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Uncertainty quantification and reduction in metal additive
manufacturing
Zhuo Wang1,8, Chen Jiang 2,8, Pengwei Liu3, Wenhua Yang4, Ying Zhao2, Mark F. Horstemeyer5, Long-Qing Chen6, Zhen Hu 2,7✉ and
Lei Chen 1,7✉

Uncertainty quantification (UQ) in metal additive manufacturing (AM) has attracted tremendous interest in order to dramatically
improve product reliability. Model-based UQ, which relies on the validity of a computational model, has been widely explored as a
potential substitute for the time-consuming and expensive UQ solely based on experiments. However, its adoption in the practical
AM process requires overcoming two main challenges: (1) the inaccurate knowledge of uncertainty sources and (2) the intrinsic
uncertainty associated with the computational model. Here, we propose a data-driven framework to tackle these two challenges by
combining high throughput physical/surrogate model simulations and the AM-Bench experimental data from the National Institute
of Standards and Technology (NIST). We first construct a surrogate model, based on high throughput physical simulations, for
predicting the three-dimensional (3D) melt pool geometry and its uncertainty with respect to AM parameters and uncertainty
sources. We then employ a sequential Bayesian calibration method to perform experimental parameter calibration and model
correction to significantly improve the validity of the 3D melt pool surrogate model. The application of the calibrated melt pool
model to UQ of the porosity level, an important quality factor, of AM parts, demonstrates its potential use in AM quality control. The
proposed UQ framework can be generally applicable to different AM processes, representing a significant advance toward physics-
based quality control of AM products.
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INTRODUCTION
Additive manufacturing (AM) can offer tremendous time and cost
advantages over traditional manufacturing processes especially in
fabricating customized components with complex geometry1,2.
However, the complicated layer-by-layer manufacturing process
makes as-fabricated AM components prone to great variability in
both quality and properties3. Consequently, it is extremely
challenging to repeat the manufacture of a good-quality product
in mass production, as evidenced by the interlaboratory AM
tests4,5.
The variability in AM product quality is mostly caused by

uncertainty propagation from various uncertainty sources existing
in the complex AM process6. Typical uncertainty sources include
natural variation in powder absorptivity, fluctuation in tempera-
ture boundary, uncertainty in powder particle properties, and
many others7,8. To achieve quality control under uncertainty,
uncertainty quantification (UQ) is usually employed by quantita-
tively correlating quality to uncertainty sources and process
conditions, followed by process optimization9. This is typically
termed as “type I robust design” in mechanical design, i.e.,
optimizing control factors (process conditions) to reduce quality
variability caused by noise factors (uncertainty sources)10.
The melt pool and its geometrical characteristics, as one of the

most important process signatures developed during an AM
process11–13, are intimately associated with various properties of
as-fabricated AM parts. The melt pool thus acts as an effective
proxy for the overall product quality. A good predictive capability
for the melt pool geometry can serve as a basis for the efficient,

comprehensive UQ and quality control of an AM product. For
example, the elongated melt pool would induce a nearby steep
thermal gradient along the vertical building direction. It controls
the thermal-gradient dependent grain growth and hence the
columnar microstructure development within AM parts14. Such
thermal gradients might also dictate the primary dendrite growth
and thus the solidification textures at the sub-grain scale15. In
addition, it is widely known that the melt pool cross-sectional area,
which is typically measured by the pool width and depth, largely
determines the porosity formation due to insufficient pool
overlapping16. Therefore, the geometry of a melt pool is often
used as the quantity of interest (QoI) in the UQ analysis of AM17–19.
Model-based AM UQ as shown in Fig. 1 is a much more cost-

effective approach than experimental-based UQ, which comple-
tely relies on repetitive experiments while metal-based AM
experiments are notoriously expensive. In this context, a data-
driven surrogate model13,20 based on computational data is
strongly preferred (see Fig. 1a), to provide instantaneous knowl-
edge about a QoI, the melt pool in this case, under any AM
condition (see Fig. 1b). The computationally much less expensive
surrogate model is essential for a successful UQ, which requires a
tremendous number of realizations of QoI using a Monte Carlo
approach8. However, the current model-based UQ in metal AM
still faces an enormous challenge: the model uncertainty of the
predictive model6,8. Model uncertainty results in predictive
inaccuracy and basically arises from two aspects, namely, (1) our
inaccurate knowledge of uncertainty sources, and (2) bias of the
predictive model itself. First, there are usually very limited data on
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uncertainty sources, and thus there is a lack of accurate
distributions because their in-process measurements (e.g., fluctu-
ating power absorptivity) are challenging due to the complexity of
AM. Second, a computational model always contains a number of
assumptions or simplifications compared to true physics. This
leads to a discrepancy between the computational model and
reality21. In the AM community, a UQ study is essentially the
investigation of the variability in QoI originating from physics-
based uncertainty sources by using the predictive model. To
quantify the uncertainty of QoI in AM systems, one needs to ask
one question, that is, can we reduce the model uncertainty to
build a more accurate predictive model?
To our best knowledge, a melt pool surrogate model

