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R2-RRT*: Reliability-Based Robust Mission
Planning of Off-Road Autonomous Ground Vehicle

Under Uncertain Terrain Environment
Chen Jiang , Zhen Hu , Zissimos P. Mourelatos, David Gorsich, Paramsothy Jayakumar,

Yan Fu, and Monica Majcher

Abstract— This article presents a reliable and robust rapidly
exploring random tree (R2-RRT*) algorithm to tackle challenges
in mission planning of off-road autonomous ground vehicles
(AGVs) under uncertain terrain environment. Two types of
mobility reliability metrics, namely state mobility reliability
(SMR) and mission mobility reliability (MMR), are first defined
to quantify the mobility reliability of an AGV and to incorporate
mobility reliability into mission planning. SMR measures the
probability that a vehicle can pass through a specific location on
a map of interest, whereas MMR quantifies mobility reliability
of a mission path with the consideration of dependence of soil
properties and slope over space. Based on the defined SMR
and MMR metrics, two reliability-based robust mission planning
models are developed to identify optimal paths that have robust
travel time and satisfy specific reliability requirements. Moreover,
a reliability-based path smoothing algorithm is developed to
address the suboptimality of R2-RRT*. Results of a case study
demonstrate the efficacy of the proposed models and algorithms.

Note to Practitioners—This article was motivated to explicitly
account for the uncertain terrain environment in mission plan-
ning of off-road autonomous ground vehicles (AGVs). Existing
approaches, e.g., RRT and its variants, in general, oversimplify
the uncertainty sources and overlook the reliability of vehicle
mobility. These simplifications could lead to failure (i.e., immobil-
ity) of off-road AGVs on the obtained paths. This article suggests
a reliability-based mission planning model by incorporating
the proposed SMR and MMR metrics into mission planning
considering the spatial-dependent uncertainty sources. To identify
a reliable and robust path, we extend RRT* to R2-RRT*
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that achieves a tradeoff between mission cost and reliability.
The proposed reliability-based mission planning model, however,
is not limited to RRT* and can also be integrated with other path
planning algorithms. It can be also applied to other unmanned
vehicles and robots, such as the motion planning of unmanned
aerial vehicles (UAVs) in adverse weather conditions.

Index Terms— Mission mobility reliability (MMR), off-road
autonomous ground vehicle (AGV), rapidly exploring random
tree (RRT*), reliability-based mission planning, uncertain terrain
environment.

I. INTRODUCTION

M ISSION planning has attracted much attention in the
field of autonomous vehicles, unmanned aerial vehicles

(UAVs), and robotics [1], [2]. It plays a vital role in ensuring
that the off-road autonomous ground vehicles (AGVs) can
accomplish a mission while meeting certain requirements, such
as travel time, fuel consumption, and/or risk.

Identifying a high-quality mission is a complicated task that
requires a combination of various techniques, such as com-
puter vision, vehicle mobility simulation, and optimization.
In this article, it is assumed that the target map and associated
terrain information are well characterized by satellite images
and geographical surveys (see Fig. 1). The mission quality
is then mainly affected by two phases: 1) mobility-analysis
phase that predicts the capability of an off-road AGV passing
specific off-road locations and 2) mission-planning phase
that identifies an optimal path based on mobility analysis.
The off-road vehicle mobility simulation model is usually
employed in the mobility-analysis phase to map the envi-
ronmental variables, such as soil properties, into the vehicle
mobility, e.g., vehicle maximum attainable speed. Various sim-
ulation models, such as the NATO reference mobility model
(NRMM) [3], the next-generation NRMM (NG-NRMM) [4],
and the others [5], [6], have been developed for mobility
prediction under off-road conditions. In the mission-planning
phase, many algorithms, including the graph search methods
(e.g., A* algorithm [7]), sampling-based methods [8]–[10], and
trajectory/heuristic optimization methods [2], [11], have been
proposed to find a feasible mission path.

Despite progress in both two phases, mission planning of
off-road AGVs remains a challenge due to the presence of
heterogeneous uncertainty sources in extreme environments,
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such as vehicle parameter uncertainty and the inherent natural
variability in off-road conditions [12]. Ignoring the effects
of these uncertainty sources could put the off-road AGVs
at risk and lead to the failure of a mission. For instance,
due to the complexity and inherent uncertainty in the soil
properties, the off-road AGVs may get stuck if the soil is too
weak as shown in the video of NG-NRMM [13]. Incorporating
mobility reliability into the mission planning under uncertain
terrain environments is essential to guarantee the success of a
mission and is highly desirable in the development of an NG-
NRMM. To develop the capability of reliability-based mission
planning, two research questions must be answered: 1) how to
quantify the effects of uncertainty sources on vehicle mobility
prediction and 2) how to perform mission planning under
uncertainty.

In order to answer the first research question, different
methods have been proposed in recent years. For example,
Gonzalez et al. [14], [15] proposed geostatistical approaches
to perform mobility prediction over very large spatial regions
by considering uncertainty in terrain elevation. Choi et al.
[16] employed a dynamic Kriging surrogate model to effi-
ciently propagate uncertainty in slope and soil maps to vehicle
mobility. However, the current methods only considered the
uncertainty in mobility prediction at a given location and
overlooked the dependence of soil properties over space [17].
Moreover, current approaches cannot directly quantify the
effects of uncertainty sources on the end goal of mission
planning.

To address the second research question, many sampling-
based planners have been proposed in recent years [8]. For
instance, a particle rapidly exploring random tree (RRT)
method has been developed to generate robust paths for micro
aerial vehicles [18]–[20]. A rapidly exploring random belief
tree was proposed to predict a distribution over trajectories for
candidate nominal paths with the consideration of state uncer-
tainty [21]. A feedback-based information roadmap framework
that considers both motion and sensing uncertainties was
proposed by generalizing the probabilistic roadmap method
[22], [23]. In addition, the mission risk evaluation under
extreme weather was embedded into the 3-D receding horizon
field D* searching algorithm to find the optimal fly route
for UAVs [24]. Sun et al. [25] proposed an optimization-
based motion planner for aerial robots by modeling the motion
uncertainty as Gaussian distributions [26], [27]. The majority
of aforementioned algorithms, however, focus on replanning
when the planner thinks that there is uncertainty or error in
the measurement of work space or vehicle location, which
usually stems from sensor errors, imprecise actuators, and
noise [8], [28]–[30]. More importantly, even though current
methods quantified the uncertainty in a probabilistic manner,
they ignored the spatial dependence of uncertainty sources,
which could lead to a high risk of failures. A holistic mission
planning approach that accounts for uncertainty sources from
mobility prediction to the final mission planning is indis-
pensable to guarantee the reliability of off-road AGVs under
uncertain environments.

In this article, we incorporate the spatial-dependent uncer-
tainty in the off-road environment into both mobility-analysis

phase and mission-planning phase. To this end, we first
represent the uncertainties in the slope and soil properties by
Gaussian random fields and generate the random realizations
of stochastic mobility maps. The effect of the dependence
of slope and soil properties over space on a given mission
is quantified by mission mobility reliability (MMR), which
measures the probability that a vehicle is able to successfully
accomplish a certain path without immobility. Subsequently,
an MMR-based mission planning model is proposed and
implemented through the proposed reliable and robust RRT*
(R2-RRT*) algorithm. In addition, a state mobility reliability
(SMR)-based mission planning model is investigated and com-
pared with: 1) the proposed MMR-based mission planning and
2) deterministic mission planning, to demonstrate the efficacy
of the proposed method. The proposed R2-RRT* algorithm is
able to: 1) quantitatively quantify the effects of uncertain slope
and soil properties on mission planning through reliability
metrics and 2) identify optimal routes that satisfy specific
MMR requirement to achieve an acceptable tradeoff between
the time cost (or fuel consumption) and reliability of a mission.

The remainder of this article is organized as follows.
Section II introduces the deterministic mission planning of
off-road AGVs. Section III proposes two reliability metrics
and two reliability-based mission planning models. Section IV
introduces the proposed R2-RRT* algorithms. Two case stud-
ies are used to demonstrate the proposed algorithms in
Section V, followed by conclusions in Section VI.

