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Abstract
Physics-based digital twins often require many computations to diagnose current and predict future damage states in struc-
tures. This research proposes a novel iterative global–local method, where the local numerical model is replaced with a sur-
rogate to simulate cracking quickly on large steel structures. The iterative global–local method bridges the scales from the 
operational level of a large steel structure to that of a cracked component. The linear global domain is efficiently simulated 
using static condensation, and the cracked local domain is quickly simulated using the adaptive surrogate modeling method 
proposed herein. This work compares solution time and accuracy of the proposed surrogate iterative global–local method with 
a reference model, a submodeling model, and an iterative global–local method with no surrogate model for the local domain. 
It is found that the surrogate iterative global–local method gives the fastest solution time with comparatively accurate results.
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1 Introduction

With current computational mechanics technology, physics-
based digital twins can diagnose and predict crack damage 
in structures. However, techniques to infer such informa-
tion require the exploration of many crack state possibilities, 
which is computationally expensive. This research proposes 

a surrogate iterative global–local method to quickly simu-
late many instances of a stationary crack on a large steel 
structure.

This research uses a miter gate problem as its case study, 
as shown in Fig. 1, although the developed approach is eas-
ily applicable to other structures. Miter gates are critical 
components of river navigation that swing open and shut 
to allow boat passage through a navigation lock chamber. 
When closed, miter gates act as damming surfaces, allow-
ing the water in the lock chamber to rise or fall. These two 
processes combined allow the lock chamber to act as a boat 
elevator, allowing boats to bypass dams and their accompa-
nying water-level differences. Some of the most important 
structural parts of the gates are submerged during opera-
tion, making visual inspection difficult, leaving an infor-
mation gap that digital twin technology aims to fill. This 
paper describes the miter gate example problem more fully 
in Sect. 3.

The main problem in simulating large steel structural 
performance (e.g., miter gate in Fig. 1) with component-
scale cracks is the separation in length scales. Miter gate 
structures may be tens of meters tall and wide, but their 
(possibly stable) cracks may be as long as a few cm. Thus, 
the structure and crack features are two orders of magnitude 
different in scale, complicating numerical model discretiza-
tion and increasing computational cost. In the miter gate 
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numerical model, a small solid cracked part (local region) 
is tied to a pristine shell structure (global region) in Abaqus. 
A fully-coupled at-scale simulation must include the global 
region’s behavior to find crack effects, greatly adding to the 
computational burden of the digital twin.

Zooming or submodeling can be used to separate the 
cracked portion of the structure from the pristine portion 
for reduced computational cost. The submodeling method 
transfers the global region solution to the shared boundary 
with the local region. This is computationally cheap and 
built into several commercial softwares including Ansys and 
Abaqus, but it fundamentally relies on Saint-Venant’s prin-
ciple, which states the difference between the effects of two 
different but statically equivalent loads becomes very small 
at sufficiently large distances from load. It will be shown 
that this principle does not hold for the miter gate example.

A generalization of the submodeling method is the itera-
tive global–local (IGL) method (Allix and Gosselet 2020). 
The IGL method provides a mechanism to obtain much more 
accurate solutions than submodeling via a similar numerical 
strategy: the global gate’s displacements are imposed on the 
local model boundary. Then a feedback loop finds the local 
boundary reaction, compares it to the global boundary trac-
tion, and applies the calculated immersed surface force to a 
new global computational job. Iterations can be performed 
until the solution is sufficiently accurate. The basic process 
is shown in Fig. 2. The IGL method converges to the refer-
ence combined problem given enough iterations. Thus, the 
IGL method can be viewed as a bridge between the submod-
eling and tying methods, providing increased accuracy over 

submodeling at the expense of increased computational cost 
over submodeling.

Previous IGL method work has looked at non-intrusively 
enhancing solid domains with XFEM cracks using XFEM/
GFEM (Duarte et al. 2001; Moes et al. 1999; Fillmore and 
Duarte 2018; Gupta et al. 2012). However, those methods 
each encountered limitations not affecting the IGL method. 
XFEM/GFEM crack modeling requires less particular local 
mesh refinement than quarter node elements (Duarte et al. 
2001; Moes et al. 1999; Henshell and Shaw 1975; Barsoum 
1976), and therefore it is used in this work. Additionally, 
the IGL method has been used successfully to simulate non-
linearities in the local domain with a linear global domain 
(Gendre et al. 2009).

