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Improvement: Recent Advances
This paper reviews the state of the art in applying uncertainty quantification (UQ) methods
to additive manufacturing (AM). Physics-based as well as data-driven models are increas-
ingly being developed and refined in order to support process optimization and control
objectives in AM, in particular to maximize the quality and minimize the variability of
the AM product. However, before using these models for decision-making, a fundamental
question that needs to be answered is to what degree the models can be trusted, and
consider the various uncertainty sources that affect their prediction. Uncertainty quan-
tification (UQ) in AM is not trivial because of the complex multi-physics, multi-scale
phenomena in the AM process. This article reviews the literature on UQ methodologies
focusing on model uncertainty, discusses the corresponding activities of calibration, ver-
ification and validation, and examines their applications reported in the AM literature.
The extension of current UQ methodologies to additive manufacturing needs to address
multi-physics, multi-scale interactions, increasing presence of data-driven models, high
cost of manufacturing, and complexity of measurements. The activities that need to be
undertaken in order to implement verification, calibration, and validation for AM are dis-
cussed. Literature on using the results of UQ activities towards AM process optimization
and control (thus supporting maximization of quality and minimization of variability) is
also reviewed. Future research needs both in terms of UQ and decision-making in AM
are outlined.

Keywords: additive manufacturing, uncertainty quantification, calibration, verification,
validation, process optimization, process control

1 Introduction

Additive manufacturing (AM) is a revolutionary technology for
manufacturing products with complex geometry without wasting
much material in comparison to traditional manufacturing tech-
niques. However, several factors such as cost, production vol-
ume, energy consumption, material property requirements, labor
requirements, market competitiveness, sustainability, etc. affect
the adoption of this technology. One major factor inhibiting the
widespread implementation of AM is the challenge in certifying
additively manufactured products due the variability in product
quality. Since physical experiments are expensive, a digital repre-
sentation of the AM process in the form of models (computational
models based on physics and machine learning models based on
experimental data) provide an attractive alternative to study the
variability in the quantity of interest (QoI) of an AM product (such
as geometric accuracy, porosity, residual stress or strength), and to
support process optimization and control decisions to improve the
quality of the product. AM is a complicated process with multiple
physics at multiple spatial and temporal scales; therefore multiple
physics-based models are needed to describe the various compo-
nents of the process. Since no model can accurately represent the
physical process, there are several sources of uncertainty in each
of these physics-based models. There are also uncertainties in ex-
perimental setup, measurements, data processing algorithm, etc.
which introduce uncertainty in the prediction of machine learning
(ML) models that are built using experimental data. For decisions
on AM process improvement – such as process design, process
control, and resource allocation – based on AM models to be ef-
fective, it is necessary to take into account the various sources of
uncertainty in the AM process and models, and update the uncer-
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tainty information as more data becomes available in real-time [1].

In AM, uncertainties regarding process inputs (laser velocity,
temperature, etc.), model parameters (thermal properties, mechan-
ical properties, etc.), and various types of model errors lead to
uncertainty in the model prediction. Three types of activities ad-
dress model uncertainty: (a) Calibration, (b) Verification, and (c)
Validation. Model calibration is the process of estimating the
values of model parameters (and model discrepancy) based on ex-
perimental data. In other words, model calibration is the tuning
of the unknown model parameters and discrepancy that cannot be
directly measured using experiments. Model verification is “the
process of determining that a model or simulation implementation
and its associated data accurately represent the developer’s con-
ceptual and mathematical description and specifications” [2]. In
practical terms, this activity results in the identification of coding
errors and quantification of numerical errors in the implementa-
tion of a physics-based model (e.g., discretization error in a finite
element model, truncation error in a reduced-order model, and sur-
rogate model error when a detailed physics model is replaced by
an inexpensive surrogate model). Model validation, on the other
hand, is “the process of determining the degree to which a model
or a simulation is an accurate representation of the real world from
the perspective of the intended uses of the model or the simu-
lation” [3]. In practical terms, this activity involves comparing
model prediction against real world observation and computation
of a validation or error metric that evaluates the agreement between
prediction and observation. Uncertainty quantification (UQ) con-
sists of both forward and inverse problems; in the forward prob-
lem, the various uncertainty sources are propagated through the
system model to quantify the uncertainty in the model prediction;
whereas in the inverse problem, the model parameters and discrep-
ancy are estimated based on the comparison of model prediction
and real-world observation. The acronym VVUQ (verification,
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validation and uncertainty quantification) is also being used to de-
scribe the collection of the activities and analyses described above
(e.g., ASME Journal of Verification, Validation and Uncertainty
Quantification, and ASME Committee on Verification, Validation
and Uncertainty Quantification, and its subcommittees).

In UQ, there needs to be explicit recognition and quantification
of both aleatory and epistemic sources of uncertainty; aleatory
uncertainty refers to the natural variability of physical quantities,
whereas epistemic uncertainty refers to lack of knowledge, arising
from data uncertainty (e.g., sparseness, imprecision, omissions,
and measurement and processing errors) and model uncertainty
(unknown model parameters, numerical errors, and model form
errors). Some of the model inputs (laser power, laser velocity, etc.)
and model parameters (thermal properties, mechanical properties,
etc.) can have both aleatory and epistemic uncertainty, (i.e., vari-
ability across different AM runs as well as unknown actual value
in any one run). In such cases, it is also desirable to separate
the contributions of aleatory and epistemic uncertainties, in order
to have clear interpretability of model validation and UQ results
[4], and to support decision-making for uncertainty reduction (i.e.,
model refinement vs. additional experiments) by identifying the
dominant uncertainty sources through sensitivity analysis [5, 6].

Research on appropriate techniques for verification, validation,
calibration, and uncertainty quantification in AM is in its begin-
ning stages at present. Until recently, these methods have been
mainly studied for models of physical systems involving individ-
ual physics disciplines (such as solid mechanics, fluid mechanics,
and heat transfer), and have been geared towards quantifying the
model errors and prediction uncertainty of physics-based models.
The extension of these methodologies to additive manufacturing
has to address multi-physics, multi-scale interactions.

Manufacturing of any product typically goes through multiple
processes, each with different physics and phase transformations
over space and time. For some of the manufacturing processes,
physics-based or mechanistic models are not available; in such
cases, data-driven empirical models are developed for prediction
purposes. The extension of VVUQ methods to such data-driven
models is a current topic of research.

AM is a very young and rapidly advancing area even within
the field of manufacturing. AM includes several different types of
technologies, all of which are under active study and improvement.
The technologies address different types of materials, such as met-
als, plastics and composites. However, the products of AM are
found to have significant variability in geometric accuracy, rough-
ness, strength properties, and flaws such as porosity, delamination
etc. Many researchers in industry, government and academia are
actively studying approaches to reduce the variability and improve
the AM product quality, and are also studying appropriate mea-
surement techniques for AM products including online monitoring.