II. DETERMINISTIC MISSION PLANNING OF OFF-ROAD

AUTONOMOUS GROUND VEHICLE

In this section, we briefly introduce the NG-NRMM and the
deterministic mission planning of off-road AGVs.

A. Next-Generation NATO Reference Mobility Model

Fig. 1 presents an overview of the NG-NRMM for mobility
prediction of off-road AGVs [4]. As shown in Fig. 1(a), it starts
with a target satellite map taken from the ARCGIS/ENVI
database [37] and the US Geological Survey database [38],
[39]. Let the spatial coordinates in a map of interest �x be
x = [x1, x2] ∈ R

2, where x1 and x2 are, respectively, the spatial
coordinates in directions 1 and 2. In Fig. 1(b), for a given x ∈
�x, the slope Y1(x) and soil-related environment parameters
are identified from the target map through image processing
techniques. The soil parameters include the cohesive strength
Y2(x), the friction coefficient Y3(x), and the bulk density Y4(x).
The slope and soil-related parameters and the vehicle-related
parameters W are then fed into a physics-based modeling &
simulation [i.e., Fig. 1(c)] to predict the vehicle mobility at x
as

V (x) = G(W,Y(x)) (1)

where W ∈ R
1×n is the vector of vehicle parameters,

Y = [Y1(x), Y2(x), . . . , Ym(x)] ∈ R
1×m is a vector

of slope/soil properties that are functions of x, and V (x)
represents the vehicle mobility, e.g., the maximum attainable
speed in this article. G(·, ·) denotes the NG-NRMM, and
the aforementioned mobility models, such as NRMM [3]

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on January 24,2021 at 02:22:02 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: R2-RRT*: RELIABILITY-BASED ROBUST MISSION PLANNING 3

Fig. 1. Illustration of mobility prediction using NG-NRMM. The target map and associated terrain information are characterized from (a) satellite image,
including (b) slope-/soil-related environment parameters. The environment parameters and vehicle-related parameters are fed into (c) physics-based modeling
and simulation to generate (d) speed-made-good map and (e) GO/NO-GO map.

and Bekker’s derived shterramechanics model (BDTM) [4],
can be also employed. A more detailed introduction of NG-
NRMM is available at [13]. With vehicle mobility quantified
in each spatial coordinate of target map, as indicated in
Fig. 1(d) and (e), a speed-made-good map and a GO/NO-GO
map can be generated.

Note that, for the sake of explanation, Y(x) in (1) contains
both slope-related and soil-related variables. Since vehicle
parameters W depend on vehicle types, this article focuses
on only soil/slope-related variables. The proposed approaches,
however, can be easily extended to include vehicle parameters.

B. Mission Planning-Based on NG-NRMM

After obtaining the GO/NO-GO mobility map in Fig. 1(e),
which is also called configuration/work space, the map of
interest is represented as �x = χfree ∪ χobs, where χfree and
χobs are, respectively, the free space and obstacle space, which
are defined by

χfree = {x ∈ �x|V (x) ≥ Vlimit } (2)

and

χobs = {x ∈ �x|V (x) < Vlimit } (3)

in which Vlimit is a minimum speed threshold to maintain the
vehicle mobility. If the vehicle speed at a location is less than
Vlimit, the vehicle will get stuck at that location. Note that
Vlimit will be one of the mission requirements if the mission
task must be accomplished within a certain time. This work
is only concerned with whether a vehicle will get stuck on a
route.

The deterministic mission planning model is then formu-
lated as

ψ∗ = arg min
ψ∈�x

C(ψ)

s.t. ψ(t0) = xinit, ψ(te) ∈ χgoal

ψ(ti ) ∈ χfree, ti ∈ [t0, te]
χgoal =

{
x ∈ χfree

∣∣∥∥x − xgoal

∥∥ � ε
}

χfree = {x ∈ �x|V (x) � Vlimit } (4)

where ψ denotes a possible mission path on a map of interest
�x, xinit and xgoal are, respectively, the initial and target
coordinates of a mission, ψ(t0) and ψ(te) are, respectively,
the first and last element of the coordinate set ψ ⊂ �x, ψ(ti )
is the element on path ψ at ti , χgoal denotes the goal region,
ε is a small constant to define the size of goal region, χfree

denotes the travel-free space, and C(ψ) is a cost function as

C(ψ) =
te∑

ti=t0

1

V (ψ(ti ))
(5)

where V (ψ(ti )), ∀ti ∈ [t0, te] is the maximum attainable
speed at the ψ(ti )th element on the mission path ψ , which
is predicted using the mobility M&S model given in (1).

Given a target map, xinit, and xgoal, an obstacle-free path can
be identified in the work space using path planning algorithms.
In this article, RRT* [31] is adopted and is compared with the
proposed reliability-based mission planning algorithms. It is
worth noting that the deterministic mission planning ignores
the effects of uncertain slope-/soil-related environment para-
meters on mobility prediction, which could lead to catastrophic
consequences due to the immobility of off-road AGVs on the
battlefield.

III. RELIABILITY-BASED MISSION PLANNING

OF OFF-ROAD AGVS

In this section, we first discuss how to propagate the
uncertainty of slope-/soil-related environment parameters to
vehicle mobility. Following that, we present the proposed
SMR-based and MMR-based mission planning models.

A. Uncertainty in Off-Road Vehicle Mobility Prediction

For given x ∈ �x, a slope/soil ID can be identified
from the slope/soil map. As shown in Fig. 2, an ID matrix
[i.e., Fig. 2(b)] with different IDs representing different
slope/soil types is identified from a map of interest [Fig. 2(a)].
Each ID denotes a type of slope/soil, such as sand, grass,
and sandstone. Moreover, each slope ID (i.e., each type of
slope) is associated with a slope property Y1(x), and each soil
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Fig. 2. Uncertainty in the slope-/soil-related environment parameters. (a) Slope/soil map is transformed into (b) slope/soil ID matrix by classifying the
slope/soil parameters into several ID types. Each slope ID matrix is associated with one slope property matrix, while each soil ID matrix is associated with
three soil property matrices. (c) Random realizations of each property are simulated by KL expansion method (see Fig. 3), and each element of the property
matrix is (d) random variable.

ID is associated with three different soil properties, i.e., the
cohesive strength Y2(x), the friction coefficient Y3(x), and the
bulk density Y4(x), as illustrated in Fig. 1(b). Consequently,
there are two ID matrices and four property matrices.

The slope and soil properties vary both over space and
for a given location due to a lack of knowledge and natural
variability. Moreover, the variability of each property at one
location is affected by those at other locations attributed to
geostatistical dependencies over space. To account for the
dependence of slope/soil properties, the property matrix cor-
responding to the slope or soil ID matrix can be, respectively,
simulated as random fields with many random realizations.
Fig. 2(c) shows random realizations obtained from Karhunen–
Loève (KL) expansion of one property, as detailed in Fig. 3 and
the Appendix. Each element of the property matrix (i.e., at a
particular location) is a random variable [see Fig. 2(d)]. Details
about the random field modeling are given in the following.

The identified slope or soil ID at a certain coordinate x
is represented as α(x) or β(x), respectively. Uncertainty of
slope/soil properties Yi (x), i = 1, . . . ,m at that coordinate
is described as a random variable with cumulative density
function (CDF) given by

FYi (y) = Pr{Yi � y} =
∫ y

−∞
fYi (υ, θ(ζ(x)))dυ (6)

in which FYi (y) is the CDF of Yi (x), Pr{·} is a probability oper-
ator, and fYi (υ, θ(ζ(x))) is the probability density function
(pdf) of Yi (x) with distribution parameters θ(ζ(x)) (e.g., mean
and variance) governed by ζ(x), which means that θ(ζ(x))
varies with slope/soil IDs. ζ(x) = α(x) if Yi (x) is a slope-
related variable (e.g., Y1(x)), and ζ(x) = β(x) if Yi (x) is a
soil-related variable [e.g., Y2(x), Y3(x), or Y4(x)]. To account
for the dependence of slope/soil properties over space, Yi (x)
are further described as random fields.