The IGL method can be described as non-intrusive 
because of the ease with which research software may be 
combined with commercial software. This allows syn-
ergy between the robustness and broad applicability of the 
commercial software and the specificity of the research 
software. Also, the non-linear case clearly lends itself to 
speed increases since Newton–Raphson iterations may be 
performed locally, reducing the problem size dramatically. 
Within the context of large structures typically modeled as 
shells, the IGL method has been successfully used to con-
nect shell global domains to solid local domains with welds 
(Li et al. 2021a). The IGL method has also been used to 
tie a shell aircraft geometry to a shell local domain with a 
sub-local solid domain tied into the local domain (Guinard 
et al. 2018). This paper describes the IGL methodology in 

Fig. 1  An open miter gate
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Sect. 2. Finally, an alternative method to IGL for crack rep-
resentation (i.e., a multigrid XFEM method) is proposed in 
Passieux et al. (2013).

The local cracked region in the miter gate will be mod-
eled linearly using XFEM/GFEM, so the speed advantages 
of quarantining non-linear regions to the local domain can-
not be exploited. Therefore, the IGL method cannot be 
assumed to be faster than the reference tying method. To 
accelerate the local-domain solution, this research proposes 
the novel modeling the IGL local domain using a surrogate 
model rather than a physics-based model. The surrogate 
model is trained on the local physics-based (crack) numeri-
cal results (not necessarily from a linear analysis). This sur-
rogate model may then be used within the IGL framework 
to dramatically reduce local-domain solution time. In fact, 
the non-intrusive nature of the IGL method (Allix and Gos-
selet 2020; Gendre et al. 2009, 2011; Gosselet et al. 2018; 
Li et al. 2021a) facilitates easy implementation of the sur-
rogate model.

Surrogate models, such as a Kriging method (Hu and 
Mahadevan 2016; Li et al. 2021b), neural networks (Li 
et al. 2017), and deep learning approaches (Chen et al. 
2020), have been extensively studied in structural analysis 
and design optimization to reduce the required computa-
tional effort, especially in the presence of uncertainty (Hu 
and Mahadevan 2017; Zhang and Taflanidis 2019). Various 
approaches have been proposed in the past decade to build 
an efficient yet accurate surrogate model (Sadoughi et al. 
2018; Li et al. 2021a; Viana et al. 2021). Some multiscale 
frameworks simulate material-scale damage by using a sur-
rogate model handle material properties and damage infor-
mation (Yan et al. 2020; El Said and Hallett 2018). To the 
best of our knowledge, however, surrogate modeling in an 
IGL framework has not been reported. This paper describes 
a surrogate-based IGL methodology in Sect. 4 to fill this 
void.

Accelerating global domain linear solutions is somewhat 
easier using static condensation. Interactions between sub-
regions to solve the aggregate problem can be accelerated 
using static condensation (Bjorstad and Widlund 1986; Gen-
dre et al. 2009; Wyart et al. 2008). Within the IGL frame-
work, this research utilizes static condensation to acceler-
ate solution of the linear global problem, as discussed in 
Sect. 2.4. The use of a surrogate model for the local domain 
and static condensation for the global domain results will 
be referred to as the surrogate iterative global–local (SIGL) 
method for the rest of this paper. SIGL has trivial computa-
tional time for each IGL method iteration, making the IGL 
method extremely fast, relatively speaking. The basic SIGL 
process is shown in Fig. 3.

Four possible techniques have been mentioned to solve 
a problem in the class posed within this work: (1) reference 
tying method, (2) submodeling method, (3) IGL method, 

and (4) a proposed surrogate IGL method. The accuracy and 
speed of each of these approaches are shown and discussed 
in Sect. 5.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the reference tying, submodeling method, 
and the IGL algorithm. Using the miter gate problem given 
in Sect. 3 as an example, Sect. 4 presents the proposed sur-
rogate model-based IGL framework. Results comparing the 
different modeling methods is presented and discussed in 
Sect. 5. Section 6 gives the conclusions.

