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ABSTRACT 

Identifying a reliable path in uncertain environments is essential for designing reliable off-road 

autonomous ground vehicles (AGV) considering post-design operations. This paper presents a 

novel bio-inspired approach for model-based multi-vehicle mission planning under uncertainty 

for off-road AGVs subjected to mobility reliability constraints in dynamic environments. A 

physics-based vehicle dynamics simulation model is first employed to predict vehicle mobility 

(i.e., maximum attainable speed) for any given terrain and soil conditions. Based on physics-

based simulations, the vehicle state mobility reliability in operation is then analyzed using an 

adaptive surrogate modeling method to overcome the computational challenges in mobility 

reliability analysis by adaptively constructing a surrogate. Subsequently, a bio-inspired 

approach called Physarum-based algorithm is used in conjunction with a navigation mesh to 

identify an optimal path satisfying a specific mobility reliability requirement. The developed 

Physarum-based framework is applied to reliability-based path planning for both a single-

vehicle and multiple-vehicle scenarios. A case study is used to demonstrate the efficacy of the 

proposed methods and algorithms. The results show that the proposed framework can 

effectively identify optimal paths for both scenarios of a single and multiple vehicles. The 

required computational time is less than the widely used Dijkstra-based method. 

 

Keywords: Mobility reliability, Path planning, Simulation, Physarum algorithm 
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1 INTRODUCTION 

Off-road autonomous ground vehicles (AGVs) and other types of robotics are drawing 

increased attention in recent years as they are able to work in dangerous situations such as 

wildfires or earthquakes [1], and replace humans in fields such as agricultural and battlefield 

[2]. The design of reliable autonomous engineering systems, such as off-road AGVs studied in 

this paper, is a challenging issue since it must consider post-design autonomous operations (e.g. 

path/mission planning or re-planning) to guarantee the reliability of the system during 

operation.  

One of the most important aspects in design of reliable AGVs considering post-design 

operations is mission planning (also called path planning). For a given vehicle design, a 

properly planned path using model-based approach will help the AGV to better accomplish the 

mission in the post-design stage with higher speed [3], lower energy consumption [4], and 

higher reliability [5]. The goal of this paper is to develop a model-based mission planning 

framework to guarantee the reliability of AGV operation in the early design stage. As shown 

in Fig.1, a proper model-based off-road mission planning process mainly consists of two phases: 

(1) transforming the target map into a vehicle mobility map using the target map information 

and the off-road mobility predictive model, and (2) finding the optimal path under predefined 

mission requirements based on the vehicle mobility map. 

In the first phase, the first step is to build a simulation-based mobility predictive model to 

predict vehicle mobility in items of speed, acceleration, or energy consumption for the off-road 

AGVs. In the past decades, many off-road mobility models, such as the NATO Reference 

Mobility Model (NRMM) [6, 7], the next-generation NRMM (NG-NRMM) [8, 9], the physics-

based deformable tire–soil interaction model [10], and the Bekker’s derived terramechanics 

model (BDTM) [11], have been developed to predict the vehicle dynamic performance under 
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different conditions. Plugging the terrain-related parameters associated with a target map and 

the vehicle-related parameters into the mobility predictive model enables the generation of a 

vehicle mobility map, which provides the vehicle performance prediction, in terms of the mean 

maximum pressure (MMP) [12] or the maximum vehicle speed of the vehicle at each location 

[13]. 

-------------------------------- 

Place Figure 1 here 

-------------------------------- 

Since the terrain-related parameters (e.g., terrain slope and soil properties) are not constants 

but vary due to weather variations for example, the obtained vehicle mobility at each spatial 

location is uncertain. To consider the uncertainty in the vehicle mobility prediction, many 

methods have been developed. For instance, Haug et al. [14] described the domain of mobility 

when an object is moving in an area with obstacles. Gonzalez et al. [13, 15] developed a 

geostatistical approach to predict the off-road mobility and generate a mobility map over a 

large area. Choi et al. [16] proposed a framework to construct a reliability-based stochastic 

mobility map. Jayakumar et al. [17] built a method to generate a mobility map using machine 

learning algorithms such as support vector machines and neural networks. Hu et al. [18] 

established a testing design optimization approach to reduce the uncertainty when generating 

the mobility map. 

In the second phase, many approaches have been proposed to determine an optimal path 

for off-road vehicles by using the mobility information and considering the uncertainty or risk 

associated with the area of the mission. For instance, Yang [19] proposed a Nonperiodic B-

Spline Curves-based path planning approach for autonomous robots or vehicles to avoid 

obstacles in the mission area. Rapidly-exploring random trees (RRT) has been used for path 
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planning considering uncertainty in the terrain [20]. Liu et al. [1] proposed an A-star based 

approach to find a robust path in complex off-road environment. Sun et al. [21] introduced a 

stochastic extended linear quadratic regulator (SELQR) approach by minimizing the expected 

value of a user-defined cost function and modeling the uncertainty with a Gaussian distribution. 

A linear-quadratic Gaussian motion planning (LQG-MP) with RRT has been developed by 

Berg [22] to generate a proper path under Gaussian uncertainty. Zhang et al. [23] proposed a 

geometric reinforcement learning algorithm for path planning by considering risk in the reward 

matrix. Chao et al. [24] introduced a grid-based RRT* approach that provides a path with 

minimum risk in the dangerous area. Moreover, in order to consider the dependence of the 

uncertain terrain-related parameters over the target map, Jiang et al. [5] proposed a R2-RRT* 

method by combining a state mobility reliability (space independent) and mission mobility 

reliability (space dependent)) to identify an optimal path satisfying a required mission 

reliability level [25]. 

Although the existing approaches have achieved acceptable results in finding the optimal 

mission path, there are still some limitations. First, some approaches used empirical models 

instead of high-fidelity multi-body dynamic models to predict vehicle mobility in off-road 

conditions, which could lead to large errors in the vehicle mobility prediction. Some other 

approaches used a certain type of high-fidelity vehicle dynamic models as the mobility 

predictive model, which is computationally very costly and is not suitable for model-based 

mission planning in uncertain off-road environment. Secondly, even though mission planning 

for an unmanned aerial vehicle (UAV) swarm has been widely studied [26-28], multi-vehicle 

model-based mission planning for off-road AGVs has been rarely studied. Also, if the map is 

not properly represented, it will increase the computational effort and calculation time which 

is undesirable in dynamic missing planning in changing environment. 
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To overcome the aforementioned limitations, we proposed a novel path planning approach 

based on a bio-inspired Physarum-based algorithm. We first use an open-source high-fidelity 

dynamic simulation model named PyChrono to predict vehicle mobility in uncertain off-road 

environment [29]. To overcome the computational challenge in mobility prediction uncertainty 

caused by the PyChrono simulations, we employ an adaptive surrogate modeling method to 

construct an efficient and yet accurate surrogate model of the original mobility simulation 

model. The constructed surrogate model is then used to generate a probabilistic vehicle 

mobility map by considering various uncertainty sources in the terrain and soil parameters. 