incorporating the full pool dimensions, length (L), width (W), and
depth (D), does not exist. There has been a very recent attempt22

to develop the multi-fidelity melt pool surrogate model with the
calibration of uncertain parameters by using limited experimental
data. However, only experimental point data without measured
melt pool fluctuations were used for model calibration, and thus it
suffers from the data deficiency. Furthermore, all the experimental
data are directly used for calibration without model validity
assessment, potentially resulting in the inaccurate uncertainty
reduction (UR) during experimental calibration.

A successful data-derived model for the melt pool requires the
availability of a sufficient amount of quality data. For a surrogate
model derived from physics-based simulations, it requires
extensive simulations at sufficiently high resolution to provide
reliable training data. This can be a challenge for carrying out
computationally intensive three-dimensional simulations and
post-processing large-scale high-fidelity data. On the other hand,
acquiring three-dimensional experimental data of the melt pool
and its fluctuations is difficult, demanding close synergy between
in situ and ex situ measurements (see Fig. 1c). Finally, a successful
melt pool surrogate model should also be able to make the best
use of available data in the open data source.
In this study, we propose a sequential calibration and validation

(SeCAV) method23 with model bias correction to reduce the
uncertainty of the data-driven melt pool model (see Fig. 1d). It
allows us to make efficient predictions on the 3D fluctuating melt
pool geometry under arbitrary processing conditions (see Fig. 1e).
We take advantage of extensive simulation-obtained data through
high-throughput AM simulations9,24 and high-quality experiment
data from the AM-Bench project at NIST25. It should be
emphasized that while existing AM UQ analyses are mostly
limited to the melt pool geometry, we integrate the calibrated
melt pool surrogate model with a probabilistic porosity model (see
Fig. 1f), to facilitate the UQ analysis of practical product properties.

Fig. 1 Workflow overview. a AM thermal simulations at 300 sampling points are performed to provide a large training dataset of the pool
length, width, and depth; b a data-driven melt pool surrogate model is built based on the simulation-obtained data; c experimental data are
collected from AM-Bench tests25,30, for uncertainty reduction of melt pool model. The measured fluctuation information of the melt pool,
represented by the interval data of pool length, are especially used in the current calibration. These experimental data of three dimensions of
the melt pool are obtainable through a close collaboration between in situ monitoring and ex situ measurement; d a sequential Bayesian
calibration method (i.e., SeCAV) is adopted to systematically quantify the uncertainty sources by filtering the misleading information
contained in experimental data. The model bias of the as-built melt pool surrogate model is also corrected. Details of d can be seen in Fig. 3;
e upon validation the calibrated melt pool surrogate model is capable of efficiently predicting three dimensions of the developed melt pool,
as well as its fluctuation caused by uncertainty sources; f to illustrate the practical usefulness of the developed melt pool surrogate model, the
predicted pool width and depth information can be incorporated into a porosity predictive model, to investigate the uncertainty of porosity
formation and thus variability in porosity level among AM parts.
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RESULTS
Terminologies for uncertainties in AM
To facilitate the discussions, we first explain the terminologies for
UQ. We then present the data-driven melt pool model (Fig. 1b)
based on the computational data (Fig. 1a) followed by the
introduction of the UR for the initial melt pool model (Fig. 1d) by
calibration of uncertainty source parameters and correction of
model bias using the experimental data obtained in Fig. 1c. Finally,
the UQ analysis of the porosity level is carried out with the aid of
the calibrated melt pool model as shown in Fig. 1e, f.
Uncertainties are typically classified into two categories:

aleatory and epistemic6. For example, for the uncertainty on the
fluctuating power absorptivity, η, the power absorptivity, as well
as other uncertainty sources, are both aleatory and epistemic. The
aleatory uncertainty of the power absorptivity refers to the natural
variability in the power absorptivity, and thus the uncertainty
source parameter, η, is mathematically a distribution rather than a
point value. On the other hand, the epistemic uncertainties are
associated with artifacts by human and can be reduced. Therefore,
we have limited knowledge of the accurate distribution of η due
to the lack of a sufficient number of direct and repetitive
measurements of power absorptivity. Model bias is also a type of
epistemic uncertainty since it arises from a computational model
not capturing all the physics involved and can thus be reduced
through additional model correction.
The main objective of the UQ study in AM is to reduce epistemic

uncertainty towards reliable quantification of the aleatory
uncertainty and to determine how aleatory uncertainties from
different sources propagate to the aleatory-type variabilities in QoI
like the melt pool geometry or final product properties.