Since there are multiple slope or soil types on a map of
interest �x, each Yi (x) ∀x ∈ ψ consists of multiple random
fields. To address this challenge in the simulation of the slope-
/soil-related random fields, we first partition �x into different
subsets according to the slope/soil IDs. Taking the slope
parameter as example, the coordinates x(p)

slope corresponding to
the pth slope ID shown in Fig. 3(a) and (b) are identified as

x(p)
slope = {x : where α(x) = p, ∀x ∈ �x} (7)

where α(x) is the slope ID at location x in the slope map,
p = 1, . . . , Nslope, Nslope is the number of slope types, and we

have {
x(1)slope ∪ · · · ∪ x

(Nslope)

slope

}
= �x. (8)

Similarly, the coordinates of the qth soil ID are identified as

x(q)soil = {x : where β(x) = q , ∀x ∈ �x} (9)

where β(x) is the soil ID at the location x in the soil map,
q = 1, . . . , Nsoil, Nsoil is the number of soil types, and
{x(1)soil ∪ · · · ∪ x(Nsoil)

soil } = �x.
After the partition, the slope/soil property corresponding to

a certain slope/soil ID is simulated using the KL expansion
method (as detailed in the Appendix) [32]. The KL expansion
uses the best possible linear combination of orthogonal basis
functions that minimize the mean squared error. The basis
functions are determined by the covariance function (i.e.,
spatial dependence) of random fields, and the coefficients of
basis functions are random variables [32]. Even though the
Gaussian random fields are adopted in this article, the devel-
oped approach is also applicable if non-Gaussian random fields
are employed.

As shown in Fig. 3(c), NMCS realizations are simulated for
each type of slope property, where NMCS is the number of
samples in the Monte Carlo simulation (MCS). Yi (x), ∀x ∈
�x, which represents the slope or soil-related property over
the region of interest �x, can then be expressed as a union
of multiple random fields shown in Fig. 3(d) and given as
follows:

Yi (x) =
{
Yi1 ∪ · · · ∪ Yi NT

} ∀x ∈ �x (10)

where NT is given by

NT =
{

Nslope, if Yi(x) is a slope-related parameter

Nsoil, if Yi(x) is a soil-related parameter
(11)

Yi j � {Yi j(1),Yi j(2), . . . ,Yi j(Ni j )} ∀i = 1, . . . ,m; j =
1, . . . , NT is a single random field associated with the j th
slope/soil ID, and Ni j is the number of elements in subset
x( j)

slope or x( j)
soil (i.e., the number of locations with the j th

slope/soil ID on the map). For the example in Fig. 3, we have
NT = Nslope = 9, and Ni1, Ni2, and Ni9 equal to 3, 4, and 5,
respectively.

For Yi (x) corresponding to the j th slope/soil ID (i.e., Yi j ),
its realizations are generated using KL expansion based on the
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Fig. 3. Random field simulation of slope property using KL expansion. (a) Slope ID matrix is partitioned into nine subsets according to slope IDs. Nine types
of slope properties corresponding to different coordinates are obtained for each subset in (b). KL is then used to obtain (c) NMCS random field realizations
for each property Yi j . After that, (d) NMCS realizations of slope property matrices are expressed as the union of multiple random fields according to their
spatial coordinates.

following correlation matrix:

ρi j =

⎡
⎢⎢⎣

1 · · · ρi j(x(1)s , x
(Ni j )
s )

...
. . .

...

ρi j(x
(Ni j )
s , x(1)s ) · · · 1

⎤
⎥⎥⎦ (12)

where ρi j(·, ·) is the correlation function [i.e., (43)] of Yi j (k),
x(k)s � x( j)

slope(k) or x(k)s � x( j)
soil(k) and k = 1, . . . , Ni j . Using

(7) through (12), we generate NMCS random realizations for
Yi j ∀i = 1, . . . ,m, j = 1, . . . , NT . In Fig. 3(d), realiza-
tions of Yi j are then assembled together according to their
coordinates, and random realizations of Yi (x), ∀x ∈ �x are
generated.

Following the above procedure of Fig. 3, different random
realizations of the slope property matrix, the cohesive strength
property matrix, the friction coefficient property matrix, and
the bulk density property matrix are generated, as shown
in Fig. 4(a). These matrices are then fed into the physics-based
mobility simulation model to generate random realizations of
vehicle mobility map, as illustrated in Fig. 4(c), rather than
a single deterministic vehicle mobility map [e.g., Fig. 1(d)].
Next, we will propose two reliability-based mission plan-
ning schemes with gradually increased complexity based on
the uncertainty propagation of vehicle mobility, as discussed
earlier.

B. State Mobility Reliability-Based Mission Planning

1) State Mobility Reliability Analysis: As illustrated
in Fig. 5(a) and (b), SMR, RSMR(x), is defined as the

Fig. 4. Uncertainty propagation from environment parameters to mobility.
(a) Realizations of slope/soil property matrices obtained in Fig. 2 are fed into
(b) physics-based off-road mobility model, yielding (c) random realizations
of vehicle mobility.

probability of maintaining vehicle mobility at a certain loca-
tion, x, and is given by

RSMR(x) = Pr{V (x) = G(W,Y(x)) ≥ Vlimit}. (13)

Performing the SMR analysis using (13) involves the evalua-
tion of the following equation:

RSMR(x) =
∫

V (x)�Vlimit

fY(υ)dυ (14)
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where fY(υ) is the joint pdf of Y(x) = [Y1(x), . . . ,Ym(x)].
If Y1(x), . . . ,Ym(x) are considered independent, for any given
x, fY(υ) is given by

fY(υ) =
m∏

i=1

fYi (υi , θ(ζ(x))) (15)

in which fYi (υi , θ(ζ(x))) is the pdf defined in (6).
By defining the following indicator function:

I (V (x)) =
{

1, V (x) � Vlimit

0, V (x) < Vlimit.
(16)

Equation (14) is written as

RSMR(x) =
∫

Rd
I (V (x)) fY(υ)dυ = E[I (V (x))] (17)

where E[·] is the expectation operator.
Directly solving the multidimensional integral in (17)

is computationally prohibitive, especially when V (x) =
G(W,Y(x)) is computationally expensive computer simu-
lations, as mentioned earlier. To overcome this challenge,
a computationally cheap machine learning surrogate model
(e.g., the Gaussian process model and neural networks) is
usually constructed to substitute the original model [17].
After that, sampling-based approximation methods, such as
MCS, are used to estimate (17). Based on the MCS random
realizations generated in Section III-A, (17) is approximated
as

RSMR(x) ≈ 1

NMCS

NMCS∑
h=1

I (Ĝ(W, y(h)(x))) (18)

where y(h)(x), h = 1, . . . , NMCS, is the hth MCS sample of
Y(x), Ĝ(W, y(h)(x)) is the mobility surrogate model prediction
for given y(h)(x) at location x, and I (·) is the indicator function
defined in (16).

2) SMR-Based Mission Planning: By performing SMR
analysis at all locations using (13), an SMR map can be
generated, as shown in Fig. 5(c). Based on this SMR map,
an intuitive way to include reliability into mission planning is
to require that the mobility reliability be greater than a certain
threshold at all locations on an obstacle-free mission. In SMR-
based mission planning, the free space of the mobility map
can, therefore, be defined as

χfree =
{
x ∈ �x

∣∣RSMR(x) ≥ [R]} (19)

where [R] represents a user-defined reliability level. This kind
of map is often referred to as a probabilistic mobility map,
as shown in Fig. 5(d). For different [R], different probabilistic
mobility maps can be generated. The value of [R] is usually
determined by the decision-maker according to the level of
risk that the decision-maker is willing to take.