Several organizations have been developing standards and guid-
ance documents for UQ-related methods and activities (e.g.,
DOD [2], NASA [3], ASME [7–10], AIAA [11], ASTM [12, 13],
ISO [14–17], IEEE [18], and TMS [19]). There is also a significant
body of literature and standards regarding software quality and data
quality. However, attempts to extend these approaches and meth-
ods to manufacturing processes, especially additive manufacturing,
are only beginning now. For example, the ASME Standards Com-
mittee on Verification, Validation and Uncertainty Quantification
in Computational Modeling and Simulation has a subcommittee on
advanced manufacturing, which is making efforts to develop guid-
ance regarding the extension of UQ and V&V methods to man-
ufacturing processes including additive manufacturing. Another
recent effort is the formation of an industry/government/academia
steering group Computational Materials for Qualification and Cer-
tification (CM4QC), particularly focused on AM and addressing
UQ and V&V needs for AM process models.

The issues, challenges and activities discussed above provide
the motivation and context for survey the state of the art in the
application of UQ and V&V techniques to AM. This paper re-
views recent research literature in UQ and V&V techniques for

AM and their use in process optimization and control.The scope
of the paper is restricted to review of the research literature; we do
not intend to demonstrate the methods, develop new approaches, or
present case studies in this paper. The remainder of the paper is or-
ganized as follows. Section 2 provides a brief introduction to AM
techniques and process models, and Section 3 briefly discusses the
uncertainty sources in the AM process models. Sections 4, 5 & 6
survey the literature on methods related to quantifying model un-
certainty (calibration, verification and validation) and challenges
in applying these methods to AM process models. Uncertainty
aggregation from multiple sources and activities is discussed in
Section 7, addressing the multi-physics, multi-scale interactions in
the AM process. Literature on process optimization and control in-
corporating UQ results is provided in Section 8. In Section 9 ideas
for implementing UQ in AM are discussed. Section 10 provides
the concluding remarks.

2 AM processes and models
AM, also commonly known as 3D printing, is the process of

manufacturing parts by adding material in layers. Traditional man-
ufacturing techniques such as subtractive, casting, forging, etc.
based on removing, joining, or shaping material work well with
mass production of parts with simple geometry. AM, on the other
hand, is particularly advantageous for manufacturing parts with
complex intricate geometry in lower quantities [20], but is also
being employed for mass production [21]. The part geometry is
defined in a computer-aided-design (CAD) software, and the re-
sulting .stl (stereolithography) file provides the slicing and laser
path information to the printer for manufacturing the AM part.
The sensors (thermal camera to monitor temperature, profiliome-
ter to monitor surface roughness, etc.) monitor the manufacturing
process and the master controller controls the material deposition
and the laser. Figure 1 shows the schematic of one type of AM
process, namely directed energy desposition, as an example. Based
on the type of material (metallic, ceramic, polymer or composite)
and technique used to create the layers, ASTM [12] classifies AM
processes into seven categories as follows [22–25]:

(1) Vat photopolymerization [26]: A light source (ultra-violet
radiation) cures liquid photopolymers in a vat to manufac-
ture parts. It is the first industrial AM technology.

(2) Material extrusion [27]: Filaments of material are melted
using a heated nozzle to create a 3D part. This is one of the
most popular and accessible AM technologies.

(3) Powder bed fusion (PBF) [28]: A bed of raw material in
powder form is melted or partially melted using lasers or
electron beams to produce parts in the desired shape. This
is a very popular AM technology.

(4) Directed energy deposition (DED) [29]: A focused energy
source such as laser, electron beam, or arc plasma fuses
material as they are being deposited to manufacture the AM
part. This is similar to material extrusion and can be used
with a variety of materials.

(5) Binder jetting [30]: Powdered raw material is joined to-
gether using a liquid bonding agent to form the part. Unlike
other AM processes, this process does not employ heating
to fuse the material.

(6) Material jetting [31]: Droplets of material are selectively
jetted and cured by ultra-violet light to form the part. This
technique is similar to common inkjet printers in 3D.

(7) Sheet lamination [32]: Thin sheets of material are stacked
and laminated together using adhesives, ultrasonic welding,
brazing, etc. It is a cheap and fast process, making it ideal
for low-fidelity prototyping [23].

Table 1 summarizes the AM processes and the different tech-
nologies, the form of the raw material used, and the suitability of
the material with process [33, 34].

All the AM processes, irrespective of category, technology, or
material, follow the basic principle of layer-wise addition and fu-
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Fig. 1 Schematics of the directed energy deposition AM process

sion of material. Using the DED AM process as an example, it can
be seen in Figure 1 that manufacturing an AM part is complicated.
Interaction between the heat source (laser) and the raw material
(powder) may vary from layer-to-layer and from one location to
another within a layer. Other AM processes also have similar
complicated material addition and fusion phenomena to manufac-
ture the part. In contrast to traditional manufacturing, AM parts
may not be homogeneous and may show substantial variation of
properties across samples and also spatially. This variability, in-
herent to the process and the parts, is aleatory uncertainty. In
the past, attempts have been made to understand the AM process
using trial-and-error experimental approaches. Recently, the shift
has been towards using computational models in support of pro-
cess optimization, and physics-based and data-driven models are
both being developed for various steps in the AM process.

Due to the complex physics involved in the AM process and
the multi-level characteristics, physics-based AM process simula-
tion usually involves multiple simulation techniques connected in
a multi-level manner. The laser-based process used for metals is
described by the following physics-based models: powder stream
model, heat source model, melt pool model, solidification model,
and residual stress model as shown in Figure 2. The powder is
deposited layer upon layer and is melted by the laser traveling in a
predefined path. The output of the laser heating process and pow-
der bed forming process are then used as inputs to the melt pool
model. The outputs of the melt pool model are then employed as
inputs to the solidification model. From the solidification model,
the solidified microstructure is simulated and finally used as input
to the macro-level mechanical properties analysis (Figure 3).

Various simulation techniques have been developed to enable
the multi-physics and multi-scale AM process simulations using
commercial software and in-house codes. For instance, discrete
element methods have been widely employed to develop the rain-
drop model for powder bed forming [36], computational fluid dy-
namics (CFD) models have been used for fluid flow modeling of
melt pool [37–43], finite element models (FEM) have been de-
veloped to perform thermal and residual stress analyses [44–49],
phase-field and cellular automata models are used for solidifica-
tion microstructure evolution modeling [50–53], and crystal plas-
ticity model is used for mechanical and fatigue properties predic-
tion [54]. Ye et al. [55] proposed a crystal plasticity framework to
study fatigue behaviour in AM parts based on the microstructure.
Wang et al. [56] coupled finite element and phase field models
for laser-based welding, a process not different from direct energy
deposition in AM, in order to simulate grain growth in the molten
pool. Guan and Zhao [57] reviewed the analytical, numerical, and

hybrid modeling approaches of the DED process. Several litera-
ture reviews on the AM process modeling approaches have been
published in recent years [27, 34, 58–61].