Melt pool surrogate model
As described in Fig. 1, we first perform 300 AM simulations at
random training points by the Latin hypercube sampling
method26. We then construct three initial melt pool surrogate
models for the melt pool length, width, and depth, respectively.
We conduct tenfold cross-validation to test the effectiveness of
the surrogate models in capturing the relationship between the
melt pool dimensions and the multiple inputs for the processing
parameters. We split all the training data into ten groups with one
group employed as test data and the other nine groups as training
data for each cross-validation test. We adopt the Gaussian process
(GP) model27, one of the most widely used and tested machine
learning techniques, for surrogate modeling with the details of GP
presented in Supplementary Note 3.
The cross-validation results in Fig. 2 show a very minor

deviation of all points from the reference line of y= x, implying

a high prediction accuracy of the surrogate model. The average
relative errors for the melt pool length/width/depth prediction are,
respectively, 5.74%, 3.26%, and 10.08%, giving us confidence that
the computationally intensive AM simulations can be replaced by
the constructed melt pool surrogate models.

Model UR
The as-built melt pool surrogate models require model UR, i.e., the
calibration of the uncertainty source parameters and the
correction of model bias. We employ ys(x, θ) and ye(x) to represent
the AM simulation-derived surrogate model prediction and the
corresponding experimental observation for the QoI, y. They are
simply related by

yeðxÞ ¼ ysðx;θÞ þ δðxÞ; (1)

where δ(x) is the model bias between the simulation model/
surrogate model prediction and the experimental measurement,
x represent controllable variables that can be precisely controlled
during experiments (e.g., laser power and scanning speed), and
θ is the uncertainty source parameters to be calibrated (see
Table 1). The θ parameters are distribution-type in nature, and so
is ye(x) by uncertainty propagation. The accurate distributions of
θ are unknown and thus require inverse inference from limited
experimental data ye(x). To confidently predict QoI and its
uncertainty for any given x, we will perform the calibration of
uncertain parameters θ and determine the model bias δ(x) to
systematically reduce the model uncertainty.
We conduct the calibration of uncertain parameters employing

Bayesian calibration28, which is one of the most popular methods
for statistical inference (see Fig. 3a). The conventional Bayesian
calibration, represented by Direct1 in this paper, yields a
quantitative update of uncertainty based on probability theory.
As shown in Fig. 3a, solving the Bayesian problem involves
computing the posterior probability density function (PDF) of

Fig. 2 Comparison of the melt pool between the AM simulation and surrogate model prediction through tenfold cross-validation (CV).
The surrogate model predictions, including a melt pool length, b melt pool width, c melt pool depth, show minor deviation from the AM
simulation and thus can replace the time-consuming AM simulation.

Table 1. Prior distribution of uncertainty source parameters based on
authors’ domain knowledge.

Uncertainty source parameters θ Range Distribution type

Preheating temperature, Tpre (°C) 60–100 Uniform

Laser absorptivity, η 0.4–0.6 Uniform

Gaussian power distribution radius, rb (μm) 50–70 Uniform

Heat convection coefficient at the surface,
h (Wm−2 °C−1)

5–25 Uniform

Ambient temperature, Ta (°C) 25–50 Uniform

Z. Wang et al.
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uncertain parameters f(θ∣ye) with the knowledge of the experi-
mental data (i.e., ye) of QoI

f θ yejð Þ
zfflfflffl}|fflfflffl{posterior

¼ f ye θjð Þ
zfflfflffl}|fflfflffl{likelihood

f ðθÞ
z}|{prior

f yeð Þ|{z}
evidence

/ f ye θjð Þf ðθÞ; (2)

where f(θ∣ye) represents the likelihood or probability of observing
ye for the AM simulation model ysðx;θÞ with respect to different
specific values of θ as shown in Fig. 3a. f ðθÞ is the prior PDF of
uncertain parameters (i.e., before observing data ye), and the f ðyeÞ
is the probability for the given evidence ye and is usually fixed.
There are different methods for computing f ðθ yej Þ. Here, we

employ the particle filter29 involving the prior sampling, likelihood
weighting, and posterior resampling.
It should be pointed out that conventional Bayesian calibration

ignores the uncertainty stemming from the model discrepancy
(i.e., δðxÞ between the simulation model and the reality in Eq. (1))
as well as the potential measurement error while calculating the
likelihood f ðye θj Þ, which may result in inaccurate posterior
distributions. To address this challenge, one can add a zero-
mean random noise to capture the aforementioned uncertainty in
the estimation of f ðye θj Þ as follows:

f ye θjð Þ ¼
YNe

i¼1

f yiejxie;θ
� � ¼ YNe

i¼1

ϕ
yie � μs xie;θ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
s xie;θ
� �þ σ2

noise

q
0
B@

1
CA; (3)

Fig. 3 Illustration of different calibration approaches. a The conventional Bayesian calibration (i.e., the direct method), b the SeCAV method
for uncertain source parameters, and c model bias correction. The direct method in a updates the prior knowledge of the uncertain
parameters listed in Table 1 using all the information (i.e., the likelihood) provided by the experimental data from AM benchmark tests (see
Fig. 1c). In b, the SeCAV method implements the model validation and calibration in a sequential manner. In each iteration, the model
validation serves as a filter to select the experimental data with the maximum confidence probability for the Bayesian inference. After that, the
current posterior distributions of the uncertain parameters are updated by averaging the results of Bayesian inference and the previous
posterior distribution, with the confidence probability as a weight factor. In c, the model bias is corrected by training a bias surrogate model
with the bias data that is obtained at the maximum a posterior probability (MAP) estimation of the sequentially updated posterior
distribution. Finally, the posterior prediction of the calibrated/updated melt pool model is calculated based on the results of calibration
(i.e., fSeCAVðθ yej Þ) and correction (i.e., δðxÞ).
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where ye ¼ ðy1e ; y2e ; ¼ ; yNe
e ÞT , μsðxie; θÞ and σ2

s ðxie;θÞ are, respec-
tively, the mean prediction and variance of AM simulation-derived
surrogate model, i.e., ysðx;θÞ, σ2

noise is the variance of the added
random noise to account for all possible sources of uncertainty
excluding surrogate prediction uncertainty. This kind of Bayesian
method, namely Direct2, simultaneously updates the calibration
parameters and the standard deviation of random noise using
experimental data.
Moreover, we develop a SeCAV method23 that implements the

physics-based model validation and Bayesian calibration by using
each of experimental data (i.e., ye) of QoI in a sequential manner,
as illustrated in Fig. 3b. In each iteration, the physics-based model
validation is first conducted at each experimental data point to
answer the question: to what degree can we trust the likelihood
f ðye θj Þ and the Bayesian calibration result obtained based on
f ðye θj Þ. Therefore, a confidence probability, PλðxieÞ, is calculated
for each data by

Pλ xie
� � ¼

Z
Pr εrðxieÞ θj � εcr
� �� 	

~f ðθÞdθ; (4)

where εrðxieÞ θj is the relative error of ysðxie; θÞ with respect to
yeðxieÞ, εcr is a confidence threshold, ~f ðθÞ is the current prior
distribution updated by the result of the previous iteration. In the
sequential circle of Fig. 3b, the physics-based model validation
serves as a filter to select the experimental data with the
maximum confidence probability for the subsequent Bayesian
calibration. A larger confidence probability means a more trust-
worthy calibration result, and thus a larger weight will be given to
the Bayesian calibration in weighted averaging. Otherwise, we
retain the calibration result from the previous iteration. In ith
iteration, the distribution of θ is updated by

fSeCAVðθjyimax
e Þ ¼ Pλðximax

e ÞfBayeðθjyimax
e Þ þ ð1� Pλðximax

e ÞÞ~f ðθÞ; (5)

where ðximax
e ; yimax

e Þ is the data with the maximum confidence
probability, fBayeðθjyimax

e Þ is the posterior distribution updated by
Bayesian calibration using data ðximax

e ; yimax
e Þ. Such a weighted

averaging in a sequentially updating manner from larger
confidence to lower confidence enables a great trade-off between
the accuracy and UR.
We further correct the bias between the melt pool model and

true physics by building another GP model for the bias (see
Fig. 3c). The training data, i.e., (x, δ(x)), are observed by fixing
uncertain parameters θ at the values with the maximum posterior
PDF. We finally achieve a reliable and accurate posterior prediction
of melt pool surrogate model by integrating the simulation-
derived surrogate model with respect to the posterior distribution
of uncertain parameters and by adding the prediction of the bias
surrogate model.