2  Modeling methodologies

2.1  Reference problem (shell‑solid tying)

The reference problem to be solved is a shell geometry 
tied to a small solid geometry with a feature of interest and 
boundary conditions, as shown in Fig. 4. Large steel struc-
tures will have much larger shell domain ΩSH compared 
to the solid domain ΩS . Also, body loads may be included 
although they are not shown in the figure. Commercial soft-
ware such as Abaqus provide the tools to solve this problem 
for many different features of interest, including cracks. The 
tying method couples a solid surface to a shell edge where 
the shell normal is perpendicular to the solid surface normal. 
The constraints couple the displacement and rotation of each 
shell node to the average displacement and rotation of the 
solid surface near the shell node (Abaqus 2021).
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2.2  Submodeling methodology

The submodeling method has a coarsely discretized 
global domain ΩG and a finely discretized local domain 
ΩLSH ∪ ΩLS = ΩL containing the feature of interest within 
ΩLS as shown in Fig. 5. The displacements and rotations are 
solved for in the global domain and then the displacements 
and rotations along ΓGL-G are applied to the local domain 
along ΓGL-L . The solution of the local domain reflects the 
effects of the feature of interest. Due to the lack of any 

feedback mechanism to the global domain, this solution 
tends to underestimate the effects of the feature of interest 
and may not be sufficiently accurate. However, the numeri-
cal solution time is likely faster than the reference problem. 
If it is assumed that the number of flops is on the order 
of the number of degrees of freedom cubed fref = O(n3) 
due to factorization, then dividing n into n ≈ nG + nL gives 
the submodeling number of flops as fsub = O(n3

G
) + O(n3

L
) . 

Therefore fref > fsub.
As shown in Fig. 5, the local domain ΩL is subdivided 

into a solid local domain ΩLS with the feature of interest and 
a shell local domain ΩLSH to act as a buffer zone between 
the global discretization and local discretization. The two 
subdomains are tied along their shared boundary ΓSH using 
built-in Abaqus shell-to-solid tie constraints.

2.3  Iterative global–local methodology

The IGL method is a generalization of the zooming/sub-
modeling method which incorporates a feedback loop into 
the global domain. This feedback loop improves accuracy 
but increases computational cost. The IGL method utilizes 
a local domain with local features of interest and fine dis-
cretization along with a global domain with a coarse discre-
tization. The corresponding problem to Fig. 5 is shown in 
Fig. 6. The boundary between the global and local domains 
ΓGL facilitates exchange of displacement and reaction forces 
between the global and local problems. Note that the local 
domain utilizes the technique in Guinard et al. (2018) to 
facilitate shells in the global region and solids in the local 
region near the feature of interest.

Fig. 4  Reference problem with shell domain ΩSH , solid domain ΩS , 
shell-to-solid tied boundary ΓSH , feature of interest, Neumann bound-
ary condition ΓN , and Dirichlet boundary condition ΓD

Fig. 5  Submodeling problem with global domain ΩG , local shell 
domain ΩSH , local solid domain ΩS , shell-to-solid tied boundary ΓSH , 
feature of interest, Neumann boundary condition ΓN , Dirichlet bound-
ary condition ΓD , global–local boundary ΓGL , and local Dirichlet 
boundary condition ΓGL-L

Fig. 6  Iterative global–local algorithm illustrated using ΩG , ΩLSH , 
ΩLS , feature of interest, ΓN , Dirichlet boundary condition ΓD , ΓGL-G , 
ΓGL-L , and ΓSH . The top large arrow denotes the application of dis-
placements and rotations from the global solution to the local prob-
lem. The bottom large arrow denotes the application of the residual 
between: (a) the local solution reaction forces and moments and (b) 
the global traction forces and moments to the global problem. This 
process is repeated until convergence is reached
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The IGL algorithm is given in Algorithm 1 where pj is 
immersed surface force at ΓGL-G , �j is relaxation parameter 
that accelerates convergence, uG

j
 is global displacement at 

ΓGL-G , �L
j
 is local reaction at ΓGL-L , and �GA

j
 is the auxiliary 

reaction at ΓGL-A shown in Fig. 7. Algorithm 1 expounds 
upon the values exchanged between ΩG and ΩL . It is gener-
ally accepted that Aitken’s Delta-Squared method provides 
robust convergence for this algorithm (Allix and Gosselet 
2020; Duval et al. 2016; Gosselet et al. 2018; Liu et al. 
2014).