After introducing (19) into (4), we have the SMR-based
mission planning model as

ψ∗ = arg min
ψ∈�x

CSMR
robust(ψ)

s.t. ψ(t0) = xinit, ψ(te) ∈ χgoal

ψ(ti ) ∈ χfree, ti ∈ [t0, te]

Fig. 5. SMR analysis. Based on (a) uncertain vehicle mobility prediction
and (b) SMR at each location is calculated, and thus, we obtain (c) SMR
map. Using a user-defined reliability level [R], (d) probabilistic mobility map
is obtained.

χgoal =
{
x ∈ χfree

∣∣∥∥x − xgoal

∥∥ � ε
}

χfree =
{
x ∈ �x

∣∣RSMR(x) � [R]} (20)

in which CSMR
robust(ψ) is a travel time cost function formulated

from robust design perspective such that the required travel
time of the identified mission path is robust to the uncertainty
in the mission planning environment.

The robust cost function is defined as follows:

CSMR
robust(ψ) = wμSMR(C(ψ))+ (1−w)σSMR(C(ψ)) (21)

where C(ψ) is calculated by (5) and w is a weight factor
balancing the mean and standard deviation of C(ψ). Since
the slope/soil properties are assumed to be Gaussian random
variables in this article, μSMR(C(ψ)) and σSMR(C(ψ)) are
given by

μSMR(C(ψ)) =
te∑

ti=t0

μ

(
1

V (ψ(ti ))

)
(22)

and

σSMR(C(ψ)) =
√√√√ te∑

ti=t0

σ 2

(
1

V (ψ(ti ))

)
(23)

where t0 and te are, respectively, the initial and end time nodes
of mission path ψ , and μ(1/V (ψ(ti ))) and σ 2(1/V (ψ(ti ))) are,
respectively, the mean cost and variance at location ψ(ti ).

Even though SMR-based mission planning takes into
account the uncertainty in the slope/soil parameters, it over-
looks the spatial dependence of the vehicle mobility caused
by the spatial dependence of slope-/soil-related properties.
As shown in the results of case studies, ignoring the spatial
dependence of vehicle mobility could significantly increase
the risk of immobility in mission planning. Next, an MMR-
based mission planning approach is proposed to overcome this
limitation of SMR-based mission planning.
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Fig. 6. MMR analysis. (a) Random realizations of a stochastic mobility map are obtained through uncertainty quantification and propagation. For a given
mission path from ψ(t0) to ψ(te) [denoted by red line in (a)], (b) random realizations of mobility on a mission path can be extracted from (a). Based on (b)
and (c), the MMR of the whole mission and the SMR at each location are estimated.

C. Mission Mobility Reliability-Based Mission Planning

1) Mission Mobility Reliability Analysis: In contrast to
deterministic mission analysis and SMR analysis that focus
on mobility analysis at individual locations, MMR aims to
quantify the probability that a vehicle can successfully accom-
plish a mission without immobility directly from the mission
planning perspective [17]. An MMR for a given mission path,
ψ , is defined as follows [17]:

RMMR(ψ) = Pr{V (x) ≥ Vlimit, ∀x ∈ ψ} (24)

where ψ is a set of location/coordinates x on a mission path
and ψ ⊂ �x is a subset of a map/region of interest �x.

From the generated realizations of mobility map shown
in Fig. 4(c), realizations of mobility (i.e., maximum attainable
speed) on the mission path ψ , which is a subset of �x,
can be extracted as illustrated in Fig. 6(a) and (b). Defining
realizations of the mobility on ψ as Vre(ψ) = {v(h, ti ), h =
1, . . . , NMCS, ti = t0, . . . , te}, where v(h, ti) is the hth
realization of the mobility at the ψ(ti )th location on the
mission path ψ , ψ(t0) and ψ(te) are, respectively, the initial
and end locations that ψ passes through, MMR of ψ in (24)
is then estimated as [33], [34]

RMMR(ψ) ≈ 1

NMCS

NMCS∑
h=1

I

(
min

ti=t0,...,te
v(h, ti)

)

= 1

NMCS

NMCS∑
h=1

te∏
ti=t0

I (v(h, ti)) (25)

where I (v(h, ti )) = 1 if v(h, ti ) � Vlimit; otherwise,
I (v(h, ti )) = 0.

I (v(h, ti )) = 0 denotes the immobility at loca-
tion ψ(ti ), which results in failure of the mission for
the hth realization. Only when the vehicle does not
get stuck at all locations ψ(ti ), i.e., I (v(h, ti )) =
1,∀ti ∈ [t0, te], we will have minti=t0,...,te v(h, ti ) �
Vlimit, and then, I (minti=t0,...,te v(h, ti )) = 1. Otherwise,
I (minti=t0,...,te v(h, ti )) = 0. This indicates that MMR is equal
to the ratio of number of failed realizations to NMCS, and the
failure of each realization is related to the extreme value (i.e.,
minimum value in this case) of v(h, ti) on the mission path
ψ . For each realization of vehicle mobility on the mission ψ ,

the possibility of I (minti=t0,...,te v(h, ti )) = 0 is monotonically
increasing over the mission path since the extreme value of
v(h, ti ) is monotonically decreasing as ti increases from t0 to
te. Therefore, the further the vehicle goes, the lower the MMR
is, as depicted in Fig. 6(c). Lower MMR indicates higher risk
of failing to accomplish the planned mission.

2) MMR-Based Mission Planning: The basic idea of the
MMR-based mission planning is to account for effects of
spatial-dependent uncertainty sources on the planner and guar-
antee the mobility reliability directly from mission planning
perspective. In the past, an approach has been developed to
account for the risk of a mission in mission planning by
approximate the MMR using SMR as follows [24]:

R̃MMR(ψ) =
te∏

ti=t0

RSMR(ψ(ti )) (26)

where RSMR(ψ(ti )) is the SMR estimated by (18) at the ti th
location, i.e., ψ(ti ) on the path ψ .

However, the above approximation holds only when the
spatial dependence of the vehicle mobility is ignored. Ignoring
the spatial dependence will lead to large errors in the MMR
prediction and, thus, affect the mobility reliability of the
identified path. According to (18), the approximated R̃MMR(ψ)
is written by

R̃MMR(ψ) ≈
te∏

ti=t0

1

NMCS

NMCS∑
h=1

I (v(h, ti))

= 1

N N
MCS

te∏
ti=t0

NMCS∑
h=1

I (v(h, ti)) (27)

where Nψ is the number of cells/locations that ψ passes
through, i.e., the number of time nodes between t0 and te. It is
evident that the results calculated by (27) and (25) are prone to
be different, which means that the approximated MMR given
in (26) cannot really represent the true MMR.

To address this problem and effectively guarantee MMR
during mission planning, the MMR constraint given in (24)
is included into the mission planning model. In addition,
to reduce the search design space during mission planning,
we further introduce an SMR-related constraint into the model
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and yield the MMR-based mission planning model as follows:

ψ∗ = arg min
ψ∈�x

CMMR
robust(ψ)

s.t. ψ(t0) = xinit, ψ(te) ∈ χgoal

ψ(ti ) ∈ χfree, ti ∈ [t0, te]
χgoal =

{
x ∈ χfree

∣∣∥∥x − xgoal

∥∥ � ε
}

χfree =
{
x ∈ �x

∣∣RSMR(x) � [R]}
RMMR(ψ)=Pr{V (ψ(ti ))�Vlimit ∀ti ∈ [t0, te]}� [R]

(28)

where CMMR
robust(ψ) is a travel time cost function formulated

from robust design perspective by considering the mobility
dependence over space. Similar to (21), CMMR

robust(ψ) is calculated
as follows:

CMMR
robust(ψ) = wμMMR(C(ψ)) + (1−w)σMMR(C(ψ)) (29)

in which C(ψ) is calculated by (5) and w is a weight factor
balancing the mean and standard deviation of C(ψ).