Calibration of uncertainty source parameters
We consider the five uncertainty source parameters θ listed in
Table 1. An intuitive approach to determine their accurate
distributions is based on copious point data obtained from a
sufficient number of repetitive measurements. While directly
measuring the uncertainty sources during the AM process (e.g.,
fluctuating laser power absorptivity) is often technically challen-
ging and sometimes even impossible, we would inversely infer
their distributions based on relatively easily measurable QoI, here
the melt pool and its fluctuations. This is basically accomplished
through experimental calibration of their assumed prior
distributions.
As shown in Table 2, we use seven groups of experimental melt

pool data (i.e., yeðxÞ) taken from the AM-Bench project by NIST30.
The pool fluctuation is represented by the interval data of
measured pool length. We assume that the inferred uncertainty
sources from the measured pool length alone should be
trustworthy and shared for predicting the whole melt pool

geometry. Because for a given AM machine, the variabilities in the
pool length and the whole pool are caused by the same
uncertainty sources. Note that the current study uses single-
track AM data. Nonetheless, the present approach can be readily
extended to multi-track AM scenarios with the availability of multi-
track experimental data.
Figure 4 shows updated distributions (i.e., posterior distribu-

tions) of various uncertainty source parameters after experimental
calibration, by using the direct and SeCAV methods, respectively.
For all methods, the calibrated uncertain parameters exhibit
apparently more concentrated distributions compared to their
original assumed ones, i.e., there is a reduction of epistemic
uncertainty via experimental calibration. However, the calibration
results are rather different from each other. For the Direct1
method, the calibrated uncertain parameters tend toward quite
narrowed distributions with spiky peaks, indicating little aleatory
uncertainty or natural variability of these uncertainty sources. The
Direct2 and SeCAV methods, however, leads to uncertainty
parameters with relatively flat distributions, implying a great
natural variability in those uncertainty sources. The results by
Direct2 and SeCAV seem to be more plausible based on previous
researches. For example, the Gaussian power distribution radius
assumed in prior researches exhibits large differences, ranging
from 5031 to 70 μm30, both for simulating a selective laser melting
process based on an EOSINT M270 machine at NIST. For the
selective electron beam (EB) melting process (based on an Arcam
S12 machine), the adopted power absorptivity varies from
0.632–0.933. The distinctive values adopted by different groups of
researchers basically may be considered as the aleatory uncer-
tainty or natural variability.
The erroneous inference about uncertain parameters in the

Direct1 method may stem from the model bias by the thermal
model/GP model. It may also be due to the fact that the whole
experimental data are directly used (see Fig. 3a) with potentially
wrong information included, thus causing herein the over-
calibration of uncertain parameters, which may further affect the
prediction accuracy of the calibrated melt pool model (see Fig. 5),
as detailed in the next subsection. Note that unlike the Direct1
method, it is hard to explicitly assess the inaccuracy of the Direct2
method in parameter calibration. Later, we will further investigate
the finally calibrated models by the three methods.
A closer examination of SeCAV calibration results by adjusting

the scale of plots (see insets in Fig. 4) shows obvious peaks or
multi-peaks in the distributions of five uncertainty sources, but far
less spiky than those from the direct Bayesian calibration results.
These smoother peaks are reasonable because uncertainty sources
fluctuate, and the fluctuations should naturally center around
some specific expectations.

Table 2. Experimental data of the melt pool taken from the AM-Bench
project by NIST30.

Melt pool dimensions
(μm)

Number of
experiments

Laser
power,
P (W)

Scanning
speed, V
(m s−1)

Length Width Depth

1 49 0.2 171 ± 16 111 24

2 122 0.2 519 ± 29 186 48

3 122 0.5 361 ± 27 134 33

4 122 0.8 315 ± 27 117 25

5 195 0.2 824 ± 109 259 109

6 195 0.5 903 ± 102 162 49

7 195 0.8 813 ± 79 133 38

Z. Wang et al.
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Fig. 5 Melt pool prediction at the third experimental data. The prior and posterior mean prediction of a melt pool length, b melt pool
width, and cmelt pool depth, as well as d–f the corresponding probability contours showing the prediction uncertainty. It is worth noting that
prior prediction is directly estimated by the melt pool surrogate models (trained in Fig. 1b) with the assumed prior distributions of the
uncertain parameters. The comparison results in c indicate that the melt pool depth prediction sees an increment of the prediction accuracy
at the test data (No. 3) after uncertainty reduction. In d–f, the locations of black line/pentagram represent the true melt pool length, depth,
and width of the No. 3 experimental data. Both the direct and SeCAV methods greatly reduce the prediction uncertainty, but SeCAV yields
more accurate results.