Several other studies have focused on developing data-driven
machine learning (ML) models for the AM processes, based on
experimental data. Data-driven models are considered to have an
advantage over physics-based since real-world behavior in actual
experiments is used in model construction [62]. Khanzadeh et
al. [63] compared the performance of several supervised ML algo-
rithms (decision tree, k-nearest neighbor, support vector machine,
linear discriminant analysis, and quadratic discriminant analysis)
in detecting porosity using melt pool thermal images. Sharma et
al. [64] built an artificial neural network (ANN) model using data
published in the literature to study the influence of AM process
parameters and post-fabrication parameters on the tensile proper-
ties of the AM parts. Extreme gradient boosting (XGBoost) and
long short-term memory (LSTM) were employed to predict melt
pool temperature in AM DED process and the accuracy and per-
formance of the models compared [62]. Nalajam and Varadara-
jan [65] proposed a hybrid model to forecast layer-wise melt pool
temperature by combining long short-term memory (LSTM) with
convolutional neural networks (CNN). Srinivasan et al. [66] used a
combination of ML techniques such as symbolic aggregate approx-
imation (SAX), principal component analysis (PCA), and density-
based spatial clustering of applications with noise (DBSCAN) to
search the process parameter space to produce complex AM parts
with a more homogeneous thermal history. Zhang et al. [67]
studied improvement in defect detection using flash thermography
in AM by proposing novel ML methods (spatial–temporal blind
source separation (STBSS) and spatial–temporal sparse dictionary
learning (STSDL)) for separation of noise from signal in ther-
mography images. Jin et all. [68] in their review of data-driven
techniques in AM categorized them under three main stages of
AM viz., geometrical design (i.e., topology optimization), process
parameter configuration, and anomaly detection. Tian et al. [69]
reviewed the recent progress in data-driven AM models from the
perspectives of material design, structure design, and tool path
planning. Comprehensive reviews of the application of various
types of ML techniques in AM are available in Refs. [70, 71].
One challenge for ML models is the requirement of large amount
of training data; this may be unaffordable given the high cost of
the AM process. Another challenge is that if the ML model is built
purely on experimental data, it may not be consistent with the con-
straints of actual physics of the process. Therefore, several stud-
ies [72–74] have investigated several physics-informed machine
learning (PIML) approaches to build AM process models (e.g.,
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Fig. 2 Physics-models for laser-based AM process [35]

Fig. 3 AM process simulation: multiple physics and scales

Gaussian process, deep neural network (DNN), and recurrent neu-
ral network (RNN) models) by combining both physics knowledge
(either physics-based models or simply physics constraints) and ex-
perimental data; the PIML strategies help to address the challenges
of physical inconsistency as well as data scarcity.

3 Uncertainty in AM process models
Both physics-based and data-driven AM process models have

several sources of aleatory and epistemic uncertainties [35]. These
are discussed in this section.

3.1 Uncertainty sources. Model parameter uncertainty
arises from lack of knowledge (epistemic) regarding the correct
values of the model parameters in printing a particular part.
In the case of AM, since the manufacturing process happens
in high temperature, the material properties such as density,
conductivity, specific heat etc. (which are model parameters) are
temperature dependent and show non-monotonic behaviour [75].
The properties of the substrate are sometimes different from the
properties of the feed powder. In addition, these parameters
may have inherent variability from one part to another which is
aleatory uncertainty. Thus calibration of the material parameters
is necessary to obtain an accurate simulation model.

Input uncertainty relates to the values of the process settings
(such as laser power and velocity) that need to be used as inputs to
the AM process simulation model. Several models are available for
the laser heat source [76–79] to study the heat density elongation
due to the fast movement of laser on the material deposit. Mirkoohi
et al. [79] studied the effect of laser-matter interaction using five
different types of heat sources - steady state moving point heat
source, transient moving point heat source, semi-elliptical mov-
ing heat source, double elliptical moving heat source, and uniform
moving heat source. However, the parameters of the heat source
have to be calibrated [76] to best represent the physical process,
which is challenging given the various sources of uncertainty in
the experimental measurements. In addition, the value of a pro-
cess parameter (e.g., temperature) may be different from the value
reported by the sensor. Thus, both aleatory and epistemic uncer-
tainty are encountered in characterizing the AM process inputs.

Model uncertainty: The physics-based models have several as-
sumptions and simplifications regarding the physical phenomena in

the AM process (e.g., laser shape, heat transfer mechanism, grain
nucleation and grain growth mechanisms, etc.), causing model
form error; this type of error is addressed by model validation
in general (but also in calibration when a model discrepancy term
is estimated). Further, numerical approximation error is caused
while solving the numerical model, giving rise to errors such as
discretization error, truncation error, round-off error, etc.; these
types of errors are addressed by model verification. Two recent
reviews in the literature discuss uncertainty quantification needs
and challenges in the context of physics-based AM process mod-
els [1, 80]. A systematic approach for uncertainty quantification
by considering the errors and parameter uncertainties in different
components of physics-based AM models and their propagation to
the variability in grain morphology is outlined in [35]. A small
number of UQ studies are reported on UQ for a chain of mod-
els [81, 82]; physics-based modeling of the AM process consists
of multiple models (at different physics and scales). In the case
of data-driven machine learning (ML) models for AM processes,
the model parameters are estimated from experimental data. Mea-
surement errors, input uncertainty, and limited amount of training
data (i.e., number of experiments) lead to uncertainty in the pa-
rameter estimation and therefore the prediction of the data-driven
model. Meng et al. [70] identify UQ in ML models for AM as one
of the future research directions. Methods for uncertainty quan-
tification in the prediction of both basic ML models and physics-
informed ML models in AM were studied in [73, 74]; this work
also implemented stochastic sensitivity analysis with these ML and
PIML models to compare the contributions of different uncertainty
sources to the model prediction uncertainty.

3.2 Model uncertainty quantification. Figure 4 shows the
various stages of UQ in AM. This section focuses on the third
stage, model uncertainty quantification, which consists of the fol-
lowing activities: calibration, verification, validation, and uncer-
tainty aggregation. Note that in verification occurs before calibra-
tion in Figure 4. This is a desirable sequence. Verification can
be first used to compute the numerical errors in the model; next,
these numerical errors can be accounted for during the model cal-
ibration, so that model parameter estimation is not confounded by
the numerical errors [83].

Consider a model � (^, )) with controllable inputs ^ and
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Fig. 4 UQ flowchart

model parameters ) . The model parameters are uncontrollable,
and are not directly measured; rather, they have to be inferred
based on the experimental observation of the input and the output.

The relationship between the model prediction (y<), experimental
observation y>1B , and actual value (yCAD4) of the output quantity
of interest (QOI) can be conceptually expressed as
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y>1B = yCAD4 + 9>1B (1)

yCAD4 = y< + 9< 5 (2)

where 9>1B and 9< 5 are observation error and model form error
respectively, if there are no numerical errors in the model predic-
tion. Combining Eq. 1 & Eq. 2,

y>1B = y< + 9< 5 + 9>1B (3)

In practice, the model prediction (y<) is obtained using numeri-
cal computation (e.g., FEA, CFD etc.); thus (y<) consists of the
numerical solution (y=<) of the model � and the solution approx-
imation error (9=<):

y< = y=< + 9=< (4)

These equations are only notional, and the exact way the errors
combine might be more complicated. The aggregation of these
errors is non-trivial and needs to follow a systematic procedure.
Sankararaman et al. [84] showed that a Bayesian network approach
provides an efficient and accurate method for combining the errors.

The first step in model uncertainty quantification is model ver-
ification, which identifies coding implementation errors and quan-
tifies the numerical solution approximation error (9=<). This is
followed by model calibration, which estimates the model param-
eters (and model discrepancy due to model form error) based on
calibration experiments. Then, during model validation, the cal-
ibrated model needs to be validated with additional data that is
not used in calibration. The state of the art in the implementation
of these three activities for AM process models is surveyed in the
next three sections.