Since C(ψ) is related to the vehicle mobility (i.e., maximum
attainable speed), the calculation of CMMR

robust(ψ) is different
from that of CSMR

robust(ψ) due to the spatial dependence of
uncertainty sources. Based on realizations of the mobility on
ψ , μMMR(C(ψ)) and σMMR(C(ψ)) are given by

μMMR(C(ψ)) = 1

NMCS

NMCS∑
h=1

te∑
ti=t0

1

v(h, ti)
(30)

and

σMMR(C(ψ))

=
√√√√ 1

NMCS

NMCS∑
h=1

(
μMMR(C(ψ)) −

te∑
ti=t0

1

v(h, ti )

)2

(31)

where t0 and te are, respectively, the initial and end time nodes
of mission path ψ , and

∑te
ti=t0

1
v(h, ti )

is the time travel cost of
the hth realization of ψ .

Reducing the search design space using SMR-related con-
straint ψ(ti ) ∈ χfree, χfree = {x ∈ �x|RSMR(x) � [R]} helps
reduce the computational time during the mission planning
since it can provide a prior feasible region without optimiza-
tion, as explained in detail in the algorithm section. Evaluating
the constraint RMMR(ψ) � [R] in (28) is equivalent to
evaluating the following constraint:

RMMR(ψ) = Pr

{
min

ti∈[t0,te]
{V (ψ(ti ))} � Vlimit

}
� [R]. (32)

Since minti∈[t0,te]{V (ψ(ti ))} � V (ψ(ti ))∀ti ∈ [t0, te], compar-
ing (32) with (13) yields

RMMR(ψ) � RSMR(ψ(ti )) ∀ti ∈ [t0, te]. (33)

The above equation implies that RMMR(ψ) �
[R] is a stricter constraint than RSMR(ψ(ti )) =
Pr{V (ψ(ti )) � Vlimit} � [R] ∀ti ∈ [t0, te]. If ψ satisfies
the constraint RSMR(ψ(ti )) � [R] ∀ti ∈ [t0, te], it may or may
not satisfy the constraint that RMMR(ψ) � [R]. On the other
hand, if ψ satisfies the constraint RMMR(ψ) � [R],
RSMR(ψ(ti )) � [R] ∀ti ∈ [t0, te] will be satisfied

automatically. It implies that introducing the SMR-related
constraint into the MMR-based mission planning model
given in (28) will not affect the optimality of the original
model. However, it can help reduce the search space. Next,
we provide detailed algorithms of proposed reliability-based
mission planning approaches in Section IV-A.

IV. MAIN R2-RRT* ALGORITHMS

In this section, we discuss how to extend the RRT*
algorithm [31] to solve the above-discussed SMR- and MMR-
based mission planning models, where the resulting algo-
rithms are named R2-RRT*-1 and R2-RRT*-2, respectively.
Following that, a reliability-based path smoothing algorithm is
proposed to address the suboptimality of the identified path.

A. Reliability-Based Robust Mission Planning by R2-RRT*

1) R2-RRT*-1 for SMR-Based Mission Planning Model:
Algorithm 1 explains the procedure of R2-RRT*-1. It is
initialized with a tree containing one initial vertex xinit and
no edge. Given the slope/soil map, a probabilistic mobility
map, i.e., work space for R2-RRT*-1, is generated through
a function SMR(map, Vlimit, [R]), as shown in Fig. 5(d).
In SMR(), we calculate RSMR(x) at each location using (18)
with a predefined Vlimit. By setting a reliability level [R],
the free and obstacle space of target map are generated
using (19).

After initialization, the tree is incrementally updated by
adding new vertex and updating edges related to the new ver-
tex. To identify the new vertex, a new point xrand is randomly
sampled by function PSample(χfree, RSMR(x)). In PSample(),
we first define a threshold λ ∈ [0, 1), and λ is set to 0.1 in
this article. In each iteration, if a number randomly generated
over range [0, 1] is greater than λ, then the goal point will be
considered as xrand. Otherwise, the probability of sampling a
certain point in free space as xrand will be related to RSMR(x) of
that point. In other words, the location with higher RSMR(x)
will be more likely to be selected. After that, xrand attends
to connect the nearest vertex xnearest found by the function
Nearest(T , xrand) as follows:

xnearest ← arg min
x∈V
‖xrand − x‖ (34)

and be adjusted to the new vertex xnew by function
Steer(xnearest, xrand) [see Fig. 7(a)], i.e., minimizing the dis-
tance from xnew to xrand and satisfying ‖xnearest − xnew‖ � η (η
is a predefined maximum extension distance according to the
map size) [31].

To update the edges related to the new vertex, i.e., xnew,
the vertices xnear located in a local hypersphere (i.e., χnear)
of a certain radius centered at xnew will be first searched
by function Near(T , xnew) [31] if an obstacle-free condi-
tion, i.e., ObstacleFree(xnearest, xnew), is satisfied. The function
ObstacleFree(xfrom, xto) will be satisfied if the line connecting
xfrom and xto does not pass through any obstacle (i.e., any loca-
tion in the line meets (19) requirement), as shown in Fig. 7(b).
Then, two operations are implemented as follows.

1) Find the Optimal Parent for xnew (see Lines 10–18 of
Algorithm 1): The cost of a certain path from xinit to
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Fig. 7. Illustration of R2-RRT*. In each iteration of R2-RRT*, a new random vertex (denoted by pink) is first generated by collecting the newly sampled
random point (denoted by light blue) to its nearest vertex in (a). Several near vertices (denoted by green) in (b) are then identified around the new random
vertex, (c) chooses parent for the new vertex and adds an edge between them to the current tree, (d) rewires the near vertices within the local hypersphere
around the generated new vertex. For instance, the dashed edge is rewired by the red edge between the pink new vertex and green near the vertex.

xnew under the assumption that xnear is considered as
parent of xnew is calculated for all xnear in χnear by
RCost1(xinit, xnear, xnew) based on (21)–(23). The vertex
with minimum cost will be selected from χnear and
regarded as parent (i.e., xparent

new ) of the newly added
xnew under the condition that ObstacleFree(xnear, xnew)
is satisfied. After that, an edge from xparent

new to xnew is
added to the random tree [see Fig. 7(c)].

2) Rewire the Edges of Tree Through xnew (see Lines 19–24
of Algorithm 1): The other neighbor vertices in χnear

except for xparent
new are rewired. For example, if the path

cost from xinit to xnear with xnew assumed to be the parent
of xnear is lower than the current path cost of xnear (i.e.,
RCost1(xinit, xnew, xnear) < RCost1(xinit, xparent

near , xnear)),
then the parent of xnear will be replaced by xnew, and
the edge from xparent

near to xnear will be replaced by the
edge from xnew to xnear, as shown in Fig. 7(d).

Note that RCost1(xinit, xparent
temp , xtemp) returns the cost of a

certain path from xinit to xtemp, and xparent
temp is regarded as

parent vertex of xtemp while calculating the cost. These two
operations in χnear guarantee the local optimal vertex and edges
of the random tree, which plays a vital role in the asymptotic
optimality of RRT* [31].

2) R2-RRT*-2 for MMR-Based Mission Planning Model:
Algorithm 2 presents the details of R2-RRT*-2. It starts
with a similar initialization as that of R2-RRT*-1. Given a
slope/soil map, a reduced work space is generated through
SM R(map, Vlimit, [R]). Moreover, in GetMobility(map),
the natural variabilities of the slope/soil properties are first
simulated by Gaussian random fields based on (7)–(12),
resulting in many random realizations of the slope/soil map.
As illustrated in Fig. 4, random realizations of the stochastic
mobility map, i.e., Mre, are then obtained through uncertainty
propagation from environment parameters to mobility predic-
tion.

