , NT . For each segment, we
perform the integrated Bayesian calibration using obser-
vation data tei , i = 1, 2, . . . , NT . As mentioned in
Sect. 4.2.1, the posterior distributions obtained from one
segment can be used as the prior distributions of another
segment. If the accuracy of the likelihood function is not
considered in Bayesian calibration, the sequence of calibra-
tionsmay not be very important.However,when the accuracy
of the likelihood function is included in the Bayesian cali-
bration (i.e., the adaptive Bayesian calibration method), the
accuracy of the estimated Pr(Ci ) will be affected by the
epistemic uncertainty sources as shown in Eq. (48). The
accuracy of Pr(Ci ) will then affect the accuracy of Bayesian
calibration results. To minimize the effect of the epistemic
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Table 1 Pseudo code of the adaptive Bayesian calibration method

Step Description
1 Discretize the observation data domain into TN segments, [ , ]L U

i it t , 1, 2, , Ti N= .

2 Denote the observation data belong to [ , ]L U
i it t as e

it , 1, 2, , Ti N= .

3 Set new
T TN N= .

4 For i=1: TN

5

Compute the Bayes factor of each segment based on the prior distribution of Caliθ
and the aleatory uncertainty information using the BN given in Fig. 2, the method 
presented in Sec. 4.2.2, and Eq. (48). Denote the obtained Bayes factor as 

, 1, 2, , new
i TB i N= .

6 Identify the segment with the highest Bayes factor by max
1, 2, ,

arg max { }
new
T

i
i N

i B
=

=

7
Perform Bayesian calibration using the Eqs. (15)-(18) and observation data 

max

e
it and 

obtain the posterior samples of 
max max

( , )Cali e
i if Cθ t . 

8 Compute Pr( )i iC k using Eqs. (49) and (50) and 
maxiB . 

9
Obtain the samples of ( )Cali e

new if θ t using weighted sampling method based on the 

samples of 
max max

( , )Cali e
i if Cθ t , the prior distribution samples, and Eqs. (51) and (52).

10 Update the prior distributions of Caliθ as ( )Cali e
new if θ t .

11 Remove e
it from the observation data and remove segment

max max
[ , ]L U

i it t .

12 1new new
T TN N= − .

13 End
14 Obtain the posterior distribution Caliθ from the adaptive Bayesian calibration method.

uncertainty on the estimation of Pr(Ci ), we first perform
the adaptive Bayesian calibration for the segment with the
highest Bayes factor, which gives the highest credibility in
the estimation of Pr(Ci ). After the epistemic uncertainty is
reduced, we perform the adaptive Bayesian calibration again
for a new segment with the highest Bayes factor among the
remaining intervals. This process continues until all the seg-
ments that have Bayes factor above the desired threshold are
included.

In Table 1, we provide a pseudo code of the adaptive
Bayesian calibration method.

From the implementation procedure presented in Table 1,
it can be found that the Bayes factors are updated adap-
tively over the iterations and the Bayesian calibration is
performed adaptively. By implementing the proposed adap-
tiveBayesian calibrationmethod,we can achieve the purpose
of uncertainty reduction of the structure–material perfor-
mance prediction model while also maximizing the accuracy
of calibration. Next, we will use the composite rotor-
craft hub component example to illustrate the proposed
framework.

5 Composite rotorcraft hub component life
prediction

5.1 Structure–material model

A composite rotorcraft hub component shown in Fig. 5 is
used to illustrate the proposed framework. The rotorcraft hub
is made of a laminated composite to reduce weight, drag, and
number of parts [42]. The rotor hub yoke is subjected to axial
tensile load caused by the rotation of the rotor, and a cyclic
bending load as a result of the interaction of the rotor passage
with the fuselage or other static structures and aerodynamic
gust loads. During flight, the hub could fail due to delamina-
tion between individual plies at the thick-to-taper transition
resin pocket caused by fatigue due to centrifugal and bend-
ing loads. To estimate the fatigue life of the component, a
structure–material performance assessment model is devel-
oped [42].

As depicted in Fig. 6, during the analysis, a constant axial
load (Ph) is applied at the end of the component to simu-
late the constant centrifugal load. A cyclic load (Pv) is also
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Fig. 5 Half of the symmetric
section of tapered composite
component [43]

taper thinthick

Continuous 
belt plies

Resin pocket

Discontinuous 
plies

Bottom 
grip

hP

vP

pθ

Fig. 6 Illustration of the load condition of the component

applied to the component,which induces an angular displace-
ment, simulating the flexural bending in the yoke [42]. The
angle between the axial load and the cyclic load is θp. Due to
the combined axial and cyclic load, the component may fail
due to delamination at the thick to taper transition caused by
an initial tension crack at the internal ply drop-offs.