4 Model Verification
Analytical solutions are generally not available for the compli-

cated physical phenomena in AM processes. Thus, several approx-
imate numerical techniques such as FEA, CFD and heat transfer
analysis are used. These methods invariably have solution approxi-
mation errors such as discretization errors, truncation errors, round
off errors, etc. In addition, there are coding errors in the computer
implementation of the physics model. Systematic procedures have
been developed in the UQ literature for model verification to iden-
tify coding errors and quantify numerical errors [85]. The liter-
ature on numerical error quantification in AM process models is
reviewed below.

Consider the discretization error in finite element (FE) solutions
in the context of computing the residual stress in a part manufac-
tured by the EBM process. Computation of residual stress would
require thermo-mechanical analysis employing first a heat transfer
model whose output becomes the input to a mechanical stress anal-
ysis model [86]. Figure 5b shows the heat contour from the heat
transfer analysis with a Gaussian heat source for a single scan anal-
ysis. The result from the FE analysis (for any discretization-based
computational method) depends on the mesh size. The discretiza-
tion error is often quantified using Richardson’s extrapolation [87]
using coarse, medium and fine meshes. However if the change in
the output with mesh size is not monotonic, Richardson’s extrapo-
lation is not applicable.

To handle this limitation of Richardson’s extrapolation, Ran-
gavajhala et al. [88] proposed the construction of a Gaussian
process (GP) model trained with model predictions correspond-
ing to different mesh sizes. This GP model is used to estimate
the corrected model output at a very small mesh size (≈ 0). How-
ever, this technique requires FE model evaluation at different mesh
sizes and can be expensive. At coarser mesh sizes, the FE solu-
tion may not converge, and at finer mesh sizes the simulation time
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(a) Part mesh (b) Temperature contours

Fig. 5 Heat transfer analysis in the EBM process. See [86] for details.

may be very long. In the case of FE analysis of laser-based AM,
a non-uniform meshing strategy is generally employed for compu-
tational efficiency [53]; a finer mesh is employed for the powder
layer where the laser heat flux is applied and the mesh gradually
coarsened away the region of high flux as shown in Figure 5a. The
aspect ratio of the mesh elements also needs to maintained care-
fully for each element and not varied too much in the neighborhood
of the location of interest for the mesh to be of good quality and
to avoid element distortions. This makes the application of these
techniques cumbersome.

Adaptive meshing is a popular technique in AM models. In the
FE-based thermo-mechanical analysis of AM processes, for stable
solution in the presence of high non-linearity the mesh size needs
to be very fine at the thermo-mechanical affected zone (TMAZ)
[89]. However, such a fine mesh on the entire path causes un-
affordable computational burden. Thus, Baiges et al. [89] pre-
sented an adaptive meshing strategy to coarsen the mesh away
from TMAZ and to account for the error caused by this coars-
ening, by introducing two correction terms. Olleak and Xi [90]
used an adpative remeshing techinque to reduce the computational
effort in predicting distortions in the AM part. The reduction in
computational time is achieved by using finer mesh at layers being
built that have high temperature and stress gradients. This strategy
may not be available for researchers using commercially available
FE software as a black box. Another study proposed an efficient
adaptive remeshing technique that enables part-scale SLM process
simulations and helps reduce model size without sacrificing ac-
curacy [91]. Unlike Richardson’s extrapolation method that gives
a corrective term to be added to the results from any mesh size,
the adaptive meshing techniques attempt to make the discretization
error negligible and rely on the convergence of the analysis; thus
they may require a few trials to arrive at the optimum simulation
parameters.

In addition to the above, several approaches have been explored
in the literature for the verification of AM computational models
for individual physics such as thermal/melt pool model, solidifi-
cation model, residual stress model, etc. Schwalbach et al. [92]
developed a fast-acting Discrete Source Model to predict the melt
pool in powder bed fusion (PBF) AM. They verified the developed
model by investigating impact of various physical and numerical
approximations and reproducing a known analytical solution for
melt pool dimensions in the case of a laser beam moving at uni-
form velocity. In an effort to verify models describing melt pool
behavior, Mindt et al. [93] performed a code-to-code verification
for the cooling rate of melt pool calculated using two different
methods including Lattice Boltzmann and Finite Volume Compu-
tational Fluid Dynamics. Similarly, Harley et al. [94] conducted a
code-to-code verification between two thermal models including a
model developed in commercial software and a model developed
using the finite volume method. Both models are investigated for
mesh independence. Mooney et al. [95] verified the accuracy of
a thermal model developed based on the Nucleation Progenitor
Function approach. Mooney and McFadden [96] performed a ver-
ification study for the Bridgman Furnace Front Tracking Model,
which is a model used to predict the crystal growth based on
the temperature gradient. In their verification study, the simula-

tion model was adopted for a pristine material and then compared
against an analytical solution of the same process under the same
processing conditions. Pineau et al. [97] conducted a code-to-code
verification for phase field and cellular automata methods, which
are two widely used solidification models. Seredyński verified the
2D Bridgman model for grain growth prediction [98], by com-
paring the prediction with ANSYS Fluent solutions [99]. Krol
et al. [100] proposed a method to verify the numerical accuracy
of the residual stress state using neutron diffraction. The predicted
residual stress states of additively manufactured parts were verified
by adjusting the support design and using neutron diffraction.

Verification methods in AM have mostly considered only single-
physics models, such as solid mechanics, fluid mechanics or heat
transfer individually. Due to the presence of coupled multi-physics
models, AM models need sophisticated strategies for numerical
error estimation (and thus verification) in coupled physics-based
models. Rangavajhala [88] developed a novel strategy for dis-
cretization error estimation when different meshes are employed
for different phases (e.g., solid and fluid), while also considering
mesh mismatch between two phases. Further research on the esti-
mation of other numerical errors is needed for AM process models,
including verification of high-dimensional response.

5 Model Calibration
After model verification, the model parameters and model dis-

crepancy (due to model form error) need to be estimated using
experimental data, for physics-based AM models. Several ap-
proaches can be employed to calibrate model parameters such as
linear and nonlinear least-squares regression [101] and maximum
likelihood estimation [102] for point estimates of the model pa-
rameters, and Bayesian calibration [103] to obtain the posterior
distribution of the model parameters, where the prior distribution
is assumed based on available information. Kennedy and O’Hagan
extended the Bayesian approach to incorporate various sources of
uncertainty including measurement error and model discrepancy.
Recent studies in Bayesian model calibration use the Kennedy and
O’Hagan framework (KOH framework) [104], and estimate the
model discrepancy term along with the model parameters. Fol-
lowing the KOH framework, Eq. 3 can be re-written as

y>1B = y< (^, )) + X(^, )%) + 9>1B (5)

where X(^, )%) is the model discrepancy term to account for the
effect of model form error, and )% are the parameters of the model
discrepancy term. The observation error is generally represented
by a Gaussian distribution with zero mean and f>1B standard de-
viation. Model calibration in the KOH framework involves cali-
brating the quantities � = [) , ) X , f>1B]. Using Bayes’ theorem,
the joint posterior distribution of the calibration quantities � is
obtained as

5
(
�|y>1B

)
=

5
(
y>1B |�

)
5 (�)∫

5
(
y>1B |�

)
5 (�)3Θ

(6)
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where 5 (�), 5
(
y>1B |�

)
, and 5

(
�|y>1B

)
are the joint probabil-

ity density function (PDF) of Θ, likelihood function, and the joint
posterior PDF. In the absence of an analytical solution, sampling-
based methods such as Markov chain Monte Carlo (MCMC)
method are usually employed to obtain the posterior distribution.
Since MCMC sampling requires thousands of model runs, the ex-
pensive physics-based AM models are replaced by inexpensive sur-
rogate models constructed using techniques such as Gaussian pro-
cess (GP) modeling or Kriging, polynomial chaos expansion, arti-
ficial neural networks, etc. In that case, the surrogate model error
introduced by the surrogate model also needs to be estimated. Ka-
pusuzoglu et al. [105] implemented the above approach for fused
filament fabrication AM using a Gaussian process surrogate model
for the physics model, as well as a Gaussian process model for the
discrepancy term. Construction of a surrogate model requires mul-
tiple training runs of the original physics model, which might be
prohibitive if the physics model is computationally expensive. In
that case, a low-dimensional surrogate model might be considered
with a subset of the parameters that are likely to be most important
(see below).

The choice of parameters to be calibrated is dependent on ex-
perimental and computational resources. Bruna-Rosso et al. [76]
estimated the parameters of the Goldak heat source from the em-
pirical relationship between melt pool geometry and heat source
parameters; uncertainty was not considered in this work. Mah-
moudi et al. [106] replaced the heat transfer AM model with a
GP surrogate model to calibrate the model parameters: powder
porosity, laser absorptivity, and coefficient of thermal conductiv-
ity. When computational resources are limited, construction of a
surrogate model with all the model parameters ) may not be feasi-
ble. Then the discrepancy term in Eq. 5 is considered to represent
the uncertainty from all the sources, and is the only term to be
calibrated [107]. A common problem with calibration with the
KOH framework is the problem of identifiability [108], i.e., it is
difficult to distinguish between the effects of model parameters,
discrepancy term, and observation error (Eq. 5), especially in the
presence of limited calibration experiments. Arendt et al. [109]
proposed using multiple responses to calibrate a common set of
calibration parameters to improve identifiability. The effectiveness
of this approach depends on the characteristics of the responses be-
ing used for calibration. Other strategies to improve identifiability
are employing Global Sensitivity Analysis (GSA) to identify the
most sensitive parameters and only calibrating them; and ignoring
the discrepancy term during the calibration step and subsequently
building a separate surrogate model for the discrepancy term [105].

In the case of AM models, inputs and/or outputs to the surro-
gate model can be high-dimensional. Thus, several studies have
employed dimension reduction techniques (such as singular value
decomposition or principal component analysis for output dimen-
sion reduction and GSA and active subspace discovery for input
dimension reduction) before constructing the surrogate models for
the AM process models [35, 86, 110, 111]. These efficient sur-
rogate models can then be used to calibrate the model parame-
ters [112] using MCMC sampling.

High dimensional outputs also pose a challenge in the design of
manufacturing experiments for parameter calibration. Randomly
selecting the spatio-temporal locations for experimental measure-
ment runs the risk of obtaining unimportant information, whereas
using a large number of locations for measurement makes the mea-
surement infeasible and the calibration computations expensive.
Therefore sensor placement optimization techniques to efficiently
select the optimal measurement locations for maximizing the infor-
mation gain in model calibration have been developed [113, 114].
Similar approaches can be investigated for use in AM, in order to
achieve balance between experimental effort, computational cost,
and effective model calibration.

Existing studies on AM model calibration have considered the
parameters to be constant and do not account for variability over
space and time, or across specimens. Methodologies developed
in other fields to handle the calibration of spatially varying pa-

rameters such as a multi-resolution strategy [115], and random
field modeling (using Karhunen-Loeve expansion and polynomial
chaos expansion) [113] may be adapted to consider such variability
in AM.

AM models for predicting the output quantity of interest (QoI)
are available at different levels of fidelity. For example, several
models and numerical solution strategies are available to pre-
dict the melt pool geometry with varying degrees of accuracy
such as analytical equation, FE model, CFD model, etc. Gen-
erally, a more accurate model is also computationally more ex-
pensive [116]. Multi-fidelity model fusion strategies for model
calibration are available in the literature [114, 117] by correcting
the lower-fidelity model first with the higher fidelity model predic-
tion and then with experimental data in the context of dynamics
model. Combining models of different fidelity into a multi-fidelity
model can significantly reduce the computational cost in calibra-
tion without sacrificing accuracy in AM models.

As seen in Figure 2, the suite of models required to represent an
AM process are based on different physics and have complicated
couplings between them. The calibration of model parameters in
this situation is not straightforward. Simultaneous Bayesion cali-
bration of all the model parameters can be prohibitively expensive.
DeCarlo et al. [82] developed a segmented calibration approach
for multi-physics (aero-thermal) models considering model depen-
dence and data availability. Extension of such methodologies to
AM models could help reduce the computational expense of cali-
brating coupled multi-physics AM models.

6 Model Validation
Validation involves the comparison of model prediction against

real-world observation; however, both prediction and observation
are uncertain quantities, as discussed in Section 3. Note that the
model validation is done after the model verification (Section 4)
and model calibration (Section 5) steps. Thus, ideally in the model
validation step a verified and calibrated model is compared against
experiments. The experimental data used for model validation
should be different from the experimental data used for model
calibration.

When the AM process model is used for decision-making such
as process parameter optimization, validation can be carried out
at two stages: (1) Validation of physics model prediction of the
quantity of interest (QoI) by quantifying the difference between
the model prediction and experimental observation [118] or by
computing various validation metrics [119] mentioned in this sec-
tion (Section 6). (2) Validation of model-based decision such as
process parameter optimization by conducting experiments at op-
timal and non-optimal values of process parameters [107, 120].

6.1 Validation of physics-based models. In the AM litera-
ture, experimental data has been used to validate individual physics
models such as melt pool model and solidification model. Schwal-
bach et al. [92] validated a calibrated Discrete Source Model for
melt pool prediction using single track experimental results. The
prediction is tested against empirical observations of melt pool ge-
ometry produced by a multi-vector scan pattern. Gan et al. [121]
validated the melt pool geometry by measuring the concentration
of surface-active element sulfur using Auger electron spectroscopy
(AES). Hu and Kovacevic [122] validated the thermal behavior
of the molten pool using images collected from a coaxially in-
stalled infrared camera. Wang et al. [123] validated the prediction
of differential thermal analysis using experimental data. Song et
al. [124] validated the prediction of thermal gradient directions
using grain growth orientations obtained from electron backscat-
ter diffraction (ESBD) analysis. Rai et al. [125] validated a so-
lidification model using experimental characterization of the mi-
crostructure and found that microstructure varies with location due
to spatial variation of the cooling rate. Wang et al. [123] also val-
idated the Scheil solidification diagrams using SEM images of the
designed alloys.
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AM process is simulated using a suite of multi-physics, multi-
scale models. Considering an example of laser powder-bed fusion,
the powder bed model can be simulated using the discrete element
method. The output from the powder bed model such as pack-
ing density and powder bed porosity will be the input for the heat
source model and subsequently the melt pool model [80]. Gen-
erally only the temperature data (the melt pool model output) is
measured. In that case, it is not possible to validate individual
models and the estimated error is the combined effect of three
models. However, in the case of melt pool model output feeding
into a residual stress model, both temperature data and deforma-
tion/residual stress data may be available for validation. In this
case, the first model can be validated individually, but the mea-
surement corresponding to the output of the second model com-
bines the contributions of both physics, which makes it difficult to
validate the second model individually. In that case, the validation
result of the first model (i.e., discrepancy) needs to be propagated
in a systematic way through the second model in order to achieve
isolated validation of the second model. A further complication
arises when there is two-way (feedback) coupling between two
models; for example, the solidification is affected by temperature
of the melt pool, however solidification affects the temperature,
thus creating a two-way coupling.