After that, we transform the original mobility map into a navigation map using a navigation 

mesh to further reduce the computational time in mission planning by reducing the nodes and 

edges in a network used to represent the map. Finally, we develop single vehicle and multi-

vehicle path planning subjected to a reliability constraint using a novel Physarum-based 

algorithm. The main contributions of this paper are summarized as: (1) a systematic reliability-

based multi-vehicle mission planning framework is developed for AGVs in uncertain off-road 

environments using model-based approach in the early design; (2) synthesis of an adaptive 

surrogate modeling method and a navigation mesh is used to drastically reduce the 

computational time in reliability-based mission planning; and (3) a novel bio-inspired 

Physarum algorithm is used to efficiently perform multi-vehicle mission planning in a dynamic 

environment. Even though the proposed method is demonstrated using an off-road AGV, it is 

also applicable to path planning of unmanned aerial vehicles in uncertain environment. 

The remainder of this paper is organized as follows. Section 2 describes the off-road 

mobility model and the off-road mission planning. Section 3 introduces the proposed 

Physarum-based approach. Section 4 uses a case study to demonstrate the proposed algorithms. 

Finally, Section 5 draws conclusions. 
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2 BACKGROUND 

2.1 Off-Road Vehicle Mobility Analysis Model 

Although many approaches have been developed in the past decades, it is still a challenging 

issue to accurately predict the off-road mobility of an AGV due to the complex physical 

interactions between the vehicle and terrain [30], especially for deformable terrain conditions. 

For example, Rubinstein et al. [31] developed a detailed multi-body dynamic simulation model 

for tracked off-road vehicles. Liang et al. [32] proposed a semi-empirical approach of tire 

modeling to simulate the tire/terrain interaction. Krenn et al. [33] combined soft soil contact 

models with Bekker’s terramechanics theory to create an efficient approach for multi-body 

dynamic simulation. Senatore et al. [34] used rigid wheels and flexible tires to build a tire 

model for off-road dynamic simulation. 

In this paper, the open source multi-physics simulation package, PyChrono [35, 36], is 

employed to predict vehicle mobility for any given terrain/soil conditions and to generate a 

vehicle mobility map (Phase 1 in Fig. 1). PyChrono is the Python version of Chrono which is 

programmed in C++. The advantages of PyChrono are that it is simple to use and to be 

combined with other python libraries. More specifically, the Pychrono: Vehicle module is used 

in this paper. It provides different types of vehicles running on a rigid, granular, or deformable 

terrain. A driving vehicle controller can also be used for closed-loop or interactive vehicle 

behavior control. Fig. 2 shows two simulation examples in PyChrono. 

-------------------------------- 

Place Figure 2 here 

-------------------------------- 

The vehicle frames in the PyChrono module are defined using ISO 8855:2011. Fig. 3 
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presents an overview flowchart of the interactions of different modules during the simulation. 

As shown in Fig. 3, all subsystems can be customized in the simulation. For example, the 

vehicle type, the powertrain, and tires can be switched for different predefined vehicle types in 

the module, and the driver and terrain can be defined by assigning different values. 

In this paper, the SCMDeformableTerrain module is used for the terrain to better represent 

the interaction between tire and soil. The model is defined by Gallina et al. [37] and its input 

parameters are summarized in Table. 1. 

-------------------------------- 

Place Figure 3 here 

-------------------------------- 

-------------------------------- 

Place Table 1 here 

-------------------------------- 

Fig. 4 presents an example of the inputs and output of the off-road vehicle mobility 

prediction model. As indicated in the figure, the model takes a height map, soil parameters, and 

the coordinates of the path as input. Based on these inputs, it predicts the performance of a 

specific vehicle following a path in a defined area. Various vehicle characteristics including 

vehicle acceleration, vehicle speed along the path, and displacement of four wheels, can be 

simulated. 

-------------------------------- 

Place Figure 4 here 

-------------------------------- 

In general, for a given vehicle design   such as vehicle type, powertrain, tires, etc. as 

shown in Fig. 3, the mobility model of an off-road AGV can be represented as 
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 ( ) ( ( ), ( ), ),V Gd X Y d=    (1) 

where d  are the spatial coordinates, ( )V d  is the vehicle mobility at spatial location d , ( )G   

is the mobility simulation model, ( )X   are the vehicle-related parameters, such as vehicle 

weight, size, and power, and Y  a function of spatial coordinate d  representing the terrain-

related parameters, such as slope, friction coefficient, cohesive limit, etc. 

 

2.2 Deterministic Mission Planning 

In deterministic mission planning, there are two types of subjects in a map M: the free space 

F , and the obstacle space O , so that M F O=  . The objective of mission planning is to 

generate an optimal path 
opt  with the shortest distance while not crossing any obstacles as 

 arg min ( ),    ,opt l
Ω

d O d


 =      (2) 

where   is a feasible path in the candidate path set Ω , ( )l   is the length of  , and d  

represents the coordinates of the path. 

 If there are no hard obstacles, such as big rocks or ravines, the off-road mobility model can 

provide a GO/NO-GO map based on the mean value of the terrain properties. The GO and NO-

GO areas are respectively the free space and obstacle space as represented as:  

  | ( ( ), ( ), ) ,G eF d M X Y d=      (3) 

  | ( ( ), ( ), ) ,G eO d M X Y d=      (4) 

where ( )X    and ( )Y d   are the mean values of vehicle-related parameters and terrain-

related parameters respectively, and e   is the threshold of speed to determine whether the 

vehicle is stuck or not stuck at a certain location. 
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2.3 Off-Road AGV Mobility Reliability 

2.3.1 Uncertainty sources in vehicle mobility analysis 

As shown in Fig. 5, the uncertainty in the vehicle mobility analysis using Eq. (1) stems 

from two major sources, namely (1) uncertainty in vehicle modeling and simulation (M&S) 

and (2) uncertainty in the terrain-related parameters. The uncertainty sources in M&S usually 

remain constant over a target map, whereas the uncertainty of terrain-related parameters varies 

with the slope/soil type over space.  