Algorithm 1 Iterative global-local fixed point
iteration algorithm with Aitken’s delta-squared
method (Gosselet et al. 2018)

1: procedure IGL(tolerance,m,fG,fL) � fG and
fL are glob. and loc. load vectors

2: Arbitrary initialization p0
3: Arbitrary initialization ω0 ≈ 1.0
4: for j ∈ [0, ...,m] do
5: uG

j = SolveGlobal(pj ; f
G)

6: λL
j = SolveLocal(uG

j ; f
L)

7: λGA
j = SolveAux(uG

j ; f
GA)

8: rj = −
(
λL
j + pj − λGA

j

)

9: ej = rj∞
10: if ej < tolerance then
11: exit for loop
12: end if
13: pj+1 = pj + rj
14: Ait. ∆2: ωj+1 = −ωj

rj−1·(rj−rj−1)
(rj−rj−1)·(rj−rj−1)

15: pj+1 = ωj+1pj+1 + (1− ωj+1)pj

16: end for
17: end procedure

This algorithm shows that part of the first iteration of IGL 
constitutes the zooming/submodeling method. To compare 
accuracy between the two and the reference solution, values 
specific to the feature of interest will be used, specifically 
for cracks stress intensity factors (SIF).

For a linear problem IGL may be faster than the refer-
ence problem under ideal conditions, e.g., the commer-
cial software can save the factorized matrix. The speed 
increase depends on the number of iterations i and nG , nL , 
and n. Considering factorization and forward and back-
ward substitution since it may be significant for itera-
tions within IGL, fIGL = O(n3

L
+ n3

G
+ i ×

(
n2
L
+ n2

G

)
 . 

Directly comparing this with the tying method 
fref = O((nL + nG)

3 + (nL + nG)
2) one can see the rather 

precarious situations under which IGL may be faster than 
the tying method. Now, assume that these estimates on 
the order of solution perfectly represent solution time. We 
take that IGL solution time must be less than the tying, 
n
3

L
+ n

3

G
+ i × (n2

L
+ n

2

G
) < n

3

L
+ 3n

2

L
nG + 3nLn

2

G
+ n

3

G
+ n

2

L
+ 2nLnG + n

2

G
 . 

Solving this for i gives

If either nL or nG is much greater than the other, i < 4 
for faster IGL solution of the system of equations. If nL 
approaches 0 (local problem disappears) i < 1 . This moti-
vates the numerical context within which IGL is useful: 
the global domain is so large that the local domain likely 
requires immense detail for the feature of interest. Now, the 
global maximum for m is along the line nL = nG which gives 
i < 6nL + 1 iterations. Now this is not exact arithmetic on the 
time to solution of the system, but demonstrates the likely 
speed advantage of IGL for linear problems. In this research, 
such ideal conditions are achieved using static condensa-
tion, which has the added benefit of reducing the degrees 
of freedom in the solve for the global system of equations.

2.4  Static condensation of global domain in IGL 
method

The IGL algorithm provides clear computational benefits 
with localized non-linearity, since Newton–Raphson itera-
tions need to be performed on only the much smaller local 
domain. However, this research shows that the IGL method 
may be much slower than the tying method in a linear local 
problem. In this research, the XFEM crack local problem 
is linear and computationally expensive, which makes 
IGL possibly slower than the tying method. In an attempt 
to accelerate the IGL method, static condensation can be 
applied to both the global and local stiffness matrices since 
both are linear. Statically condensing ΩG requires leaving 

(1)i <
3n2

L
nG + 3nLn

2
G

n2
L
+ n2

G

+ 1.