It is assumed that delamination onset occurs when the
strain energy release rate Ge exceeds a critical value Gcrit ,
which is derived from material coupon delamination tests
[42,44]. A 2D ABAQUS structural analysis model for the
helicopter rotor hub is first built to assess the fatigue delam-
ination using the virtual crack closure technique (VCCT) as
shown in Fig. 7. We first construct a finite element anal-
ysis (FEA) model for hub specimen (as shown in Fig. 7a,
b). We then compute the strain energy release rate associ-
ated with the fatigue delamination of the component under
given geometry, material property, and loads using VCCT.
Figure 7c shows the stress contour of the analysis result. Fig-
ure 8 gives the results of strain energy release rate. The finite
element mesh is refined around the crack tip to accurately
compute the energy release rate.

Based on the composite material coupon delamination
testing, an empirical material damage model is developed
to estimate the relationship between the fatigue life and Ge

as follows [42]

Ge = AG − BG log10(NF ), (53)

whereGe is the critical energy release rate, NF is the number
of load cycles, and AG and BG are two parameters estimated
based on experimental data.

Due to the uncertainty in the experimental data, AG and
BG are estimated as AG ∼ N (439.3, 252) and BG ∼
N (56.48, 32), where N (μ, σ 2) represents a normal distri-
bution with mean μ and standard deviation σ . There are also
other sources of uncertainty present in the above structure–
material life prediction model. Next, we aggregate these
uncertainty sources into the uncertainty of the fatigue life.

5.2 Uncertainty aggregation

Before performing uncertainty aggregation, we model the
various sources of uncertainty using the method presented
in Sect. 3.1. Based on collected data, we model aleatory
variables Pl and θp as normal distributions and we have
Ph = Pl sin(θP ) and Pv = Pl cos(θP ). Due to limited data,
we have epistemic uncertainty regarding the standard devi-
ations of Pl and θp. Since the finite element model is used
predict Ge, we also have model discrepancy of Ge. In the
KOH framework, we usually model the discrepancy term
as a Gaussian process (GP) model which is a function of
input variables. In a GP model, the model discrepancy term
is model by

δG(x) = h(x)Tυ + ε(x), (54)

where υ is a vector of unknown coefficients, h(x) is a vector
of regression functions,h(x)Tυ is the trend of prediction, and
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Fig. 7 Simulation of a
laminated composite rotorcraft
hub component. a FEA model of
laminated composite rotorcraft
hub component, b refined mesh
and c stress contour

Fig. 8 Result of energy release rate obtained from ABAQUS simulation

ε(x) is assumed to be a Gaussian process with zero mean and
covariance Cov[ε(xi ), ε(x j )].

The covariance between two points xi and x j is given by

Cov[ε(xi ), ε(x j )] = σ 2
ε R(xi , x j ), (55)

where R(xi , x j ) is the correlation function and σ 2
ε is the

variance of ε(x).
Ling et al. [14] investigated different options for the

stochastic second term in Eq. (54), such as constant, normal
distribution, input-dependent normal distribution, stationary
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Gaussian process, and non-stationaryGaussian process. (The
more sophisticated options were found to reduce the bias
but increase the variance in the calibration posteriors; how-
ever, in prediction, the performance of the different options
depended on the difference between the calibration and pre-
diction configurations. The adaptive calibration method in
Sect. 4 addresses this issue). In this example, for the sake of
illustration, we model the discrepancy term as

δG = 0.5Pl + 1.2θp + 0.07Pθp + εG , (56)

using a linear trend function with an interaction term, and
the stochastic term is modeled simply as a normal variable,
i.e., εG ∼ N (0, σ 2

δ ). To account for the error of the assumed
discrepancy term,wehaveuncertainty inσδ ,which is updated
using calibration data. The coefficients of the trend function
may also be uncertain and calibrated using observation data;

Table 2 Various sources of uncertainty in the composite rotorcraft hub
problem

Variable Parameter 1 Parameter 2 Distribution type

E11 (Msi) 6.7 0.1 Normal

Pl (kips) 27 σp Normal

θp(
◦) 10 σθp Normal

σp (kips) 3.5 6 Uniform

σθp (
◦) 1 1.2 Uniform

σδ 4 7 Uniform

AG 439.3 25 Normal

BG 56.48 3 Normal

εobs (cycles) 0 20 Normal

however, for simplicity, we assume that these coefficients are
known constants from previous knowledge.

In addition to the uncertainty sources in the model and
the model inputs, we also assume aleatory uncertainty in
the material property E11 and the observation error εobs.
Table 2 summarizes various sources of aleatory and epis-
temic uncertainty in this problem. In this table, “parameter
1” and “parameter 2” denote themean and standard deviation
for a normal distribution, and the lower and upper bounds for
a uniform distribution.