-------------------------------- 

Place Figure 5 here 

-------------------------------- 

Furthermore, the uncertainty sources in M&S and soil maps can be classified into aleatory 

and epistemic uncertainty. Aleatory uncertainty represents the natural variability such as natural 

variability of vehicle physical parameters across a population of vehicles, variability of soil 

properties at different locations, etc. Epistemic uncertainty refers to the uncertainty due to lack 

of knowledge which is reducible if more information is available. Some representative 

examples of epistemic uncertainty in off-road AGV mobility analysis include model form 

uncertainty of the mobility prediction model, solution approximations, and data uncertainty in 

soil properties due to limited data. 

Due to the heterogenous uncertainty sources in the M&S and soil properties, the vehicle 

mobility at each location is uncertain (see Fig. 5). The uncertainty of vehicle mobility can be 

quantified by propagating various uncertainty sources in both M&S and soil maps through a 

vehicle mobility simulation model. To propagate the uncertainty, various uncertainty sources 

must be modeled, which is not a trivial task since it requires a large volume of data from both 

vehicle systems and various soil samples. Some related data of the soil properties are available 
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in [37]. Vehicle-related uncertainty sources, however, vary with vehicle types and manufactures. 

In this paper, for the sake of illustration, vehicle-related uncertainty sources are not considered, 

since it is known that the variability of vehicle parameters are vehicle-dependent and are 

negligible compared to soil-related parameters[16]. Thus, we mainly focus on the uncertain 

terrain slope and soil properties as listed in Table 1. The developed framework, however, can 

be easily extended to incorporate other uncertainty sources if their statistical information is 

available. 

As shown in Fig. 6, the soil type varies at different locations. For example, it may be sand 

(e.g., soil ID= l ) at a location, or grass (e.g., soil ID= n ) at a different location. Accordingly, 

the distributions of soil properties (e.g., friction or cohesive strength) are different for a sandy 

area or a grassland, for example. Moreover, there are several different soil properties for each 

soil type resulting in several different maps of soil parameters (see Fig. 6). 

For any given spatial location d (Fig. 6), the slope/soil type is first identified and the 

statistical distribution of the uncertain soil/slope properties is determined. For example, the 

cumulative distribution function (CDF) of a soil parameter 1( )Y d   at location d   can be 

represented as 

  
11Pr ( ) ( , ( )) ,

y

YY y f y dyd θ d
−

 =   (5) 

in which 
1
( , ( ))Yf y θ d  is the probability density function (PDF) in terms of the distribution 

parameters ( )θ d  which are statistical parameters determined by the slope/soil type at spatial 

location d . 

-------------------------------- 

Place Figure 6 here 

-------------------------------- 
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As mentioned previously, the distribution parameters ( )θ d  can also be uncertain due to 

data uncertainty caused by limited geographic information system (GIS) data. In this paper, it 

is assumed that the distribution parameters ( )θ d   are known, as shown in the numerical 

example section. We concentrate on how to identify a reliable path for a given soil property 

statistical distributions. 

2.3.2 Vehicle mobility reliability 

To quantitatively quantify the impact of various uncertainty sources on vehicle mobility, 

Jiang et. al. [5] defined two types of vehicle mobility reliability, namely vehicle state mobility 

reliability (SMR) and vehicle mission reliability (MMR).  

SMR is defined as the probability that the maximum attainable speed ( )V d  of an AGV at 

a certain location is greater than or equal to a predefined threshold e. It quantifies the 

probability that an AGV will not get stuck in a deformable soil or equivalently, the probability 

that a vehicle can remain mobile at a specific location. Mathematically, SMR at any location 

d  or a given vehicle design   is given by 

 

 

( ( ), ( ), )

( ) Pr ( ) ( ( ), ( ), ) ,

( ) ( , ( )) ,
G e

SMR V G e

f f
X Y

X Y d

d d X Y d

x y θ d dxdy
  

= =   

= 
 (6) 

where Pr   denotes probability, ( )fX x  is the joint PDF of ( )X  , and e  is a threshold of 

vehicle mobility. 

MMR quantifies the probability of completing a mission considering the spatial 

dependence of various uncertainty sources on a given mission path   [5]. For a given  , 

MMR is defined as 

  ( ) Pr ( ) ( ( ), ( ), ) , ,MMR V G ed X Y d d = =       (7) 

in which   means “for all”. 
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SMR and MMR quantify the mobility of a given vehicle design from different perspectives. 

The evaluation of these two types of reliability metrics is also different. Even though MMR is 

able to more comprehensively reflect the capability of an AGV than SMR from a mission 

perspective, the high computational complexity brings challenges to both mission planning and 

practical applications. In this paper, a bio-inspired approach is developed based on SMR to 

guarantee the reliability of AGVs on a path. The integration of the proposed method with MMR 

is even more complicated and will be investigated in future work. 

The evaluation of the SMR in Eq. (6) is computationally challenging because of the high-

dimensional integration. If the brute-force Monte Carlo simulation (MCS) is employed to 

estimate SMR, we can first generate mcsN  random realizations of soil parameters according 

to their spatial coordinates and statistical distributions. Based on that, the uncertainty of a soil 

property over a target map can be obtained by assembling together the random realizations at 

different locations. By propagating the mcsN  random realizations of soil properties through 

the vehicle mobility model, we obtain mcsN   realizations of ( )V d   as 

( )( ),  1,2, ,i

mcsV d i N= . Based on that, the SMR at d  can be approximated as 

 
re

1

0,  if  1
( ) ( ( ) ),   .

1,  if  

mcsN
ii

i imcs

I V e
SMR I V e

I V eN
d d

=

= 
  

= 
  (8) 

The MCS-based method, however, is computationally prohibitive. In the next section, we 

first discuss how to overcome the computational challenge in vehicle mobility reliability 

analysis using an adaptive surrogate modeling method. Subsequently, we identify an optimal 

path based on the SMR analysis using a novel Physarum method. 

 

3 Reliability-Based Mission Planning Using a Bio-Inspired Method 

In order to incorporate post-design operation into design and guarantee the reliability of 
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AGV during operation in early design stages, the following reliability-based design 

optimization model must be solved 

 

min ( , ),

. .