Several studies have been reported w.r.t. the validation of multi-
physics and multi-scale models in AM. For instance, Yang et
al. [126] validated a process-structure model using published ex-
perimental data in the literature. Khomenko et al. [127] validated
a coupled heat transfer and solidification kinetics model developed
in the OpenFOAM framework using single track laser cladding ex-
periments. The predicted macro and micro parameters of the track
were compared with the actual parameters of the deposited track in
their validation study [51]. Gu et al. [128] validated a multiscale
numerical simulation model that considers complicated powder-
laser interaction, heat and mass transfer behavior. Li et al. [129]
combined FE models at microscale and macroscale to predict the
mechanical properties of LPBF parts and compared them with ex-
perimental measurements. Tang et al. [130] validated their multi-
scale modeling framework for the evaluation of structure-property
relationships in AM parts with physical experiments. However,
these studies compared the final output of the AM process, not the
individual components; thus the validation was in an overall sense.

The above validation studies have not considered the various
sources of uncertainties in the individual model during validation
and instead validated the model for a nominal case or a few se-
lected cases. Inclusion of UQ results in validation would make the
models more useful for real-world decision-making [129]; such
studies are reviewed a little later in this section. Some experimen-
tal studies do not report the measurement uncertainty in detail,
but only provide nominal values. Even when the measurement
uncertainty is reported, it is often in terms of summary statistics
such as mean and standard deviation. Such limited information
hampers rigorous validation under uncertainty, and may need the
incorporation of additional statistical analysis techniques [131].

Several types of validation metrics and methods that assess the
agreement between prediction and observation in the presence of
uncertainty in both have been developed in the UQ literature.
These include classical hypothesis testing, Bayesian hypothesis
testing, probabilistic distance and area metrics, and information-
theoretic divergence metrics [119]. In validation, it is valuable
when possible to distinguish between the effects of aleatory and
epistemic uncertainty sources on the validation assessment, in or-
der to guide decisions regarding model refinement vs. additional
testing [4]. The extension of these validation techniques to multi-
physics, multi-scale AM process models needs to be investigated
in future work. Further, validation methods for chained, hierarchi-
cal and coupled models have been explored in the UQ literature
using the structural equation modeling approach [132, 133], but
are yet to be extended to AM.

Currently model validation efforts mostly focus on scalar out-
put QOIs, e.g., comparing the model prediction and experimental

observation at only a few spatio-temporal locations [134]. As dis-
cussed earlier, the outputs of AM models and processes are vary-
ing over space and time (e.g., temperature profile, residual stress,
porosity, delamination, geometrical accuracy and roughness). In
AM parts, the material microstructure is also formed when the part
is being manufactured. This highly dynamic process, typically un-
der high-temperature conditions, leads to non-homogeneous and
spatially correlated mechanical properties. Thus, it is necessary
to validate the spatio-temporal outputs of the model to correctly
evaluate the quality of the model. Ao et al. [135] extended the
aforementioned probabilistic validation metrics to quantities vary-
ing over time. Three validation metrics were proposed to enable
model validation in the time-domain: instantaneous reliability,
first-passage reliability, and accumulated reliability. The exten-
sion of this approach to spatio-temporal validation of AM process
models can be considered in future work.

Experimental data is needed in model validation. Proper alloca-
tion of experimental resources is necessary to perform validation
of different models (e.g., how much data is enough for the melt-
pool model validation or solidification model validation?). Similar
to calibration, design of validation experiments to collect the most
informative data for the validation of AM process models is nec-
essary for efficient resource allocation. Several methods have been
proposed in the literature for validation experimental design [135–
137]. The extension of these methods to AM model validation can
be investigated in future work.

One of the major bottlenecks in the validation of AM parts
is the computational expense of running the sophisticated sim-
ulation models. Full-scale simulations are prohibitively expen-
sive. For example, thermal and mechanical FE analyses of a
planar spring (40 mm × 65 mm) manufactured using fused fila-
ment fabrication (FFF) took 300 minutes and 900 minutes respec-
tively [138]. Moran et al. [139] used the principle of superposition
part-scale thermal modeling for the PBF process to predict thermal
fields. The simulation time for the V-22 osprey link of dimension
15.3 cm × 1.0 cm× 3.9 cm (maximum length scales) was reported
as 18 hours. Additionally, the models have to be run multiple times
to quantify the uncertainty in the prediction.

Nasab et al. [140] printed and conducted experiments on parts
of dimension 20<<×20<<×20<< to study the effects of surface
quality and volumetric defects on fatigue properties of AM parts.
Parts of such volume cannot be directly simulated and intelligent
modeling techniques need to be explored. Thus researchers have
focused on developing models for a single-scan or part-scale mod-
els [141]. In rare cases where the entire part is considered, the
dimension used is generally small in order to make the computa-
tion feasible [105, 107]. On the other hand, it may not possible
to reliably print such small parts. Even if printing small parts is
possible, the measurement of the QoI for such parts is challeng-
ing due to the errors in measurement being of the same order of
magnitude as the QoI itself. Adaptive mesh refinement techniques
along with access to high performance computing resources has
been suggested to tackle this issue [141].

6.2 Validation of data-driven models. Given the computa-
tional challenges associated with physics-based modeling and the
need for substantial understanding of the AM process to develop
physics-based models, data-driven ML models of the AM pro-
cesses are increasingly being pursued in recent years, as described
in Section 2. Data-driven models can be validated using cross val-
idation techniques such a :-fold validation. It is also important
to select the optimal types and tuning parameters of the models
(e.g., number of layers in a deep neural network), and avoid data
overfitting. In the case of data-driven models, the available data is
typically split into two categories – training data and testing data.
The training data is further split for cross-validation purposes.

Since the raw material for some metal alloys are expensive, AM
parts can be printed only in limited quantity. Physics-informed
machine learning (PIML) models were discussed in Section 2,
which leveraged physics knowledge or physics-based models to
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build models with a small number of experiments. The PIML
models were validated using additional experimental data [73].

6.3 Measurements. Most of the experimental studies in AM
have concentrated on temperature measurement using infrared
cameras and high- speed cameras, since the temperature field di-
rectly impacts the microstructure and hence the material proper-
ties of the part. These measurements can be used to calibrate
and validate the physics-based model. However, there are several
challenges associated with these experiments, which call into ques-
tion the accuracy of the model calibration and validation results.
Flood and Liou [142] explored methodologies for the validation
of thermal modeling and related attributes such as stress and mi-
crostructure. The modeling of the thermal history can be validated
using direct or indirect measurements. In the direct method, the
temperature is measured whereas in the indirect method a differ-
ent quantity such as melt pool depth (linked to temperature) is
measured to validate the thermal history. Where possible, direct
measurement is preferable over indirect method. The most impor-
tant data that needs to be collected is the melt pool temperature
in the vicinity of the heat source but the laser obstructs the field
of view. Since it is not possible to observe the scanning process
from the top, the cameras are set up at an angle and this requires
modifications to the AM printer [143].