Since the finite element analysis model is computationally
expensive for uncertainty aggregation, we build a surrogate
model for the critical energy release rate using the Kriging
surrogatemodelingmethod [45]. Due to the surrogatemodel,
surrogate model uncertainty is also introduced in the predic-
tion. For given fixed inputs, the surrogate model prediction
is a random variable modeled as a normal distribution. Based
on that, we connect various sources of uncertainty, the struc-
tural analysis model, the material damage model using the
BN method discussed in Sect. 3.2. Figure 9 shows the con-
structed BN for the composite rotorcraft hub example.

We then perform uncertainty aggregation using the BN
and the uncertainty information given in Table 2. Figure 10
shows the comparison of fatigue life distribution of the
rotorcraft hub obtained by only considering the aleatory
uncertainty sources and by aggregating all the uncertainty
sources in Table 2. It shows that the uncertainty in the pre-
diction will be increase after considering both aleatory and
epistemic uncertainty.

Nextwe perform global sensitivity analysis to quantify the
contributions of different aleatory and epistemic uncertainty
sources towards the uncertainty in the life prediction. Table 3

Fig. 9 Bayesian network for
the fatigue life prediction model
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Fig. 10 Fatigue life distribution obtained fromuncertainty aggregation

gives the first-order Sobol indices for the uncertainty sources.
The results show that the aleatory uncertainty sources Pl
and θp make the highest contribution. Among the epistemic
uncertainty sources,σp and Pl make the highest contributions
to the life prediction uncertainty.

Next,wewill illustrate how to reduce the uncertainty in the
epistemic uncertainty sources when fatigue life observations
are available.

5.3 Uncertainty reduction

Based on the BN given in Fig. 9, we can perform uncertainty
reduction when observations of fatigue life are available. In
order to verify the effectiveness of the proposed adaptive
Bayesian calibration method, we generate synthetic data for
fatigue life observations using the structure–material life pre-

diction model. Based on the fatigue life data, we divide the
life domain log10(T ) into nine segments: [1.5, 2], [2, 2.5],
[2.5, 3], [3, 3.5], [3.5, 4], [4, 4.5], [4.5, 5], [5, 5.5], [5.5, 6].
25 observations are generated from the structure–material
life prediction model by fixing the epistemic uncertainty at
assumed true values. After that, we add five random obser-
vations in the life intervals [1.5, 2] and [5.5, 6]. By doing so,
we induce statistical bias in these two life intervals between
the prediction model and the model used to generate the syn-
thetic data. But during the analysis, we assume that we do not
know whether the models have bias in these regions. Table 4
gives the Bayes factor update history during the iterations.
There are totally eight iterations. After the eighth iteration
the Bayes factors for intervals [1.5, 2] and [5.5, 6] are very
low; this is as expected since we generated biased data for
these two intervals. The maximum Bayes factor of each iter-
ation is also highlighted in Table 4 using bold font. Note
that the number of Bayes factors decreases over iterations
because each life interval is removed from the validation
analysis after it is used for calibration (Step 14 of Table 1).
The results show that the proposed method is able to effec-
tively identify the life intervals where the calibration model
is poor (i.e., low Bayes factors). The low prediction quality
of the model in intervals 1 and 9 synthetically introduced in
this example is reflective of common observations in crack
growth experiments, where noisy data is observed in short
crack and unstable long crack regimes, at the ends of the
Paris regime. In such regimes, simply collecting more test
data or adding model discrepancy during calibration may
not be enough; substantial refinement in physics modeling
may be needed to achieve satisfactory prediction accuracy.

Figure 11 compares the posterior distributions obtained
from direct Bayesian calibration and the proposed adaptive
Bayesian calibration method. The direct Bayesian calibra-
tion method simply performs Bayesian calibration with all
the data at once, without considering the accuracy of likeli-

Table 3 First-order Sobol
indices of uncertainty sources
(before uncertainty reduction)

Variable σp σθp σδ AG BG E11 Pl θp εG εobs

SIi 0.233 0.032 0.01 0.09 0.1702 0.018 0.591 0.253 0.011 0.02

Table 4 Update history of the
Bayes factor over iterations

Iteration B1 B2 B3 B4 B5 B6 B7 B8 B9

1 0.074 4.05 6.69 4.62 5.86 6.99 4.09 10.77 0.33

2 0.004 7.92 7.63 3.17 5.70 6.31 1.33 – 1.39

3 0.03 – 6.95 4.29 6.05 6.96 2.89 – 0.47

4 0.002 – 7.62 3.30 5.24 – 1.15 – 1.23

5 0.045 – – 4.92 5.36 – 3.85 – 0.18

6 0.013 – – 5.13 – – 3.43 – 0.09

7 0.015 – – – – – 5.67 – 0.01

8 0.01 – – – – – – – 0.016
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Fig. 11 Comparison of posterior distributions obtained from different methods

hood function. The results in Fig. 11 indicate that both direct
calibration and the proposed adaptive calibration can reduce
the uncertainty of the epistemic parameters. However, the

proposed method can not only reduce the epistemic uncer-
tainty, but also maximize the accuracy of the calibration,
which is indicated by closer maximum a posteriori (MAP)
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Table 5 First order Sobol
indices of uncertainty sources
(after uncertainty reduction)