Fig. 7  Iterative global–local algorithm auxiliary domain ΩGA used for 
the calculation of global traction
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the degrees of freedom at the nodes along ΓGL uncondensed. 
Then global Neumann boundary conditions can be applied 
at those degrees of freedom as well as the immersed sur-
face force at each iteration pi . Then, the global displace-
ment along ΓGL ( uG

i
 ) is obtained directly from the condensed 

matrix.
In the example problem presented in this research, there 

may be damage in one boundary condition region. When 
damage is not present, a pin boundary condition is applied; 
when damage is present, the pin boundary condition is 
removed. This is compatible with static condensation by 
leaving all nodes along the boundary condition uncondensed 
and applying the pins on the static condensation system of 
equations.

While static condensation demands a large upfront cost, 
the speed improvement comes with the many IGL iterations 
performed over the many permutations of a Monte Carlo 
analysis or training process. However, applying static con-
densation to the local-domain stiffness matrix has some 
caveats. First, the used commercial software does not sup-
port static condensation with XFEM, although it is theoreti-
cally possible. Second, a unique static condensation must be 
computed for each crack length, which may be faster than 
the reference solution.

Since the static condensation of a global stiffness matrix 
can consider different load cases and levels of damage along 
the boundary condition, only one global static condensation 
step is necessary per local domain. Then the same reduced 
stiffness matrix can be used over the permutations of load 
cases, damaged boundary condition, and IGL iterations. 
Thereby, the static condensation of the FEM discretization 
of the global domain saves computational cost. However, it 
is shown in Sect. 5 that the IGL solution of a problem with 
only one permutation of the load cases and damaged bound-
ary conditions saves computational effort.

3  Problem definition: application to a miter 
gate

3.1  Miter gate operation, load state, and feature 
of interest

Miter gates are navigational hydraulic steel structures criti-
cal to river traffic. They function as boat “elevators” that 
allow boats to bypass dams and navigate up or down river. 
Figure 8 shows how miter gates open and close. The gudg-
eon and pintle (seen in Fig. 9) form a hinge about which the 
gate rotates. More detailed information about pintle behavior 
can be found in Fillmore and Smith (2021). When open, 
boats can enter or leave the lock chamber. When closed, 
the lock chamber can be filled or emptied (on the upstream 
side) while the miter gate acts as a damming surface. The 

resulting hydrostatic pressure pushes the two leaves together 
along their miter and pushes each leaf into the wall along the 
quoin. More detailed information about quoin behavior can 
be found in Eick et al. (2019).

Miter gates’ largest cyclic loads are from the filling and 
emptying of lock chambers as boats are lifted or lowered. 
The resulting cyclic stresses contribute to fatigue crack-
ing. Miter gates are welded structures, so the heat-affected 
zones greatly accentuate the cyclic stresses. However, in 
this example, a region of the leaf is selected that naturally 
experiences tension to reduce complexity resulting from 
weld residual stresses. This portion of the leaf is near the 
bottom center. If each leaf is viewed as a beam (Fig. 8) 
with distributed load, the greatest tension in the leaf will 
occur on the downstream side at the middle of the leaf.

A finite element model representing the Greenup down-
stream miter gate is shown in Fig. 10. The boundary con-
ditions of the miter gate are set up to simulate the in-situ 
environment of a hanging gate. The miter gate rotates 
around the axis created by the anchorage pin and pintle as 
shown in Fig. 8. The pintle, a ball and socket joint, takes 
all of the vertical gravity load. The pintle is represented by 
applying a multi-point constraint (MPC) from the center 
of the ball to the portions of the horizontal girder with 
which the socket connects. Then, the center of the ball is 
restrained from translating in the x-, y-, and z-directions. 
The anchorage links are embedded in concrete at the top 
of the gate. This is represented by restraining translation 
in the x-, y-, and z-directions.

The strut pin is attached to a strut arm that opens and 
closes the gate. The strut pin can rotate around the z-axis. 
When the gate is closed, the strut arm applies resistance 
at − 43° from the negative x-direction on the gate. The 
strut pin is modeled by applying an MPC from the top of 
the strut pin to the enveloping top lug and a separate MPC 
from the bottom of the strut pin to the enveloping bottom 
lug., Then the center of the strut pin is restrained from 
translating − 43° from the negative x-direction.
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Fig. 8  Miter gate top view with swinging motion
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Hydrostatic pressure is applied on the upstream plate 
of the gate, called the skin plate as shown in Fig. 11. The 
upstream hydrostatic pressure is denoted hup and the down-
stream hydrostatic pressure is denoted hdown . When the gate 
holds enough water in the lock chamber, the miter contact 
block of both gate leaves comes into contact and a symmet-
ric pin is assumed preventing translational movement − 18° 
from the x-direction. The two gate leaves act as an arch, 
experiencing more axial compression under more hydraulic 
head. This compression causes the gate to thrust in the lock 
wall contact block. The wall resists horizontal movement in 
the x- and y-directions, which is represented in the model 
with pins that resist translation in the x- and y-directions.