Fig. 4 Experimental calibration of uncertainty source parameters by using the direct Bayesian and SeCAV methods. The uncertainty
source parameters, including a preheating temperature, b laser absorptivity, c Gaussian power distribution radius, d heat convection
coefficient, and e ambient temperature, see a significant uncertainty reduction, presenting as a more concentrated distribution after
experimental calibration.
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It can also be observed that different uncertainty sources
exhibit different distribution characteristics such as the distribu-
tion width, indicating inherently different variation levels and
patterns for different uncertainty sources. For example, ambient
temperature and preheating temperature in the manufacturing
chamber are supposed to show fewer fluctuations as a result of
advanced control algorithms and, therefore, have smaller peaks
with relatively narrow variations. We would like to note that
uncertainty sources, in general, should fluctuate around one
specific value like the setting value for the ambient temperature.
However, here the multiple peaks are not calibration errors from
the inadequacy of the SeCAV method. Instead, they are attributed
to the limited experimental data, as well as to the further filtering
for the useful information by the SeCAV method. Additional
experimental data are expected to further reduce the aleatory
uncertainties (probably leading to single-peak form) and improve
the calibration results.

Bias correction of melt pool model
We further perform model bias correction using the maximum a
posterior probability (MAP) estimated from the posterior distribu-
tion shown in Fig. 4. We then train another surrogate model for
the model bias shown in Fig. 3c. It is shown that the uncertainty of
the melt pool surrogate model is greatly reduced by using the
posterior distributions shown in Fig. 4 and by incorporating the
surrogate model of the model bias.
Figure 5 illustrates the influence of model UR on the prediction

accuracy. Here we select the third cross-validation, in which case
No. 3 experiment data is selected for validation while the
remaining data are used for calibration. The parameter calibration
and bias correction lead to a better agreement between the
prediction surface and experimental data at No. 3 data in Fig. 5a–c.
Table 3 also indicates the clear improvement (i.e., the posterior
prediction is closer to the true value) of prediction accuracy, which
emphasizes the necessity of experimental calibration in Fig. 1c for
the UQ analysis after the melt pool surrogate modeling in Fig. 1b.
Figure 5d–f provides the joint probability contours of the posterior
predictions considering their uncertainty with the No. 3 test data,
which will be utilized by the subsequent UQ of porosity level. They
demonstrate that the prediction uncertainty is reasonably reduced
by SeCAV compared to the prior prediction and that of direct
methods.
A comparison between the direct and SeCAV methods

illustrates their different efficacy in UR. The predicted mean width
and depth using the SeCAV method are close to the true values
whereas the direct methods show relatively large errors. The
inaccurate prediction for the direct methods stems largely from
the incorrect parameter calibration in Fig. 4. It thus implicitly
demonstrate the relative inaccuracy of the Direct2 method in
earlier parameter calibration. We obtain similar conclusions by
comparing the joint probability contours of the posterior
distribution for the predicted melt pool length and width, or the
predicted melt pool length and depth from the two methods.
Figure 6 summarizes all the seven leave-one-out cross-

validation results by using direct and SeCAV methods. Overall
the predictions from the surrogate model calibrated by using the

SeCAV method match well with experimental measurements. In
Fig. 6b, c, nearly all point data (measured pool width and depth)
are located within the predicted intervals. However, in Fig. 6a,
comparing the predicted and measured pool length reveals a
general overestimation of the variability in the melt pool. This
overestimation might be alleviated or even eliminated with the
availability of additional experimental data by further UR and
enhanced inference of uncertainty sources. Nevertheless, for all
seven cases in Fig. 6a, the currently predicted intervals well
encompass practical pool length variations, indicative of our
experimental calibration proceeding in the correct direction. For
the calibrated surrogate model by using the direct methods, one
can easily notice large errors in the estimations of the uncertainty
source induced fluctuations; see Fig. 6a. Due to inaccurate
inference about uncertainty source parameters, the calibrated
surrogate model by using the Direct1 method would subsequently
suggest near-zero variability in melt pool length, which is clearly
contradictory to the experimental facts. The prediction errors are
thus essentially caused by the aggressive and improper parameter
calibration of the direct method in the presence of misleading
experimental information. The Direct2 method shows clearly
improved results but is still less accurate than the SeCAV method
in predicting the fluctuation of pool length in Fig. 6a.
It is noteworthy that a few outliers can be observed especially in

case 5 (see Fig. 6b, c). They are explained by the rather complex
physics underlying AM processes. Case 5 involves an extreme
combination of very high laser power and slow scanning velocity,
thereby likely triggering the known keyhole-mode melting34. This
led to the melt pool development greatly deviating from the
general tendency with laser power and scanning speed. To resolve
this issue, dense experimental data in and near this special
processing condition are desired, which will improve the surrogate
model to better capture such special physics via improved model
bias correction.