After initialization, the remaining operations have
two main differences between R2-RRT*-1 and R2-
RRT*-2 due to the presence of Mre. First, the way of
calculating the robust cost of a certain path is different.
In R2-RRT*-2, the RCost2(xinit, xparent

temp , xtemp,Mre)

given in (29)–(31) [i.e., CMMR
robust(ψ)], is employed, while

R2-RRT*-1 uses RCost1(xinit, xparent
temp , xtemp) given in

Algorithm 1 R2-RRT*-1

1 Vlimit , [R], map, xinit , χgoal ;
2 V ← xinit , E ← ∅, T = (V, E);
3 χ f ree, RSM R(x)← SM R(map,Vlimit , [R]);
4 for i ← 1 to Niters do
5 xrand ← PSample(χ f ree, RSM R(x));
6 xnearest ← Nearest (T , xrand);
7 xnew ← Steer(xnearest , xrand);
8 if ObstacleFree(xnearest, xnew) then
9 χnear ← Near(T , xnew);

10 xparent
new = xnearest ;

11 cmin ← RCost1(xinit , xparent
new , xnew);

12 foreach xnear ∈ χnear do
13 if ObstacleFree(xnear, xnew) &

RCost1(xinit , xnear , xnew) < cmin then
14 xparent

new = xnear ;
15 cmin = RCost1(xinit , xnear , xnew);
16 end
17 end
18 V ← V ∪ xnew, E = E ∪ {

(xparent
new , xnew)

}
;

19 foreach xnear ∈ χnear do
20 cnear ← RCost1(xinit , xparent

near , xnear ) ;
21 if ObstacleFree(xnew, xnear ) &

RCost1(xinit , xnew, xnear) < cnear then
22 E ← (E\{(xparent

near , xnear)
}
) ∪ {(xnew, xnear )};

23 end
24 end
25 end
26 end
27 return T = (V, E);

(21)–(23) [i.e., CSMR
robust(ψ)]. Second, the MMR constraint

(i.e., MMR(xinit, xparent
temp , xtemp,Mre) ≥ [R]) is embedded into

R2-RRT*-2 to guarantee the mission reliability level (see
Lines 14 and 22 in Algorithm 2). Since MMR decreases over
a mission path, it is necessary to check whether the MMR
of a certain path satisfies the MMR constraint in (28) in the
two core operations of R2-RRT*-2, namely find the optimal
parent for xnew and rewire the edges of tree through xnew.
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Algorithm 2 R2-RRT*-2

1 Vlimit , [R], map, xinit , χgoal ;
2 V ← xinit , E ← ∅, T = (V, E);
3 χ f ree, RSM R(x)← SM R(map,Vlimit , [R]);
4 Mre ← Get Mobili ty(map);
5 for i ← 1 to Niters do
6 xrand ← PSample(χ f ree, RSM R(x));
7 xnearest ← Nearest (T , xrand);
8 xnew ← Steer(xnearest , xrand);
9 if ObstacleFree(xnearest, xnew) then

10 χnear ← Near(T , xnew);
11 xparent

new = xnearest ;
12 cmin ← RCost2(xinit , xnearest , xnew,Mre);
13 foreach xnear ∈ χnear do
14 if ObstacleFree(xnear, xnew) &

RCost2(xinit , xnear , xnew,Mre) < cmin &
M M R(xinit , xnear , xnew,Mre) ≥ [R] then

15 xparent
new = xnear ;

16 cmin ← RCost2(xinit , xnear , xnew,Mre);
17 end
18 end
19 V ← V ∪ xnew, E = E ∪ {

(xparent
new , xnew)

}
;

20 foreach xnear ∈ χnear do
21 cnear ← RCost2(xinit , xparent

near , xnear ,Mre);
22 if ObstacleFree(xnew, xnear) &

RCost2(xinit , xnew, xnear ,Mre) < cnear &
M M R(xinit , xnew, xnear ,Mre) ≥ [R] then

23 E ← (E\{(xparent
near , xnear)

}
) ∪ {(xnew, xnear )};

24 end
25 end
26 end
27 end
28 return T = (V, E);

If MMR(xinit, xparent
temp , xtemp,Mre) ≥ [R], vertex xparent

temp is
considered as the parent of xtemp and is used to define a
potential path xinit → xparent

temp → xtemp. Based on the definition
in (32), MMR of this path is then calculated by

RMMR
(
ψ
(

xinit → xparent
temp → xtemp

))
= Pr

{
V (ψ(ti )) � Vlimit ∀ti ∈ [t0, ttemp]

}
= Pr

{
Vmin = min

ti=t0,...,t
parent
temp ,...,ttemp

{V (ψ(ti ))} � Vlimit

}
(35)

where ψ(t0) = xinit, ψ(tparent
temp ) = xparent

temp , and ψ(ttemp) =
xtemp.

Meanwhile, the MMR of path xinit → xparent
temp is calculated

by

RMMR
(
ψ
(

xinit → xparent
temp

))

= Pr

{
Vmin = min

ti=t0,...,t
parent
temp

{V (ψ(ti ))} � Vlimit

}
. (36)

By comparing (35) with (36), it is observed that the
minimum speed (i.e., Vmin) on ψ will be updated if the

vehicle speed over [ψ(tparent
temp ), ψ(ttemp)] of ψ is lower. There-

fore, MMR is prone to decrease when adding new edges
xparent

temp → xtemp to the path xinit → xparent
temp . If MMR constraint

is satisfied, Algorithm 2 will return that the potential path
xinit → xparent

temp → xtemp is feasible.
3) Completeness, Optimality, and Computational Complex-

ity: In R2-RRT* algorithms, PSample(χfree, RSMR(x)) can
sample any potential location in obstacle-free space accord-
ing to the mobility reliability. Similar to RRT*, the tree of
R2-RRT* tries to connect all samples (i.e., vertices) from
xinit toward the goal region χgoal. If a feasible solution
exists, the probability that R2-RRT* finds the feasible path
approaches one as the number of iterations approaches infinity.
The following probabilistic completeness will be naturally
guaranteed similar to RRT* [31]:

lim
n→∞Pr(V ∩ χgoal �= ∅) = 1 (37)

where n denotes the number of iterations.
R2-RRT* employs SMR and MMR constraints to reduce

the free space and calculates the robust mission cost instead
of deterministic cost. Reduction of free space only leads to
a stricter condition that a feasible path exists. Changing the
mission planning goal from the minimization of deterministic
cost to the minimization of robust cost only affects the
selection of the final solution when multiple feasible paths
are found in the free space. Therefore, R2-RRT* inherits
the asymptotic optimality characteristic of RRT* under the
following condition according to [35, Theorem 38]:

γ > (2(1+ 1/d))1/d
(
μ(χfree)

ξd

)1/d

(38)

where γ is related to the search radius in Near(T , xnew), d
denotes the number of dimensionality of work space, μ(χfree)
denotes the Lebesgue measure of obstacle-free space, and
ξd denotes the volume of the unit ball in the d-dimensional
Euclidean space. This means the probability that the final solu-
tion of R2-RRT* will have minimum robust cost approaches
one as the number of iterations approaches infinity.

According to the computational complexity analysis
in [31], we have time complexity of RRT* given by
O(nlogn · logd m), where n is the number of itera-
tions and m is the number of obstacles. Comparing
R2-RRT*-1 with RRT*, the time complexity of the newly
added SM R(map,Vlimit, [R]), PSample(χfree, RSMR(x)), and
RCost1(xinit, xparent

temp , xtemp) is, respectively, O(NMCS), O(1),
and O(1). Since NMCS is usually smaller than nlogn ·
logdm, the time complexity of R2-RRT*-1 is, therefore,
also O(nlogn · logd m). For R2-RRT*-2, the time complex-
ity of the new functions RCost2(xinit, xparent

temp , xtemp,Mre) and
MMR(xinit, xparent

temp , xtemp,Mre) are all O(NMCS). Therefore,
the time complexity of R2-RRT*-2 is O(max(O(nlogn ·
logdm),O(nlogn · NMCS))).