The contact of the quoin contact block with the wall is 
idealized using pin boundary conditions as shown in Fig. 12. 
Often, the bottom portion of the quoin becomes damaged so 
that it cannot properly contact the wall. This lack of contact 
is idealized by not applying the pin boundary conditions. 
The length of this damaged region is denoted ldmg.

Figure 13 shows the reference discretization with a zoom-
in of the crack region. The shell elements used over much of 
the gate are reduced-integration quadrilaterals with element 
size six inches. Where the crack is defined linear, hexahedral 
elements are used with element size 0.0625 in. The mesh 
discretization has 201, 463 elements and 211, 372 nodes. 
The IGL discretization is effectively identical to the refer-
ence, with an identical mesh discretization in ΩG and ΩL.

Figure 13 also shows the location of the crack used for 
this example. The crack occurs along the bottom web edge 
of the second from bottom girder as shown in Fig. 13. The 
crack has a straight front, extending through the entire 3/4 
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in thickness of the plate. The crack length is variable, but 
the largest possible length through the web bottom is 4 in.

Miter gates are fabricated by welding mild steel plates 
together. The local weld geometries are ignored in this 
research. A linear material model is used with the Young’s 
modulus as E = 29, 000 ksi and the Poisson ratio as 0.3.

Figures 14, 15, 16, and 17 help clarify how IGL is used 
in this example. Figure 14 shows the global domain along 
with the immersed surface force pi resulting from the IGL 
algorithm. The global domain does not contain the crack 
and is only coarsely discretized in the crack’s coordinates 
ΩGA . Outside of ΩGA , the global domain’s geometry and 
discretization match up exactly with the reference model.

The feature of interest is the crack, which is only explic-
itly represented in the local model in Fig. 15. The geometry 
and discretization of the shell domain ΩLSH and the solid 
domain ΩS line up exactly with the reference model in the 
corresponding region. Also, the nodes of the FEM global 
mesh along ΓGL line up with the nodes of the FEM local 
mesh along ΓGL-L exactly. Because shell elements are used, 
such matching meshes along the 1-dimensional interface 
are easy to produce in Abaqus. Displacements and rotations 
from the global model at the IGL step are applied along 
ΓGL-L.

Figure 16 shows the global auxiliary domain. This domain 
matches the ΩGA in Fig. 16 exactly, i.e., there is no crack and 
has the same mesh discretization. When the displacements 
and rotations from the global solution are applied along ΓGL , 
this domain helps to calculate the reaction forces of ΩGA 

easily, particularly when sophisticated post-processing capa-
bilities are not available.

The IGL fixed point iteration algorithm with Aitken’s 
Delta-Squared method is shown in the context of the cracked 
miter gate in Fig. 17. The boundary conditions for the global 
domain include damaged gap length ldmg , and upstream hup 
and downstream hdown water heights that result in fG . The 
local domain has a certain crack length a. For the first itera-
tion of IGL or the submodeling method, pi = 0 . The result-
ing displacements and rotations along ΓGL are applied to 
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Fig. 12  Damage in the quoin contact block

Fig. 13  Mesh discretization of reference miter gate model
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the local and auxiliary global models. These models give 
the local reactions and global reactions, respectively. The 
residual between them is found. The local model and global 
auxiliary model also have the displacements from the global 
model solution uG

i
 applied along ΓGL.