UQ of porosity level
The main objective for building a melt pool surrogate model is to
assist the estimation and control of the practical AM product
properties. Therefore, we further integrate our calibrated melt
pool surrogate model and a probabilistic porosity predictive
model (see Fig. 1e, f), to examine the porosity formation and its
uncertainty over the P–V space.
Figure 7 plots the porosity level of AM parts as a function of the

processing conditions. It can be seen that the average porosity
level of AM parts, μ(a), would increase with decreased laser power
and increased scanning speed. This is intuitively expected because
small melt pools are usually formed under these conditions
leading to a higher possibility of insufficient pool overlapping and
thus porosity formation. Interestingly, the variability in porosity
level among parts, σ(a), follows a similar trend; that is, AM parts
show a greater σ(a) by decreasing laser power and increasing
scanning velocity. There is typically a trade-off between minimiz-
ing the variation and bringing the mean on target35. For example,
in the objective function, these two objects are usually assigned
specific weights, depending on their individual significance in a
particular design problem. However, it is shown that such a trade-
off does not exist in controlling the porosity level within AM parts.
The association of μ(a) and σ(a) with process parameters are
relatively simple and similar to one another. It is clear that
minimizing μ(a) leads to the minimization of σ(a). This is largely
attributed to the AM porosity control problem itself, in which case
the pool size and thus lack-of-fusion porosity formation has a
simple, monotonical relationship with process conditions (laser
power and scanning speed). This leads to a relatively simple
relationship of μ(a) and σ(a) with process conditions. In addition,
once the pool cross-sectional area achieves a critical size, fully
dense AM parts (a= 0) with zero lack-of-fusion porosity are

Table 3. Mean predictions at No. 3 experimental data.

Method Length (μm) Width (μm) Depth (μm)

True value 361 ± 27 134 33

Prior 497.4 139.1 42.2

Direct1 412.7 120.8 39.9

Direct2 463.4 133.6 40.6

SeCAV 405.8 132.3 32.7
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obtained, causing the porosity level to plateau, as seen in the 3D
surface in Fig. 7a. Mathematically, this plateau would not allow any
variability of porosity level therein when we are trying to
introduce perturbations, for example, by uncertainty sources in
practice. This in turn results in the plateau (σ(a)= 0) of σ(a) surface
over a similar P–V space. Regarding those facts, when one
performs process optimization or robust design, minimal mean
and minimal variation of porosity level would be achieved
simultaneously and exclusively in the shared plateau region, i.e.,
combinations of high laser power and low scanning speed.

DISCUSSION
There have been numerous recent reports on data-driven
modeling techniques (especially machine learning based36,37) in
AM, aiming at accelerating quality prediction and process
optimization. These efforts require high-quality AM-related data.
The AM-Bench project led by NIST is exclusively devoted to
developing a continuing series of highly controlled AM bench-
mark tests. While AM experiments are expensive, AM-Bench offers
a data source of high-quality experimental data. Here, we
emphasize advantages by adopting the experimental data from
the AM-Bench project. The AM-Bench project provides a fairly
wide range of experimental data in addition to the melt pool data
used in this study. They include in-process cooling rates, thermal
field data, residual elastic strains, microstructure (e.g., grain size,
aspect ratio, and primary arm spacing), and many more25. The
complete data cover different phases of the entire AM process,
allowing modelers to build and test various multi-level multi-

physical simulation models in a level-by-level manner. This, for
example, could aid in a smooth extension of the current melt pool
model to a well-validated multi-scale AM model in the near future.
One may otherwise acquire all wanted data such as the three
dimensions of a melt pool compiled from multiple data sources,
for which data scattering can exist due to machine-to-machine
variability, different human interventions among operators, etc.
This results in inconsistency and poor quality of collected data
sets. On the contrary, the AM-Bench project offers highly
controlled and rich AM experimental data that can meet various
model testing needs.
In addition to high-quality experimental databases, advanced

model UR techniques enabling the best use of the databases are
also critical to building and updating a useful data-driven
surrogate model. In spite of the direct and SeCAV methods used
in this work, many other methods, such as the optimization-based
calibration38, the well-known KOH framework39, and its var-
iants40,41, have been proposed to build an accurate data-driven
model. The optimization-based calibration method is strongly
affected by the potentially wrong information if the bias between
the simulation model and true physics is large, while the KOH
framework and its variants may be misled by the assumed prior
distribution of the uncertainty source parameters due to a lack of
knowledge. It has been observed that SeCAV is able to make full
use of the experimental data for reducing the prediction
uncertainty and improving the prediction accuracy of a data-
driven model23. In addition, SeCAV is not highly sensitive to the
assumed prior interval of calibration parameter; see the illustrative
example in Supplementary Note 5.

Fig. 6 Experimental validation of the melt pool surrogate model with the calibration of uncertain parameters and correction of model
bias.We compare the three calibrated models in predicting: a pool length, b pool width, and c pool depth. It should be pointed out that box-
plots in blue should not be mistaken as lines; instead, they just reflect near-zero fluctuations of pool geometry predicted by the calibrated
surrogate model using the Direct1 method.