B. Reliability-Based Path Smoothing Using B-Spline Curve

While R2-RRT* algorithms can find feasible paths satisfy-
ing mobility reliability requirements, the identified path needs
to be further optimized due to the suboptimality of RRT* [8].
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Algorithm 3 Reliability-Based Path Smoothing

1 ψ∗R2−R RT ∗ , Vlimit , [R], xinit , χgoal , χ f ree, χobstacle;
2 Pcontrol ← RemoveV ertex(ψ∗R2−R RT ∗ , χobstacle);
3 ψ∗smooth ← Bspline(Pcontrol, l);
4 while RSM R(x) < [R], ∃x ∈ ψ∗smooth (R2-RRT*-1) or

RM M R(ψ∗smooth) < [R] (R2-RRT*-2) do
5 xmax

R2−R RT ∗ ← Max Di f f ();
6 Pcontrol ← Inser tV er tex(Pcontrol, xmax

R2−R RT ∗);
7 Pcontrol ← Inser t Midpoint (Pcontrol);
8 ψ∗smooth ← Bspline(Pcontrol, l);
9 end

10 return ψ∗smooth ;

In this section, the B-spline curve is employed for path
smoothing, and a reliability-based path smoothing algorithm
is proposed to consider not only the obstacle-free criterion but
also the SMR or MMR criterion during smoothing.

In Algorithm 3, we start with an initialization
by removing redundant vertices through function
RemoveVertex(ψ∗R2-RRT∗ , χobstacle). In RemoveVertex(),
letting all the vertices in ψ∗R2-RRT∗ from start to goal position
be denoted by

{
x1, x2, . . . , xNψ

}
, and the initial control point

set, Pcontrol, be an empty set, we first add x j to control
point set Pcontrol by setting j = Nψ . After that, for each
i ∈ [1, j − 1], we check whether the line between xi and x j

passes through the obstacle space χobstacle and stop on the first
xi without collision. The identified vertex xi is subsequently
added to Pcontrol. Following that, we set j = i and repeat the
checking process until x1, i.e., the start position, is added
to Pcontrol [35]. With the identified control points shown
in Fig. 8(a), a smoothed path can be obtained by a l-degree
B-spline parametric curve Bspline(Pcontrol, l).

Although removing redundant vertices is efficient,
the smoothed path may not meet the SMR or MMR
requirement. In Algorithm 3, if the reliability constraint
is not satisfied, we will let ψ∗smooth have the same number
of segments as ψ∗R2 - RRT∗ and find the segment (i.e.,
vertex xmax

R2 - RRT∗ ) where the difference of SMR between
ψ∗smooth and ψ∗R2 - RRT∗ is the largest by a function called
MaxDiff(RSMR(xsmooth), RSMR(xR2 - RRT∗)), which is defined
as

xmax
R2-RRT∗ ∈ xR2-RRT∗

← arg max
i=1,2,...,Nψ

(RSMR(xi
smooth), RSMR(xi

R2 - RRT∗)) (39)

where xi
smooth ∈ xsmooth, xi

R2 - RRT∗ ∈ xR2 - RRT∗ , i =
1, 2, . . . , Nψ , and RSMR(xi

smooth) or RSMR(xi
R2-RRT∗) is calcu-

lated by (18). By sequentially inserting the vertex xmax
R2 - RRT∗

found by MaxDiff() into Pcontrol according to the original order
of vertices in ψ∗R2 - RRT∗ , the reliability level of newly smoothed
path will gradually reach to that of the path found by R2-RRT*
and, thus, satisfy the SMR or MMR requirement. As illustrated
in Fig. 8(b), the green vertex found by MaxDiff() is inserted
into Pcontrol since the path with segments “1 + 2” (denoted
by solid black lines) is safer than the path with segment “3”
(denoted by dashed lines).

Fig. 8. Illustration of reliability-based smoothing. (a) Obtains the initial
control points (denoted by red) by removing the redundant vertices (denoted
by gray) of R2-RRT* (Line 2 in Algorithm 3). (b) adds more control points
from the vertices of R2-RRT* to guarantee the reliability level of the smoothed
path (Lines 5 and 6). For instance, the path, including segments 1 and 2,
is safer than the path, including segment 3 (dashed line). Thus, the green
vertex is added to the control point set. (c) inserts midpoints (denoted by
blue) for some important control points to guarantee the reliability level of
the smoothed path (Line 8).

Moreover, Pcontrol is further updated by inserting midpoint
between two consecutive control points to avoid collision, such
as those shown in Fig. 8(b) [36], before the path is smoothed
by Bspline(Pcontrol, l). In function InsertMidpoint(Pcontrol),
midpoints will be inserted at the control points only if the
following criterion is satisfied:

min(‖xcontrol − xobstacle‖) � ξ, xobstacle ∈ χobstacle (40)

where ξ represents a certain distance related to the size of a
single obstacle (i.e., resolution of target map). As illustrated
in Fig. 8(c), only one blue node is inserted into Pcontrol, result-
ing in a collision-free smoothed path (red curve) comparing
with that in Fig. 8(b).

Through the reliability-based mission smoothing, the sub-
optimality of R2-RRT* is addressed. A smooth, continuous,
and small-curvature path will avoid suddenly slowing down at
sharp turns and improve the success rate of accomplishing a
mission for the off-road AGVs. It is worth noting that, if the
resolution of the target map is low, path smoothing may not
be necessary, and discrepancies between the smoothed and
nonsmoothed paths will be eliminated.

V. CASE STUDY

For demonstration, a 50 m×50 m target map is taken from a
terrain map of interest obtained from ARCGIS/ENVI database
[37] with data provided in raster format. As shown in Fig. 9,
the slope of the target map can be calculated by ARCGIS
using the elevation raster, and the soil types of the target map
can be identified with the property data provided by the US
Geological Survey database [38], [39]. The size of the cells
(i.e., squares in Fig. 9), which affects the computational efforts,
can be defined according to the resolution of the target map,
size of map, or computational limit. In this work, the resolution
of the target map is set to 1 m, and there are 2500 cells
in Fig. 9. The off-road vehicle mobility model is assumed
to be a model as follows:

V (x) = G(W,Y(x)) = 0.85eY1(x)/15−Y3(x)

+ (Y2(x)/5− Y4(x))2 + 0.7Y2(x)Y3(x)Y4(x) (41)

where Y(x) = [Y1(x),Y2(x),Y3(x),Y4(x)] are, respectively,
the slope, cohesive strength, friction coefficient, and bulk
density. All these environment parameters are assumed to be
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TABLE I

STATISTICAL PARAMETERS OF SLOPE AND SOIL PROPERTIES

Fig. 9. (a) Slope and (b) soil maps used in case study.

Gaussian random fields, and Table I shows the statistical infor-
mation of these Gaussian random fields. With these assumed
parameters, the output of the assumed vehicle mobility model
V (x) is in the range of [0, 20] m/s. Note that the distributions
of slope and soil properties, and vehicle mobility model are
assumed for demonstration and repeatability purposes. The
vehicle mobility model given in (41) can be replaced by
any terramechanics model or simulation models, as illustrated
in Fig. 1, such as the Nevada automotive test center wheeled
vehicle platform developed by Advanced Science and Automa-
tion Corporation [40]. The immobility event in this case study
is defined as the maximum attainable speed being less than 2
m/s (i.e., Vlimit = 2 m/s).

Fig. 10 shows the probabilistic map obtained by following
the procedure of SMR analysis (see Fig. 5 and Section III-B),
which quantifies the probability of maintaining vehicle mobil-
ity at each location. Based on the probabilistic map, different
target reliability levels [R] will yield different work spaces
for path planner [see Figs. 11(b) and (c) and 15(a) and (b)].
Two scenarios of [R] are studied in this article, namely, 90%
and 95%. Table II lists the simulation parameters of RRT*
and R2-RRT*, and the results of RRT* are based on the
PythonRobotics project [41].

Fig. 10. Probabilistic map of R2-RRT*.

TABLE II

MAIN SIMULATION PARAMETER SETTINGS

A. Scenario 1: 90% Minimum Target Reliability

Fig. 11 shows three different planning results of RRT* and
R2-RRT*, where the green segments represent the edges of
the random tree, and the blackline and red line represent the
paths before and after mission smoothing, respectively. The
work space of RRT* is obtained by using the mean values
of slope/soil properties to generate the deterministic mobility
map, while the work space of R2-RRT*-1/2 is obtained by
dividing the probabilistic map in Fig. 10 into an obstacle
and free space according to the required reliability level
[R]. We can observe that the work spaces of R2-RRT*-
1/2 are the same and have more obstacles than that of RRT*
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Fig. 11. Random trees and paths for Scenario 1 (blue points are obstacles).
(a) RRT*. (b) R2-RRT*-1. (c) R2-RRT*-2.