( , ) [ ],

C

s t

R R

 

  

 (9) 

where ( , )C    is a cost function of vehicle design   and path   controlling the post-

design operation, ( , )R    is the vehicle mobility reliability, and [ ]R  is a mobility reliability 

requirement. The value of [ ]R  is determined by the decision maker according to the risk level 

he/she can accept. It is usually related to the economic loss of a vehicle failure event. For 

example, a high reliability is usually required if the consequence of failure is catastrophic. 

In this paper, we fix the vehicle design and employ SMR as the mobility reliability 

constraint as discussed above. We will also include    in the design variables in future 

research. For given  , Eq. (9) reduces to the following optimization model 

 

 

min ( , ),

. .

Pr ( ) ( ( ), ( ), ) [ ], .

C

s t

V G e Rd X Y d d


 

=      

 (10) 

Solving the above optimization model requires tackling two major challenges: (1) how to 

efficiently evaluate the probabilistic SMR constraint; and (2) how to solve the optimization 

model to identify the optimal path. In this paper, the first challenge is solved using an adaptive 

surrogate modeling method (Sec. 3.1) and the second challenge is addressed using a bio-

inspired approach (Sec. 3.2).  

 

3.1 Adaptive Surrogate Modeling for Model-Based Mobility Reliability Analysis 

Evaluating the mobility reliability requires a large number of high-fidelity computer 

simulations, which is computationally very expensive. In order to reduce the required 
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computational cost in reliability analysis, various adaptive surrogate modeling methods have 

been developed in recent years to build an efficient yet accurate surrogate model of the original 

simulation model [38, 39]. The basic idea is to adaptively add new training data for surrogate 

modeling to improve the prediction accuracy in regions which are critical for reliability analysis. 

It has shown promising accuracy and efficiency for reliability analysis in various applications 

[40, 41]. For model-based mobility reliability analysis, our goal is to build a surrogate model 

of ( ) ( ( ), ( ), )V Gd X Y d=    to replace the original model. 

We start with a Latin Hypercube sampling (LHS) of soil properties based on the low and 

upper bounds provided in [37] (Table 2). For each LHS sample, we use PyChrono to create a 

simulation model to predict the maximum attainable vehicle speed. As shown in Fig. 7, a terrain 

geometry is first created based on a terrain slope. The terrain is created long enough such that 

the vehicle can reach the maximum attainable speed. The deformable soil parameters are the 

values of a specific LHS sample. The vehicle is then commanded to accelerate from rest until 

the maximum steady vehicle speed is reached. Based on that, we obtained the maximum 

attainable speed for specific terrain slope and values of soil properties. 

-------------------------------- 

Place Table 2 here 

-------------------------------- 

-------------------------------- 

Place Figure 7 here 

-------------------------------- 

Based on a number of initial samples, we can build a surrogate model ˆ( ) ( , ( ))V Gd X Y d=  

using a Gaussian process (GP) surrogate modeling method to replace the original PyChrono 

simulation model. Note that since the vehicle design   is fixed in this paper,   is omitted 
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in the surrogate modeling for the sake of explanation. For any new sample X x=   and 

( )Y d y= , we predict the maximum attainable speed using the GP model as 

 2ˆ( , ) ( ( ), ( )),V G Nx y z z =  (11) 

where [ , ]z x y , 
2( ( ), ( ))N z z   stands for normal distribution with a mean value of ( )z  

and a standard deviation of ( )z . 

Since the initial surrogate model ˆ( ) ( , ( ))V Gd X Y d=   may not accurately represent the 

original simulation model, an adaptive Kriging Monte Carlo simulation (AK-MCS) method is 

then employed to improve the surrogate prediction accuracy in mobility reliability analysis [25, 

42, 43]. Fig. 8 shows the flowchart of the adaptive surrogate modeling method. A large number 

of MCS samples are first generated for the variables given in Table 2. If the generated samples 

are 
( ) , 1,2, ,i

mcsi Nz =  , we compute the U   value of every sample using the following U 

learning function 

 
( ) ( )

( )

( ) ( )

ˆ( ) ( )
( ) ,  1,2, , ,

( ) ( )

i i
i

mcsi i

L e
U i N

z z
z

z z



 

−
= =  =  (12) 

where 
( )( )i

z   and 
( )( )i

z   are respectively the mean and standard deviation of the GP 

prediction (see Eq. (11)). 

-------------------------------- 

Place Figure 8 here 

-------------------------------- 

Based on the U  values from Eq. (12), a new training sample ( )i
z  is identified as 

 * ( )arg min{ ( )}.i

i

i U z=  (13) 

The identified new training sample is then added to the training data pool and the GP 

surrogate model is retrained using the updated training dataset. The process continues until the 
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smallest U  value is greater than a certain threshold. 

After we have an accurate surrogate model of the off-road AGV mobility, the surrogate 

model is used to predict the SMR according to the slope type and soil type at each location 

using Eq. (8). Since the SMR constraint of Eq. (10) requires that ( )SMR d  at each location of 

a path    should be greater than [ ]R  , we can rewrite the constraint given in Eq. (10) as 

follows 

 
 

 

Pr ( ) ( ( ), ( ), ) [ ], .

, where { | Pr ( ) ( ( ), ( ), ) [ ]},

V G e R

V G e R

d X Y d d

Γ Γ d d X Y d

=      

 =  =    
 (14) 

in which Γ  represents a set of coordinates d  where ( ) [ ]SMR Rd   is satisfied. 

The above equation indicates that the optimization model of Eq. (10) can be solved in two 

sequential steps. In the first step, the coordinates d  where the SMR constraint is satisfied are 

identified. To be consistent with the deterministic path planning, all the coordinates over a map 

M  are classified into GO/NO-GO according to Eq. (14) as  

  | ( ) [ ] ,GO SMR Rd d M d=    (15) 

  | ( ) [ ] .NO GO SMR Rd d M d− =    (16) 

Based on the classification of the GO/NO-GO using the SMR constraint, Eq. (10) is written 

as a new model in the second step as  

 
min ( , ),

. . .GO

C

s t d


 


 (17) 

In this paper, a bio-inspired approach is introduced to solve Eq. (17). It allows us to identify 

a path that satisfies the SMR constraint using model-based approach. Fig. 9 presents the 

flowchart of reliability-based mission planning. It starts with generating a mobility reliability 

map by identifying the soil/slope ID of each coordinate in the map. For a certain ID, random 

realizations of the slope and soil parameters are generated according to their statistical 
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distributions. Using the trained mobility surrogate model, random realizations of vehicle 

mobility are obtained for each coordinate of the target map. Based on the random realizations, 

a SMR map is generated, and subsequently a GO/NO-GO map is obtained using Eqs. (15) and 

(16). 