Fig. 7 Power and velocity map of the porosity level. a The mean and b standard deviation of porosity level of AM parts as a function of laser
power and scanning speed. Here either the average or standard deviation of porosity level is meant for a bunch of AM parts manufactured
under a specific power–velocity combination or processing condition. Note that, the variability in porosity level among AM parts of the same
bunch is basically caused by two-step uncertainty propagation from uncertainty sources, which first causes the fluctuation of melt pool
development and then the uncertainty of porosity formation within the AM part.
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As mentioned above, the melt pool is closely related to various
properties of AM product, such as columnar grain microstructure,
solidification texture at sub-grain scale, and lack-of-fusion porosity.
The present study has shown that a melt pool surrogate model
may be linked to an analytical porosity model to understand and
control the lack-of-fusion porosity within AM parts. The proposed
surrogate model can also be integrated with some other types of
AM models as well as experiment-derived empirical rules,
enabling quick estimation of various practical properties. For
example, the melt pool cross-sectional area scales with the
solidification cooling rate42, which governs the columnar-to-
equiaxed transition of the grain structure of an AM part. For
example, it was shown that by maintaining a constant melt pool
width, a constant average beta grain size can be achieved, with a
scaling factor of ~20 grains per melt pool width43. Furthermore,
increasing the melt pool width would increase the time for heat to
conduct from the melt pool into its surrounding powders, thus
resulting in a partially molten powder that subsequently increases
surface roughness44. The proposed melt pool surrogate model in
this work may be applied to model all of these microstructure
processes and estimate their influences on AM parts.
In summary, a data-driven three-dimensional melt pool model

for AM is developed by extensive high-throughput high-resolution
simulations of melt pools and the AM-Bench data provided by
NIST. The SeCAV method was demonstrated to be the most
effective in the UR of the as-built melt pool surrogate model,
including the calibration of uncertainty source parameters and
correction of model bias by intelligently filtering the misleading
part. The measured uncertainty information of melt pools was
used for the rigorous quantification of uncertainty source
parameters via inverse inference. The uncertainties of as many
as five uncertainty sources have been quantified. Different
uncertainty sources exhibit different variation levels and patterns,
instead of simple uniform distributions as usually assumed. With
the expected availability of additional melt pool data (e.g.,
fluctuations of the whole 3D pool and pools developed in
keyholing conditions) and continuous update of the NIST AM-
Bench database, it will lead to further UR of uncertainty sources
and improved model correction. The calibrated melt pool
surrogate model can be applied to the UQ of a range of
microstructure evolution processes and their influence on proper-
ties in AM, including the porosity level. This work presents a clear
path towards developing surrogate models for UQ and control of
practically meaningful properties of AM.

METHODS
Finite-element-based thermal model
In the metallic AM process, a high-power moving energy sources, such as
laser or EB, is usually applied. This results in a high-temperature melt pool
that fuses metal powders together upon solidification. In this study, a
finite-element-based heat transfer model incorporating a moving heat
source is utilized to predict the in-process temperature field development,
from which geometrical information of the developed melt pool is
extracted based on the T= Tsolidus isothermal line; see Fig. 1a.

Probabilistic porosity model
In recent years, numerous porosity predictive models, including analytical
models and multi-physical simulation models, have been developed for
the AM process. They cover the quantitative and/or qualitative predictions
of different types of pores formed in the AM process, such as keyhole-
melting caused porosity, inter-track lack-of-fusion porosity, and surface
porosity due to unstable melt flow. For illustration purposes, in this study, a
probabilistic porosity model45 is adopted to predict the lack-of-fusion
porosity level within as-built AM components, with the melt pool width
and depth information fed from the calibrated melt pool surrogate model.
Other porosity models like the computationally heavy physical simulation
model can be also chosen depending on research interests, but a
surrogate model may need to be trained to replace the physics-based

porosity model for efficient UQ. In this study, the selected porosity model
itself is essentially a lightweight analytical model, thus ready-to-go for UQ
analysis.

Model UR
As mentioned early, while well-trained for the AM simulation, the data-
driven surrogate model is not recommended to directly predict the physics
responses during the UQ analysis. Due to the presence of the uncertainty
source parameters as well as the unavoidable model bias between the AM
simulation and the true physics, the predictive ability of the surrogate
model necessarily requires to be improved through model UR, i.e., the
calibration of uncertainty source parameters and correction of the model
bias using the true physics data. To achieve the improvement, the SeCAV
method is employed to infer the distribution of the uncertain parameters.
At the same time, the model bias is corrected by constructing another bias
surrogate model with MAP estimation.
For details on the above three models, readers are referred to

Supplementary Notes 1, 2, and 4, respectively.
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