Pyrometry-based measurement (non-contact measurement of
temperature based on thermal radiation emission) relies on ab-
sorptivity, emissivity, reflectivity, and transmissivity properties of
the material [144]. Since the properties are not accurately known
or measured, the uncertainty in these values leads to inaccurate
and unreliable measurement of the surface temperature [143]. The
effects of vapor plume and their reflection, and the camera angle,
also present difficulties in measurement and in some cases the ob-
servations cannot even be used, such as in the estimation of melt
pool width [145]. High vapor flux in the melt pool causes material
spatter, and variability in cooling rate results in an inhomogeneous
product [146]. The measured signal has noise and is also impacted
by the camera angle and reflection.

Uncertainty in measurement is also caused by data processing
algorithms [147]. The choice of noise filtering techniques and
corresponding filter parameters significantly affects the processed
data, thus affecting the calibration and validation results. Also,
large amount of data is collected in the form of images and videos
during the monitoring process (e.g., with optical or thermal cam-
eras). It is important to choose the most useful and optimal data
in a systematic way. Given these issues, VVUQ studies have not
yet been able to fully leverage the benefits of experiments.

AM machines tend to be expensive. Many researchers develop-
ing computational models do not have access to experiments and
thus rely on experimental data found in the literature for model
validation. The properties of raw materials and operating condi-
tions significantly vary from one printer/laboratory to another, and
all the information a modeler needs may not be reported. This is a
considerable challenge for AM model validation activities. To ad-
dress the challenges associated with the accuracy and sufficiency
of measurement data for AM model calibration and validation, the
National Institutes of Standards and Technology (NIST) has been
publishing information on a series of controlled benchmark tests
known as Additive Manufacturing Benchmark Test Series (AM-
Bench) [148]. The main goal of AM-Bench is to provide rigorous,
highly controlled AM benchmark test data using different measure-
ment techniques and materials along with the relevant modeling
information to allow modelers to evaluate the predictive accuracy
of their simulation results.

7 Uncertainty aggregation
In the previous sections, the focus was on individual steps of

uncertainty quantification such as model verification, calibration,
and validation. Next, the results of these activities need to be inte-
grated for the purpose of overall uncertainty quantification in the

model prediction. Note that this is different from simple uncer-
tainty propagation. Uncertainty propagation is simply the prop-
agation of probability distributions (of aleatory inputs) through a
(deterministic) model to compute the distribution of the model
output. Epistemic uncertainty sources such as unknown model
parameters and various types of model errors estimated during
the verification, calibration, and validation steps do not propagate
in a straightforward manner, and thus have to be aggregated sys-
tematically. The Bayesian approach to information fusion enables
developing a rigorous framework to aggregate different types of
uncertainty quantified in different steps. Such an aggregation ap-
proach was first proposed by Sankararaman and Mahadevan [83]
and extended by Li and Mahadevan [149]. This approach was
applied in Ref. [150] for the Bayesian calibration of material prop-
erties. Recently, Jiang et al. [151] extended the method to model
discrepancy quantification and showed that the integration of V&V
with Bayesian calibration has the potential to improve the accuracy
of Bayesian calibration. The developed method has been applied to
calibrate the melt pool geometry (length, depth, and width) using
the AM-Bench experimental data [152].

Uncertainty aggregation in AM is an important research topic
that needs to be investigated in the future, due to the presence
of multiple models for different process physics and at different
scales. The outcome of uncertainty aggregation across multiple
physics and scales is uncertainty quantification in the prediction of
output QOIs such as geometric accuracy, residual stress, porosity
etc., all of which are quality indicators of the AM product. This
uncertainty information can then be used in AM process optimiza-
tion and control, as discussed in the next section.

8 AM process optimization and control under
uncertainty

After the uncertainty in the AM product QOI has been quan-
tified, the next step is decision-making under uncertainty. In the
context of AM, two major decision-making tasks are process de-
sign and process control. Process design involves finding the op-
timal parameters for the AM process before the printing starts
whereas process control refers to changing the process parame-
ters in real-time during printing. Both process design and process
control aim to improve the quality of AM product. A review on
quality-related research in AM can be found in [153]. A recent
article [154] explored the concept of six-sigma in quality man-
agement in AM and identified the need for decision-making under
uncertainty in AM.

Some studies on the effect of AM process design parameters
on the QoI focus on design on experiments (DoE)-based paramet-
ric studies with physical experiments. Khosrani et al. [155] used
Taguchi DoE to print several parts with varying process param-
eters and studied their effects on QoI using multivariate analy-
sis of variance. However, this approach does not have rigorous
UQ. Two types of mathematical formulations can be considered
for optimization under uncertainty: (a) robust design optimization
(RDO) [156] where the mean and the variability of the objec-
tive function are optimized and the constraints are satisfied within
bounds that account for uncertainty, and (b) reliability-based de-
sign optimization (RBDO) [157, 158] where optimization is per-
formed to achieve a desired threshold of reliability. A few studies
on AM process optimization under uncertainty have used these
optimization formulations. Wang et al. [159] optimized preheat-
ing temperature, laser power, and scanning speed for an LPBF
process with the objective of maximizing equiaxed grains in the
microstructure. Kapusuzoglu et al. [105] optimized the process
parameters such that the bond quality between extruded polymer
filaments is maximized in FFF AM process. For an AM part to
be of acceptable quality and be certified, multiple QoIs need to be
optimized concurrently. Some of the objectives might be conflict-
ing; thus, multi-objective optimization has also been explored in
AM. Nath et al.[107] optimized process parameters such as extru-
sion temperature, extrusion velocity, and layer thickness with the
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objective of maximizing geometric accuracy and minimizing print
time. Kapususuzoglu et al [120] considered multiple objectives of
maximizing the mean geometric accuracy and bond length while
minimizing the variance in geometric accuracy and bond length to
design the process parameters.

Most multi-objective optimization studies assume independent
responses and do not consider correlations between the multiple
objectives. For example, low bond quality is correlated with low
tensile strength in an AM part. Aljarrah et al. [160] proposed
an approach for data-driven modeling and optimization with mul-
tiple correlated objectives. The two objectives considered – ul-
timate tensile strength and elapsed time – are scalar quantities.
However, this study did not consider uncertainty. Presence of
high-dimensional response, common in AM, further complicates
the optimization of process parameters. Using techniques such as
principal component analysis, SVD, etc. for dimension reduction
and mapping the correlated outputs to an uncorrelated space can
be explored to handle these challenges for AM.