-------------------------------- 

Place Figure 9 here 

-------------------------------- 

Treating the NO-GO coordinates as obstacles, the next question is how to efficiently solve 

Eq. (17) to identify an optimal path for an off-road AGV to go from a starting point to a target 

point (see Fig. 9(e)-(f)). It is worth mentioning that the “obstacles” considered here are different 

from the conventional “hard” obstacles in path planning of robotics. In common seen robotics 

path planning problems, the “hard” obstacles are detected using cameras or lidars if the robots 

are close to the obstacles. Because the obstacles are detectable, paths of robots can be re-

planned. In such a case, a globally optimal and reliable path may not be very important. For 

the off-road AGV, however, the obstacles are not real/hard. Instead, they represent the 

probability that a vehicle may get stuck at the obstacle location. They cannot be directly 

detected by a camera or a lidar. Taking a mud pond as an example, a vehicle can sometimes 

pass the mud pond and sometimes get stuck in it. Even if a camera can detect the existence of 

a mud pond, it cannot tell if a vehicle can pass it or get stuck in it. It would be too late if we 

wait for the vehicle to get stuck in the mud pond and then perform the re-planning. This is the 

reason a globally optimal and reliable path is particularly important for an off-road AGV. 

For reliable path planning of off-road AGVs, approaches have been developed using RRT* 

[5]. Another widely used approach is the Dijkstra-based method [44]. Even though these 

approaches have shown promising performance in identifying an optimal path, we noticed that 
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the required computational time is still high especially for multi-vehicle path planning 

problems where the algorithms must be run multiple times. In this paper, we suggest an 

alternative path planning algorithm to solve the optimization model of Eq. (17) for off-road 

AGVs using a bio-inspired Physarum method [45]. To the best of our knowledge, this is the 

first time a bio-inspired approach is employed for path planning of off-road AGVs. As shown 

in the numerical example section, the Physarum approach shows better performance than the 

Dijkstra-based method. Section 3.2 provides more details of the Physarum-based mission 

planning method. 

 

3.2 Physarum solver-based mission planning 

In order to integrate the Physarum method with the GO/NO-GO map generated from the 

mobility reliability analysis of Sec. 3.1 (i.e. solve Eq. 17) and to further reduce the 

computational effort in mission planning, we first need to convert the GO/NO-GO map 

corresponding to any mobility reliability requirement into a network described by nodes and 

edges. To accomplish such a conversion, the following navigation mesh method is employed. 

3.2.1 Navigation mesh 

There are many ways to convert the GO/NO-GO map into a network. A straightforward 

way of doing that is to connect every non-obstacle coordinate with all its non-obstacle 

neighborhood coordinates. This method is usually referred to as uniform mesh (Fig. 10(b)). The 

uniform mesh allows to cover all locations in a map and thus achieves high accuracy in path 

planning. However, the number of nodes and edges increases exponentially with the size of the 

target map, which significantly increases the required computational cost of path planning and 

hinders the practical application of the uniform mesh in off-road AGV mission planning. This 

disadvantage of uniform mesh exists for both the commonly used Dijkstra algorithm and the 
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physarum algorithm presented in Sec. 3.2.2. 

As an alternative, the navigation mesh is widely used for path finding in game design [46, 

47]. It partitions a map into polygons, and a network is built by connecting the center or the 

vertex of the polygons. Fig. 10 compares the uniform and navigation meshes for a GO/NO-GO 

map given in Fig. 10(a). 

-------------------------------- 

Place Figure 10 here 

-------------------------------- 

As shown in Fig. 10, the navigation mesh drastically reduces the number of nodes and 

edges of the resulting network. Therefore, it can significantly reduce the computational time in 

mission planning. The disadvantage of navigation mesh, however, is that it sacrifices accuracy. 

The identified paths may not be the truly globally optimal, since the path depends on the 

defined edges and nodes. However, this disadvantage can be overcome by tuning the relevant 

parameters in generating the mesh. In this paper, a Python package named Triangle [48] is 

employed to convert a GO/NO-GO map into a network for mission planning. It is built based 

on Jonathan Richard Shewchuk’s two-dimensional quality mesh generator and Delaunay 

triangulator library [49]. The employment of a navigation mesh in conjunction with the 

adaptive surrogate modeling method drastically reduces the required computational effort of 

mission planning from different perspectives.  

Next, we discuss how to identify optimal paths for a single vehicle and multi-vehicle 

scenarios by using a bio-inspired physarum solver and the navigation mesh. 

3.2.2 Physarum solver 

Physarum polycephalum is a bio-inspired path planner originally proposed by Nakagaki et 

al. [50], who demonstrated that Physarum could disassemble and reassemble the tube structure 
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and tube thickness over time in response to the change of external conditions (availability of 

food sources) to identify the shortest path connecting the food sources. As shown in Fig. 11, 

this organism can form a tube forming the shortest path connecting two food sources located 

at the source point ( s ) and the sink point ( t ) in the maze. The mathematical model of the path 

generator in the network-based map was proposed by Tero et al. [45]. 

-------------------------------- 

Place Figure 11 here 

-------------------------------- 

Suppose we represent the maze with a graph G  , in which two nodes s   and t   are 

designated as the starting and ending nodes. The other nodes are labelled as 1 2, , , in n n  etc. 

The edge between nodes in  and 
jn  is represented by 

ije . The set of all edges is denoted by 

E . For a network-based map as shown in Fig. 11, the flux 
ijQ  through edge 

ije  is formulated 

following the Poiseuille flow assumption as 

 ( ),
ij

ij i j

ij

D
Q p p

L
= −   (18) 

where ip   is the pressure at node in  , 
ijL   is the length of edge 

ije  , and 
ijD   is its 

conductivity.  

Since the inflow and outflow should be balanced, Kirchhoff’s law yields: 

 

( )

0

0

,

0,   ,

0,   , ,

0,   otherwise

ij

i

ij

i

ij

i j E

Q I j s

Q I j t

Q
 


+ = =




− = =

 =








  (19) 

where 0I  is the flux from the source node.  
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To simplify the problem, we let 0 1I =  [51]. By combining Eqs. (18) and (19), we have 

[45]: 

 

1,   ,

( ) 1,   , ,

0,   otherwise

ij

i j

i ij

j s
D

p p j t
L

− =


− = =



   (20) 

where all ip  can be determined by solving the linear system of equations (20). Afterwards, 

the flux through each edge 
ije  is derived using Eq. (18) accordingly. 