3.2  Calculating the stress intensity factor

The stress intensity factor is calculated using built-in Abaqus 
technology. There are 13 nodes through the thickness of the 
cracked plate, and through the rest of this paper the middle 

node will be considered. Four contours are generated per 
node, and the first SIF mode, K1 , is recorded. The Abaqus 
default contour integral method, the line integral method is 
used. In order to measure error of the methods considered in 
this research, the SIF relative error with the reference solu-
tion is calculated as eK =

‖K1−ref−K1−IGL‖
K1−ref

 , where K1−ref is the 
SIF value extracted from the reference model and K1−IGL is 
from IGL.

ΩGA

pi applied along ΓGL

ΩG

Fig. 14  IGL global miter gate model with zoom-in of area of inter-
est. No crack is included in the area of interest, but the shown purple 
arrows along boundary ΓGL are the pi forces that relay the effects to 
the global model

Fig. 15  Local miter gate model with contour integral crack represen-
tation. The crack is located in the solid subdomain ΩS . The global 
displacement solution uG

i
 is applied along the global–local boundary 

ΓGL

Fig. 16  Global auxiliary miter gate model. The global displacement 
solution uG

i
 is applied along the global–local boundary ΓGL
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4  Surrogate iterative global–local 
methodology

The aforementioned IGL algorithm is computationally 
expensive for probabilistic analysis (e.g., reliability analysis, 
uncertainty quantification, model updating), since the model 
needs to be executed thousands of times. A straightforward 
way to overcome the computational challenge of the IGL 
method is to directly build a surrogate model for the IGL 
model as a whole by treating the model as a black box. The 
direct surrogate modeling method, however, has the follow-
ing three major drawbacks: 

1. Whenever there is a change in the global model, the 
original surrogate model will become inapplicable and 
needs to be retrained;

2. As a purely data-driven approach, the direct surrogate 
modeling method does not preserve the physical infor-
mation in the global model;

3. The training time is much longer. Generating train-
ing samples for the direct surrogate modeling method 
requires full runs of the IGL, which itself requires a 
number of iterations to converge.

This section proposes a hybrid surrogate modeling method 
to tackle the computational challenge in the IGL method and 
overcome the limitations of the direct surrogate modeling 
method. In the proposed method, the FE process of global 
domain is kept to capture the physical response of the global 
domain under several boundary conditions, while the non-
linear behavior of the local domain is modeled using Gauss-
ian Process Regression (GPR) (Santner 2003; Williams and 
Rasmussen 2006). As for this paper, the GP package from 

scikit-learn is used to build the surrogate models (Pedregosa 
2011). Because that the local FEM process was used 
repeated in IGL iterations, the performance of the surrogate 
model must be carefully calibrated without introducing addi-
tional system error. The proposed method consists of two 
main steps, namely (1) surrogate modeling and refinement in 
the local domain; and (2) integration of physics-based global 
model and data-driven local model for IGL implementation. 
In what follows, more details are provided about the pro-
posed surrogate-based iterative global–local methodology.

4.1  Surrogate modeling in the local domain

As shown in Fig. 17, the input of the local-domain FE model 
consists of the displacements uG from the global model solu-
tion and given crack length a imposed to the local domain. 
The output, correspondingly, is composed of the reaction 
forces �L from the local model solution. The goal of sur-
rogate modeling in the local domain is to efficiently map uG 
and a to �L using surrogates without solving the computa-
tionally expensive local FE model repeatedly.

4.1.1  Training data collection

The local boundary condition solved from the global 
model is dominated by the hydrostatic pressure and the 
quoin block damage. Meanwhile, the crack length deter-
mines the corresponding response from the local model. 
Overall, the physics of the whole structural system in 
this case is affected by four parameters, i.e., hup , hdown , 
ldmg , and a. Different combinations of such parameters 
induce different physical behaviors of local model, lead-
ing to input–output (IO) relations for the surrogate models. 
Directly building and training surrogate models can be 
time-intensive as such high-dimensional space is hard to 
be sufficiently sampled. To overcome this challenge, we 
first generate N samples in the 4-D space constructed by 
hup , hdown , ldmg , and a using the Latin hyper-cube sam-
pling method. In this study, 400 samples are first gen-
erated as shown in Fig. 18, assume that the IGL algo-
rithm needs ni iterations to converge for the i-th sample, 
∀i = 1, 2, ⋯ , N  . The intermediate training data can be 
denoted as uG

i
∈ ℝ

(ni×MDOF) and �L
i
∈ ℝ

(ni×MDOF) , where MDOF 
is the total DOFs of the local boundary ΓGL . In this exam-
ple, 200 samples are generated with the parameter ranges 
as hup ∼ [432, 720] in, hdown ∼ [120, 360] in, ldmg ∼ [0, 150] 
in, and a ∼ [0.5, 4] in, where [lb, ub] represents variation 
lower bound lb and upper bound ub.