As seen in Figure 2, the models representing the AM
process may be weakly (one-way / sequentially) coupled or
strongly (two-way / fully) coupled to each other. For example,
consider the coupling between a finite element (FE) melt pool
model and a cellular automaton (CA) solidification model to
predict the microstructure of an AM part. In the weak coupled
mode, the temperature history obtained from the melt pool model
is used as an input to the solidification model to predict the
microstructure; but no feedback from the solidification model
to the melt pool is considered. In the strongly coupled mode,
the fraction of solid increments are fed back to the FE model to
update the temperature field after each time step [161]. Strongly
coupled analysis is more accurate but computationally more
expensive than weakly coupled analysis. When strongly coupled
models are used, multidisciplinary analysis (MDA) approaches
must be employed for uncertainty quantification [162, 163] and
optimization. Martins and Lambe [164] reviewed and classified
several multi-disciplinary design optimization (MDO) architec-
tures. Several studies have investigated the Bayesian approach for
MDO under uncertainty [165–167]. However, MDO approaches
have not been implemented in AM research due to the high
computational cost of incorporating strongly coupled AM models.
Various optimization algorithms and methods are available in the
literature that may be employed to aid AM process optimization.
However, a general review of optimization techniques is outside
the scope of this work. The discussion here is restricted to
approaches for optimization under uncertainty.

Even starting the manufacturing process with optimal process
parameters does not guarantee parts of good quality. It is nec-
essary to take into account the possible anomalies in the print
environment during manufacturing such as changes in the laser
power [168] to print parts with consistent quality. This requires
updating the information about the print environment during print-
ing. This brings in the idea of a Digital Twin, which is a vir-
tual representation of an individual physical system where data
from the physical system is used to update the virtual representa-
tion over time [169]. As with other industries such as aerospace,
cyber-physical systems, manufacturing systems, structural health
monitoring, etc. [170], the introduction of digital twins for quality
management and production efficiency management is quite nat-
ural in AM [171]. Studies have focused on digital twin for AM
machines [172] and AM parts [173]. However, DT in AM is still
in a very early stage and is yet to be demonstrated for real-time
process control.

Research in AM process control has mostly focused on im-
proving a few elements, such as AM process modeling and in-
situ measurement. Other studies have focused on feedback control
strategies using simplified simulation models [174–177] or direct
observation data [178–180]. Reutzel and Nassar [181] surveyed
sensing and control methods to improve metal-based AM process.
Charalampous et al. [182] reviewed the various non-destructive
testing methods for quality control in different AM processes prior,

during, and after the manufacturing phase. Lhachemi et al. [183]
reviewed the application of feedback, based on both traditional
control techniques and augmented reality, in AM. All of these
studies and methods are deterministic and do not incorporate any
uncertainty quantification. Megahed et al. [168] proposed a frame-
work for early stage identification of potential problems in the AM
process. However, decision-making in the case of part quality de-
terioration is not discussed. The capability of a Bayesian method-
ology to include uncertainties and to update the state of the system
makes it an obvious choice for AM process control. Nath and
Mahadevan [111] presented a Bayesian layer-by-layer strategy of
predictive quality control of an AM part. The model discrepancy
term is updated at every layer using the real-time experimental data
which incorporates information about anomaly in the printing en-
vironment, if any. The resulting process control approach allows
the operator to make decisions about the manufacturing process
based on real-time information: terminate, continue as is, or up-
date process parameters for subsequent layers, thus saving material
and energy.

Process control methods in AM are in early stages of devel-
opment and implementation. There are several challenges for the
implementation of AM process control algorithms. First, the mod-
els used in the algorithm need to be extremely fast and accurate.
Second, the data acquisition from experiments and data processing
has to be efficient for process optimization on the fly. Third, a re-
lated research area is the effect of dwell time in AM [184] in case
the printing needs to be paused in order to update the process pa-
rameters. Finally, the control algorithms also need to be validated
with experiments.

9 Opportunities and future needs
For the VVUQ of physics-based models, the following tasks

have to be completed before the VVUQ process begins: (1) devel-
opment of conceptual, mathematical and computational models for
the physics phenomena being modeled; and (2) identification and
design of appropriate experiments for the calibration and validation
of the physics model prediction. Once these tasks are completed,
the specific VVUQ tasks w.r.t. physics-based models involve:

(1) Code verification (i.e., verifying the software implementa-
tion of the physics model);

(2) Calculation verification (i.e., verifying the numerical solu-
tion for accuracy, convergence etc. in comparison to bench-
mark solutions);

(3) Calibration of physics model parameters (i.e., using experi-
ments to estimate the values of model parameters) and

(4) Validation (i.e., comparison of simulation outcomes and ex-
perimental outcomes).

The main steps for VVUQ in data-driven models may be listed
as:

(1) Gather and split the data (for training, cross-validation, and
testing);

(2) Select the ML model type and implement the training algo-
rithm;

(3) Verify the coding and calculation of the ML model using
benchmark examples;

(4) Train, test (cross validate), and validate the ML model

However, several new developments are needed to accomplish
VVUQ for AM. Since the physics-based AM models are multi-
physics and multi-scale, some with high-dimensional outputs, ap-
propriate calibration, verification and validation techniques need
to be developed. The experiments for validation and data-driven
modeling are challenged by the variability and measurability of
relevant quantities, and by their high cost. Given these challenges,
the following activities need to be undertaken in order to advance
the state of the art in applying UQ to AM:
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However, several new developments are needed to accomplish
VVUQ for AM. Since the physics-based AM models are multi-
physics and multi-scale, some with high-dimensional outputs, ap-
propriate calibration, verification and validation techniques need
to be developed. The experiments for validation and data-driven
modeling are challenged by the variability and measurability of
relevant quantities, and by their high cost. Given these challenges,
the following activities need to be undertaken in order to advance
the state of the art in applying UQ to AM:

(1) Develop protocols for reproducible AM experiments and
identify appropriate data quality assessment techniques.

(2) Develop advanced solution verification methods for physics-
based AM models (multi-physics and multi-scale).

(3) Develop new validation metrics and methods for coupled
multi-physics models in AM.

(4) Extend model calibration techniques for high-dimensional
response measurements (e.g., thermal camera images of
temperature measurement).

(5) Develop new techniques for the aggregation of V&V and
UQ results for individual models towards overall UQ of the
AM process, in order to support certification and quality
control efforts.

(6) Develop procedures to separate the contributions of aleatory
and epistemic uncertainty sources to the V&V and UQ out-
comes, in order to support decision-making and resource
allocation for uncertainty reduction.

(7) Develop methods for sensitivity analysis that compare the
relative contributions of multiple uncertainty sources in the
presence of coupled and multi-scale models, physics-based
and data-driven models, and experimental uncertainties.

(8) Develop use cases that demonstrate the implementation of
the above activities by leveraging test results such as those
published in AM-Bench [148].

(9) Develop standards for the above methods and procedures,
including the V&V and UQ process flows, in order to fa-
cilitate industry acceptance of V&V and UQ techniques for
AM.

10 Conclusion
The state of the art in the implementation of UQ approaches to

additive manufacturing are surveyed in this paper. The research
needs and possible paths towards implementation are also identi-
fied. In general, AM models consist of both physics-based and
data-driven models, thus different VVUQ process flows need to be
followed for each type of model. Future research and standardiza-
tion activities need to develop methods and procedures to address
the challenges presented by multi-physics, multi-scale models in
AM with spatio-temporal outputs, complexity and quality of ex-
perimental measurements, and heterogeneous uncertainty sources.
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