In order to formulate the conductivity change for each edge, we have 

 ( ) ,
ij

ij ij

dD
f Q rD

dt
= −   (21) 

where ( )f x  is an increasing function satisfying (0) 0f = .  

To save computational effort, we let ( )f x x=  and 1r = , so that 

 

1

1,

m m

ij ij m m

ij ij

D D
Q D

t

+

+
−

= −   (22) 

where m represents the thm  iteration and 1t = . Based on the above equations, an optimal 

path can be identified for any given map [45]. 

After generating the navigation mesh, Fig. 12 shows the flowchart of the Physarum-based 

path planning approach. In the figure, th   is the threshold to determine whether the 

conductivity matrix D  has converged.  

-------------------------------- 

Place Figure 12 here 

-------------------------------- 

In order to calculate the pressure at each node, we must solve Eq. (20). The matrix 

expression of Eq. (20) is 

 ,A p C =   (23) 
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where n nA   is given by 

 

111

11 12 1

11 1

21 22 2

1

1 2

1

,   ,

n

n

n

n

ii ij

j

n nn

n n nn

n nn

DD
A A A

L L
A A A

A A

D D
A A A

L L

D
A

L

 
   
   
 = = =   = −
   
   
    

   (24) 

n nD   is the conductivity matrix, n nL   is the length matrix of the network, and D , 

L , and p  are given by 

 

11 12 1

21 22 2

1 2

.

n

n

n n nn

D D D

D D D

D D D

D

 
 
 =
 
 
 

  (25) 

 

11 12 1

21 22 2

1 2

,  when no connection between , .

n

n

ij

n n nn

L L L

L L L
L i j

L L L

L

 
 
 = = +
 
 
 

  (26) 

 
1 2[ , , , ] ,T

np p pp =   (27) 

and 

 
1 2[ , , , ] ,  1  when  ,   1  when  .T

n i iC C C C i s C i tC= = − = = =   (28) 

Once the conductivity matrix D  reaches a steady state, an optimal path can be identified 

by selecting the edges with the largest conductivity that form a path connecting the starting 

point with the target point. 

Algorithm 1 shows the general procedure of Physarum-based method, including the 

updating of the conductivity matrix and the identification of the optimal path after the 

conductivity matrix converges. 
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-------------------------------- 

Place Algorithm 1 here 

-------------------------------- 

This algorithm can also handle dynamic path planning problem. If there are new edges 

between nodes i  and j , or new obstacles that cut the edges between node i  and j , we 

simply need to change 
ijL   from infinity to l   or from l   to infinity. Using the previous 

conductivity matrix D , the knowledge of the remaining part of the map that has not changed 

is carried into the new calculation saving computational time. 

Moreover, the Physarum-based method can naturally accommodate the task of multi-

vehicle mission planning including automatic vehicle assignments and identification of optimal 

path for each vehicle. The procedure is similar to single vehicle path planning. The difference 

is that there are more than one starting point and target point. As a result, C   in Eq. (23) 

becomes 

 
1 2[ , , , ] ,  1  when  ,   1  when  ,T

n i iC C C C i C iC s t= = −  =    (29) 

where s  and t  are the group of starting points and target points.  

After the conductivity matrix converges, we can identify an optimal path by starting with 

any starting point and using the path identification part in Algorithm 1. For the remaining 

starting points, we must update the conductivity matrix based on the edges selected by the last 

path as 

 *
1,  if >1

,  satisfies ,
0.8 ,  otherwise

ij ij

ij ij last

ij

D D
D ij e

D

−
=  


  (30) 

where 
*

ijD   represents the updated conductivity value of edge ije  , and last   is the last 

optimal path found by Algorithm 1. Noted that it includes multiple edges. 

Finally, we repeat the procedure in Algorithm 1 using the updated conductivity matrix to 
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identify another optimal path, until every starting point is assigned to a target point. 

 

3.3 Implementation Procedure 

Fig. 13 summarizes the overall implementation procedure of the proposed reliability-based 

mission planning framework. It includes off-road vehicle mobility modeling, reliability-based 

map generation, network-based meshing, and Physarum-based path planning. 

-------------------------------- 

Place Figure 13 here 

-------------------------------- 

In the Section 4, we use a case study to demonstrate the efficacy of the proposed method 

for path planning under uncertainty. 

 

4 Numerical Example 

In this numerical example, we first construct a surrogate model of the off-road mobility 

model using the approach of Section 3. Then, we convert a soil and slope map of interest into 

a mobility reliability map and the GO/NO-GO map. After that, two case studies are used to 

demonstrate the effectiveness of the proposed Physarum solver-based approach in conjunction 

with a navigation mesh for both a single vehicle and multi-vehicle mission planning in off-road 

environments. 

 

4.1 Maps of Interest 

Fig. 14 presents the slope map and a soil map of interest for mission planning. These maps 

are created manually to demonstrate the proposed framework. They are discretized using 60 

points in both coordinate 1d  and 2d . Also, there are 6 different slope intervals and soil types 
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represented by different slope and soil IDs. Each slope ID represents a slope parameter and 

each soil ID represents 6 soil parameters in the PyChrono simulation model, including 

Bekker_Kphi ( k ), Bekker_Kc ( ck ), Bekker_n ( nB ), Mohr_cohesion ( c ), Mohr_friction ( ), 

and Janosi_shear ( J  ). In this paper, all parameters are assumed to follow the Gaussian 

distribution for the sake of illustration. The proposed framework is applicable to any type of 

statistical distributions. Table 3 shows the statistical information of the parameters 

corresponding to different slope/soil IDs. 

-------------------------------- 

Place Figure 14 here 

-------------------------------- 

-------------------------------- 

Place Table 3 here 

-------------------------------- 

 

4.2 Generation of Mobility Reliability Map 

In order to predict the vehicle mobility under different off-road environment considering 

various uncertainty sources, we first construct a surrogate model for the mobility prediction 

using the adaptive surrogate modeling method presented in Section 3.1. In the PyChrono 

simulation, the HMMWV vehicle system is used including the vehicle body, powertrain and 

tires as shown in Fig. 15. The vehicle uses full double wishbone suspensions and a Pitman arm 

steering mechanism [29]. 