Variable σp σθp σδ AG BG E11 Pl θp εG εobs

SIi 0.218 0.053 0.003 0.045 0.052 0.035 0.612 0.278 0.012 0.03
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Fig. 12 Comparisons of predictions after uncertainty reduction

estimates to the true values. This demonstrates the effective-
ness of the proposedmethod. After the uncertainty reduction,
we perform global sensitivity analysis again. Table 5 gives
the first order Sobol indices of the uncertainty sources after
uncertainty reduction. It shows that the sensitivities of the
epistemic uncertainty sources are reduced after uncertainty
reduction. As a result, the contributions of aleatory uncer-
tainty sources are found to be higher.

5.4 Prediction after uncertainty reduction

After the uncertainty in the calibration parameters is reduced
using either direct Bayesian calibration or the proposed
adaptive Bayesian calibration, we can perform structure–
material performance prediction. In the calibration scenario,
we assume that the mean value of the load Pl is 27 kips,
whereas in the prediction scenario we assume themean value
of Pl as 35 kips. (Note that in this example, we can carry
the discrepancy term to the prediction, since only the load
value has changed and the discrepancy term is a function
of the input. However, if the prediction structure—defined
by geometry, material, loading configuration, and boundary
conditions—were different from the experimental setup used
for calibration, then we would not be able to carry the dis-
crepancy term to the prediction. The integration calibration
approach of Eq. (32) partially alleviates this problem, since
themodel validation result which is ameasure of discrepancy
in the calibration model is carried to the prediction through
the integrated posterior; however, we still do not know the
discrepancy in the prediction model).

Figure 12 shows the comparison of the predicted life
distributions. The results show that compared with the life
distribution without uncertainty reduction, the prediction
uncertainty is increased with the direct calibration posterior
whereas the prediction uncertainty is reduced with the adap-
tive calibration posterior. More importantly, the predicted
distribution with the adaptive calibration posterior is closer
to the true life distribution, which demonstrates the effective-
ness of the proposed adaptive Bayesian calibration method.

In summary, the results of the composite rotorcraft hub
example demonstrate that the proposed adaptive method that
integrates calibration and validation can reduce both the
uncertainty and the bias in calibration and prediction.

6 Conclusion

Structural and material models are often combined to predict
the performance of the structure–material system. Various
sources of uncertainty such as data uncertainty, model uncer-
tainty, and natural variability are present in both types of
models. To quantify the effects of various sources of uncer-
tainty on the prediction QOI, this paper first developed
a Bayesian network approach for uncertainty aggregation.
Contributions of different types of uncertainty sources on
the uncertainty of QOI are analyzed based on global sensitiv-
ity analysis with the Bayesian network. When experimental
observations of QOI are available, the uncertainty regarding
the epistemic sources (model parameters, distribution param-
eters ofmodel inputs, andmodel discrepancy) can be reduced
through Bayesian updating. However, the Bayesian updat-
ing may introduce errors when the calibration model cannot
accurately represent the actual physics of the experiment. To
overcome this challenge, this paper proposes an iterative inte-
grated approach, where the accuracy of the prediction model
is incorporated within the updating procedure. The observa-
tion data on QOI is divided into segments, and the segments
are selected adaptively to reduce the uncertainty based on
Bayesian calibration and model validation. The results of a
composite rotorcraft hub component show that the proposed
framework can effectively perform uncertainty aggregation
and uncertainty reduction by making optimal use of the data
to maximize the accuracy in the result.

Although a structure–material life prediction model is
used in this paper for illustration, the proposed uncertainty
aggregation and uncertainty reduction framework is not lim-
ited to this type of problems. It is a general approach that
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can be applied to other prediction models where uncertainty
sources are present. Extension of the proposed integrated
Bayesian calibrationmethod tomulti-level andmulti-physics
models can be investigated in future work. Another interest-
ing and useful direction of research is test resource allocation,
i.e., finding the optimum number of tests and designing their
settings (test design) in order to collect the most valuable
data for uncertainty reduction. Previouswork in this direction
has considered only direct Bayesian calibration [15,33]; the
incorporation of the proposed adaptive calibration approach
within test resource allocation can be studied in the future.
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