Fig. 12. Smoothed paths in two different realizations of maps for Scenario 1.
(green: RRT*; blue: R2-RRT*-1; and red: R2-RRT*-2). (a) Realization 1.
(b) Realization 2.

since both of them employ an SMR constraint to reduce
the free space. As a result, the path found by RRT* is not
feasible in the reduced free space of R2-RRT*-1/2. Moreover,
the path found by R2-RRT*-2 is different from that of R2-
RRT*-1 due to the MMR constraint in R2-RRT*-2. Fig. 12
shows the smoothed paths in two realizations of the stochastic
mobility map obtained through MMR analysis (as illustrated
in Fig. 6 and Section III-C). It indicates that the path identified
by RRT* fails in both realizations. The path identified by
R2-RRT*-1 fails in the second realization, which is manifested
as the path passes through the obstacles. This is attributed
to the fact that R2-RRT*-1 ignores the spatial dependence
of uncertainty sources even if the uncertainty in vehicle
mobility is considered. It also explains why the MMR of R2-
RRT*-1 is lower than that of the path found by R2-RRT*-2
(see Table III).

TABLE III

RESULTS OF DIFFERENT METHODS FOR SCENARIO 1

Fig. 13. MMR for Scenario 1.

Table III compares the mean cost and MMR of different
paths calculated based on random realizations of the stochastic
vehicle mobility map. The mean cost increases from RRT*
to R2-RRT*-1 and to R2-RRT*-2, whereas the MMR sees
a significant decrease from R2-RRT*-2 to R2-RRT*-1 and
RRT*. The path found by RRT* in the deterministic mobility
map will get the vehicle stuck on the path with a probability of
about 40% (i.e., MMR equals 58.57%). Although R2-RRT*-
1 finds a more reliable path than RRT* by accounting for SMR
during path planning, the MMR is still lower than the required
reliability level, i.e., 90%. Only R2-RRT*-2 can accurately
meet the mobility reliability requirement. The results show that
mission reliability is gradually increased by adding the SMR
and MMR constraints, and MMR-based mission planners can
more effectively guarantee the mobility reliability of off-road
AGVs than RRT* and SMR-based mission planners.

Figs. 13 and 14 depict more features of MMR. As shown
in Fig. 13, MMR gradually decreases as the accumulation
of collision risk, which validates what we have explained in
Section III-C (i.e., the further the vehicle goes, the lower the
MMR is). Following that, Fig. 14 shows the distribution of the
minimum vehicle mobility (i.e., maximum attainable speed)
over the whole mission obtained from MCS, as illustrated
in Fig. 4. The MMR calculated by (25) is equal to the
probability that the minimum vehicle speed is greater than
the speed threshold. These two figures show that R2-RRT*-
2 well satisfies the mobility reliability requirement, which
further validates the efficacy of the proposed reliability-based
mission planning.
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Fig. 14. Extreme speed distributions (i.e., minimum maximum attainable
speed) obtained from MCS for Scenario 1.

Fig. 15. Random trees and paths for Scenario 2. (a) R2-RRT*-1. (b) R2-
RRT*-2.

Fig. 16. Smoothed paths in two different realizations of maps for Scenario 1
(green: RRT*; blue: R2-RRT*-1; and red: R2-RRT*-2). (a) Realization 1. (b)
Realization 2.

B. Scenario 2: 95% Minimum Target Reliability

In this scenario, the deterministic result of RRT* is the same
as that in Scenario 1, as shown in Fig. 11(a). In Fig. 15,
the minimum target reliability [R] is increased from 90%
to 95% for R2-RRT*-1/2, further reducing the free space
compared to RRT*. Results of R2-RRT*-1 and R2-RRT*-
2 are different from each other and different from those of
scenario 1. Fig. 16 shows smoothed paths in two realizations of
the stochastic mobility map. Similar to Scenario 1, the path of
RRT* fails in both realizations since RRT* cannot satisfy the

Fig. 17. Mission mobility reliabilities for Scenario 2.

Fig. 18. Extreme speed distributions (i.e., minimum maximum attainable
speed) obtained from MCS for Scenario 2.

TABLE IV

RESULTS OF DIFFERENT METHODS FOR SCENARIO 2

SMR constraint. Although both R2-RRT*-1 and R2-RRT*-2
can meet the SMR constraint by finding feasible paths in
free space, as shown in Fig. 15, the MMR of R2-RRT*-1 is
lower than the required target level, as depicted in Table IV.
Therefore, we can obtain some realizations, such as those
in Fig. 15(b) where the path identified by R2-RRT*-1 will
result in the vehicle getting stuck in the narrow region [i.e., red
rectangle in Fig. 16(b)]. Different decisions of path planners
result in differences in the mean cost and MMR in Table IV,
and only R2-RRT*-2 satisfies the MMR requirement. Figs. 17
and 18, respectively, present the iteration history of MMR and
extreme speed distribution over the whole mission obtained
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from MCS. Similar conclusions can be obtained as that from
Scenario 1.

VI. CONCLUSION

In this article, we proposed two reliability-based robust
mission planning models and algorithms for off-road AGVs
under uncertain terrain environment. In the mission plan-
ning models, the SMR analysis that focuses on the point
reliability of each location was implemented to obtain the
probabilistic map and reduce the search space. After that,
the MMR analysis was employed to obtain realizations of
stochastic mobility maps and to quantify the spatial-dependent
mission reliability. To find a feasible path under the pro-
posed planning models, the incrementally sampling RRT*
algorithm was extended to R2-RRT*-1 and R2-RRT*-2 algo-
rithms, followed by a reliability-based mission smoothing
algorithm using the B-spline curve. The efficacy of pro-
posed R2-RRT* algorithms was validated through a case
study, including two scenarios that have two different MMR
requirements.

In summary, this article embeds SMR and MMR analy-
ses into mission planning for the first time. It provides
new insights into this field for mission planning with the
consideration of mobility reliability. The proposed models
and algorithms are not limited to RRT*. They can also be
extended to other mission planners introduced in Section I.
The proposed models and algorithms can be applied to online
mission planning by integrating the reliability-based mission
planning algorithms with dynamic updating approaches from
the following perspectives.

1) In the mobility-analysis phase, the observed online data
(e.g., vehicle speed and environment information) can
be used to update vehicle mobility reliability through
uncertainty reduction of the uncertainty sources. For
instance, the uncertainty in the terrain parameters can be
dynamically updated during the mission using Bayesian
methods [17]. The discrepancy between the mobility
prediction obtained from simulation and the underlying
true mobility can be reduced through mobility model
correction using the observed vehicle speed data [42].

2) In the mission-planning phase, the updated mobility
analysis can be implemented repeatedly for mission
replanning considering the kinodynamic constraints and
dynamic obstacles [8], [43].

APPENDIX

KARHUNEN–LOÈVE EXPANSION

The KL expansion [32] represents a Gaussian/non-Gaussian
random field as follows:

Y (x) = μY (x)+ σY (x)
NK L∑
h=1

√
λhξhηh(x) (42)

where μY (x) and σY (x) are, respectively, the mean and stan-
dard deviation of Y (x), ξh, h = 1, 2, . . . , NK L are standard
normal random variables, NK L is the number of expansion

terms, and λh and ηh(x) are the eigenvalues and eigenvectors
of a correlation matrix with (i , j ), element given by

ρ(xi , x j) = exp
[−β1(x1i − x1 j)

2 − β2(x2i − x2 j )
2]

∀i, j = 1, 2, . . . , Ndiscrete (43)

where xi = [x1i, x2i ] are spatial coordinates at location i , β1

and β2 are the correlation length parameters, and Ndiscrete is
the number of discrete spatial points. In this article, Ndiscrete

equals to the size of slope/soil ID matrix in each coordinate.
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