-------------------------------- 

Place Figure 15 here 

-------------------------------- 
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In the adaptive surrogate modeling, we first generated 100 training points as the initial 

training points. A radial basis function kernel plus a white noise kernel is used in the Gaussian 

process modeling. The surrogate model is then adaptively refined in critical regions using the 

learning function given in Eq. (9) with parameter 2 /e m s=  . Fig. 16(a) presents the 

convergence history of the U values in the adaptive training. As shown, minU   reached the 

threshold 2thU =   after 60 iterations. To verify the effectiveness of the adaptive surrogate 

modeling method, we compare its prediction accuracy of mobility reliability for a certain soil 

type with its counterparts obtained from: (1) a global surrogate modeling with 1300 training 

points and (2) surrogate modeling by adaptively minimizing the variance. Fig. 16(b) shows that 

the adaptive surrogate modeling using the learning function given in Eq. (9) is more accurate 

and converges faster than the commonly used variance minimization approach. This 

demonstrates the efficacy of adaptive surrogate modeling in efficiently constructing a mobility 

surrogate model for vehicle mobility reliability analysis. 

After the surrogate model is properly trained, it was used to predict vehicle mobility for 

different slopes and soil parameters. For the maps in Fig. 14, 10000MCSN =  Monte Carlo 

samples are generated for each slope/soil parameters according to their statistical distributions. 

Based on the samples and the mobility surrogate model, a probabilistic mobility map and a 

mobility reliability map was obtained. Fig. 17(a) shows the mobility map obtained using the 

mean values of the soil properties. Fig. 17(b) shows the state mobility reliability (SMR) map 

obtained using Eq. (7). 

-------------------------------- 

Place Figure 16 here 

-------------------------------- 

-------------------------------- 
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Place Figure 17 here 

-------------------------------- 

With the SMR map, the GO/NO-GO map can be easily generated using Eqs. (11) and (12). 

Fig. 18 shows three different maps for different value of tR . 

-------------------------------- 

Place Figure 18 here 

-------------------------------- 

As Fig.18 shows, changing the reliability threshold could lead to different GO/NO-GO 

maps. The number of obstacles increases with reliability level. An increased reliability level 

will lead to an increased length of the shortest path. This implies that the vehicle must sacrifice 

travel time to ensure mobility reliability. The decision maker needs to determine an optimal 

reliability requirement by considering the consequence of failure to achieve a tradeoff between 

travel time and mobility reliability. By setting 0.9tR = , we then converted the corresponding 

GO/NO-GO map into the navigation mesh (Fig. 19). Now the map is ready to be used for 

mission planning subject to the constraint that SMR should be greater than 0.9. Thus, the paths 

identified based on the map satisfy the mobility reliability requirement of at least 0.9. Next, we 

investigate two case studies, namely a single vehicle and multi-vehicles, using the obtained 

navigation mesh. 

 

4.3 Case Study 1: Path Planning for a Single Vehicle 

Fig. 20 (a) shows the starting point (S) and target point (T) for this case study. The 

Physarum solver-based approach must find the shortest path between S and T. As Fig. 20 (b) 

shows, while the vehicle follows the shortest path and reaches the middle of the path (M), a 

new obstacle appears in the map. The vehicle must dynamically update the path based on the 
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new map starting from the current point M. Also, it needs to update the shortest path between 

the initial starting point S and target point T for future vehicles. 

-------------------------------- 

Place Figure 19 here 

-------------------------------- 

-------------------------------- 

Place Figure 20 here 

-------------------------------- 

Fig. 21 presents the identified optimal paths that satisfy the reliability requirement. The 

paths include (a) a shortest path connecting the starting and target points, (b) an optimal path 

for the situation of dynamic path planning, and (c) an optimal path if new obstacle appears on 

the map for future vehicles. 

-------------------------------- 

Place Figure 21 here 

-------------------------------- 

Table 4 compares the proposed Physarum algorithm and the widely used Dijkstra approach 

for this first case study which identifies a path connecting the starting and target points. The 

results show that even though both approaches are able to identify the optimal paths for 

different scenarios, the Dijkstra-based approach is faster than the Physarum algorithm for a 

single vehicle path planning under uncertainty. 

-------------------------------- 

Place Table 4 here 

-------------------------------- 
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4.4 Case Study 2: Mission Assignment and Planning for Multiple Vehicles 

As shown in Fig. 22, in this case, there are three starting points and three target points. The 

decision maker must find the best combination between starting and target points in order to 

minimize the overall length. A dynamic obstacle also appears in the map as shown in Fig. 22(b). 

The approach must re-plan the path from the starting point if a new obstacle appears and still 

minimize the overall length. 

-------------------------------- 

Place Figure 22 here 

-------------------------------- 

The Physarum algorithm only needs to generate three different paths for each starting point, 

while the Dijkstra algorithm must generate all nine possible pairs. Fig. 23 presents the results 

of the Physarum algorithm for the original path planning and the dynamic path planning. Table 

5 compares the Physarum and Dijkstra algorithms. Based on the results in the table, we observe 

that the proposed Physarum algorithm reduces the computational time by directly providing 

the optimal solution. It outperforms the Dijkstra algorithm for the problem of multi-vehicle 

assignment under uncertainty. 

-------------------------------- 

Place Figure 23 here 

-------------------------------- 

-------------------------------- 

Place Table 5 here 

-------------------------------- 
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5 CONCLUSIONS 

This paper proposes a Physarum algorithm for model-based path planning under 

uncertainty subject to a mobility reliability constraint. A simulation model is first used to 

generate the training data to build a surrogate model for the vehicle mobility. An adaptive 

surrogate modeling approach is employed to further improve the accuracy of the surrogate 

model. Using the vehicle mobility surrogate model, a GO/NO-GO map is generated by 

specifying a vehicle state mobility reliability requirement. Finally, a Physarum algorithm is 

combined with a navigation mesh to perform mission planning of single and multiple vehicles 

in a dynamic environment with a specific reliability requirement. According to the results of 

the two case studies, the proposed method is capable of finding the shortest path in a network-

based map. Although the Physarum algorithm is slower than the Dijkstra algorithm for a single 

vehicle path planning, it is faster than Dijkstra for multi-vehicle path planning problems. 

Moreover, the results show that if the number of vehicles increases from 1 to 3, the planning 

time of the Dijkstra algorithm increases from 0.14s to 1.06s (around 8 times) while that of 

Physarum algorithm changes only from 0.66s to 0.69s (basically the same). The proposed 

method can also handle dynamic path planning problems very well.  

The Physarum solver uses a GO/NO-GO map as input to identify the shortest paths 

satisfying specific mobility reliability constraints. The GO/NO-GO map is obtained by 

considering various uncertainty sources in model-based simulations. As a result, the aleatoric 

and epistemic uncertainty sources will affect the results of shortest path indirectly. If the 

GO/NO-GO map is not generated correctly, the identified shortest path will subject to either 

high risk of mobility failure or being unnecessarily long. In this paper, we only considered the 

aleatoric uncertainty in generating the GO/NO-GO map. The impact of various epistemic 

uncertainty sources in reducing the shortest path is worth investigating in future work. In 
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addition, a reliability-based path/mission planning is performed in this paper for a given vehicle 

design. The concurrent design optimization of vehicle physical systems and the post-design 

path/mission planning could also be addressed in future work.  
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Table 1 Input parameters of the SCMDeformableTerrain module 

Map parameter Size parameter Soil parameter 

Height map sizeX Bekker_Kphi 

 sizeY Bekker_Kc 

hMin Bekker_n 

hMax Mohr_cohesion 

 Mohr_friction 

Janosi_shear 

 

 

 

Table 2 Input interval of parameters of the SCMDeformableTerrain module 

Parameters Lower Bound Upper Bound 

Slope-related  Slope 0 45° 
Soil-related Bekker_Kphi 1 109 

Bekker_Kc 1 1010 

Bekker_n 0.8 2 

Mohr_cohesion 22.5° 37.5° 

Mohr_friction 0.001 0.05 

Janosi_shear 0 1000 
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Algorithm 1: Physarum algorithm for single vehicle path planning 

 

 

 

 

 

 

 

1 
Data: L is the length matrix given in Eq. (26), s is the start point, t is the 

target point, and n is the size of the network 

2 Initialization: 0.5ijD = , 0ijQ = , 0ip = , , 1, 2, , .i j n =  

3 While sum( | |dD )>th do 

4  

Calculate pressure using Eq. (20)  

1,   

( ) 1,   

0  

ij

i j

i ij

j s
D

p p j t
L

otherwise

− =


− = =



  

5  ( ),
ij

ij i j

ij

D
Q p p

L
= −  // Using Eq. (18) 

6  ( )0.5ij ij ijD Q D= +  // Using Eq. (21) 

7   
1n ndD D D
+= −  // Calculate the change of the conductivity 

8 path=[], ind=s, path.append(ind) 

9 While ind≠t do 

10  ,arg max( ),next ind
i

ind D=  where 
, ,1 ,2 ,[ , , , ]ind ind ind ind nD D DD =   

11   path.append( nextind ) 

12   
, [ 1] 0,

nextind pathD − =   where [ 1]path −   represents the last element of 

path , and 
, 0,indD = where , 1, 2, ,[ , , , ]ind ind ind n indD D DD =  

13   nextind ind=  
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Table 3 Statistical information of different slope/soil parameters 

Slo

pe/

Soil 

ID 

Slope Soil 

Slope ( )  k  
ck  nB   ( )c Pa   ( )    ( )J m  

                            

1 39 1 1×109 1000 5×108 500 2.8 0.01 950 1 37.5 0.5 0.048 0.001 

2 36.5 1.5 5×108 1500 1×108 750 2.6 0.05 800 2.5 35 1 0.04 0.002 

3 34.5 3 1×108 2000 5×107 2500 2.2 0.1 650 5 32.5 1.5 0.036 0.002 

4 32 2.5 5×107 500 1×107 1500 2.2 0.02 500 10 30 1 0.032 0.003 

5 26.5 2 1×107 1000 5×106 1000 2.0 0.1 450 15 27.5 2 0.029 0.002 

6 17.5 1.5 5×106 2000 1×106 2000 1.8 0.01 300 5 25 0.5 0.024 0.001 

*  is the mean value, and   is the standard deviation 

 

 

Table 4 Comparison between different approaches for single vehicle path planning 

Method Situation Length of the path Calculation time (s) 

Physarum Original 48.19 0.66 

Dynamic-middle 98.21 0.94 

Dynamic-all 91.48 0.31 

Dijkstra Original 48.19 0.14 

Dynamic-middle 98.21 0.12 

Dynamic-all 91.48 0.12 

 

 

Table 5 Comparison between different approaches for multi-vehicle path planning 

Method Situation Overall length of all 

paths 

Time of graph 

building (s) 

Calculation 

time (s) 

Physarum Original 134.39 0.02 0.69 

Dynamic 173.85 0.02 0.59 

Dijkstra Original 134.39 0.01 1.06 

Dynamic 173.85 0.01 1.24 
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Figure 1 Process of mission planning for off-road vehicles 

 

 

 
Figure 2 Two simulation examples of PyChrono: Vehicle: (a) gator UTV under deformable 

terrain, (b) MAN truck under rigid terrain. 

 

(a) (b) 
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Figure 3 Simulation flowchart of PyChrono::Vehicle 

 

 

Figure 4 A simulation model of off-road AGV in PyChrono 

 

 

 

Figure 5 Uncertainty sources in terrain-related parameters 
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Figure 6 Uncertainty sources in terrain-related parameters 

 

 

Figure 7 Vehicle mobility simulation model to predict the maximum attainable speed 

 

 

Figure 8 Flowchart of adaptive surrogate modeling-based reliability analysis 
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Figure 9 Flowchart of mobility reliability-based mission planning 

 

 

 
Figure 10 Comparison of uniform mesh and navigation mesh 
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Figure 11 Graphical representation of the maze using a network 

 

 
Figure 12 Flowchart of the Physarum solver algorithm 

 

 

Figure 13 Flowchart of the proposed approach 
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Figure 14 (a) Slope map and (b) Soil map of interest 

 

 

 

Figure 15 HMMWV vehicle used in this numerical example 
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Figure 16 (a) Convergence history of minU  in adaptive surrogate modeling; (b) Convergence 

history comparison of adaptive surrogate modeling and the commonly used variance 

minimization-based surrogate modeling method  

 

 

 

Figure 17 (a) Mean speed map and (b) SMR map 
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Figure 18 GO/NO-GO map (a) 0.8tR =  (b) 0.9tR =  and (c) 0.95tR =  

 

 

Figure 19 Navigation mesh of the map 
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Figure 20 (a) Original map and (b) Dynamic obstacle in the map 

 

 

 

Figure 21 (a) Shortest path, (b) Dynamic path planning from the middle, and (c) Dynamic 

path planning from the starting point 
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Figure 22 (a) Original map and (b) Dynamic obstacle of the map 

 

 

 

Figure 23 (a) original mission assignment and (b) dynamic mission assignment 
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