Let the total number of data collected for uG and �L be 
NT  (i.e., NT =

∑N

i=1
ni ), we then have training data from 

the N simulations as

Fig. 17  Illustrated IGL fixed point iteration algorithm with Aitken’s 
Delta-Squared method for miter gate with global, local, and global 
auxiliary mesh discretizations. The global domain has ldmg , hup , and 
hdown parameters. The local domain has parameter a 
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where MDOF is the total DOFs of the local boundary ΓGL . 
Note that the data are organized in rows, i.e., the total num-
ber of rows represents the length of the data and the total 
number of columns represents the dimension of the data.

4.1.2  Data compression and latent space representation

In general, as the input dimension of the surrogate model 
increases, the training data required to fully character-
ize the IO relationship grow exponentially. According to 
the collected training data in the case of miter gate, the 
local boundary ΓGL contains 120 × 6 DOFs ( MDOF = 720) 
resulting in a 721-dimensional input and a 720-dimen-
sional output. The high-dimensional input and output 
make the construction of accurate surrogate models in the 
local domain very challenging. Thus, instead of directly 

(2)

� = (uG, �)

= [(uG
1
, a1), (u

G
2
, a2), ..., (u

G
NT
, aNT

)]

∈ ℝ
(NT×(MDOF+1)),

� = �
L = [�L

1
,�L

2
, ...�L

NT
] ∈ ℝ

(NT×MDOF),

building surrogate models for uG and �L , dimension reduc-
tion method is necessary to map the IO relationship into 
a low-dimensional latent space. Numerous contributions 
have been made to compress dataset from higher dimen-
sional matrix to lower dimensional matrix with various 
dimension reduction techniques, such as singular value 
decomposition, independent component analysis, and 
auto-encoder (Fodor 2002; Vega et al. 2021). Considering 
its computational cost as well as stability, SVD is adopted 
in this paper. However, compression in the developed 
approach is not limited to SVD, but can be accomplished 
with other dimension reduction techniques as well.

In SVD, the data collected in Eq. (2) is decomposed as

where Wu,W� ∈ ℝ
(NT×NT) and VT

u
,VT

�
∈ ℝ

(MDOF×MDOF)are 
orthogonal matrices, and Eu,E� ∈ ℝ

(NT×MDOF) are rectan-
gular diagonal matrices. Note that the crack length in the 
input data is not compressed with the whole matrix due to 
its significance.

After the decomposition given in Eq. (3), a low-rank 
matrix approximation can be further determined, namely

where Ẽu ∈ ℝ
(NT×N

�
u
) and Ẽ𝜆 ∈ ℝ

(NT×N
�
𝜆
) are the same matri-

ces as Eu,E� except that they contain only N′
u
 and N′

�
 largest 

singular values, respectively (the other singular values are 
replaced by zero). Figure 20 illustrates how the important 
features of the data can be represented by a low-rank matrix 
from the SVD.

As shown in Fig. 19, the corresponding reduced-order 
the displacement and reaction force, denoted u′G and �′L , 
can be represented by truncating the orthogonal matrices 
Wu,W� based on their ranks

where Nu′ and N�′ are the dimensions of u′G and �′L after 
reduction. The decoders and encoders are defined as the 
matrices that allow the data to transform between low-
dimensional and high-dimensional spaces through matrix 
multiplication. Written explicitly,

(3)
uG = WuEuV

T
u
,

�
L = W�E�V

T
�
,

(4)
ũ�G = WuẼuV

T
u
,

�̃
�L
= W𝜆Ẽ𝜆V

T
𝜆
,

(5)
Wu ∈ ℝ

(NT×NT)
→ W�

u ∈ ℝ
(NT×N

�
u
)
→ u�G,

W� ∈ ℝ
(NT×NT)

→ W�
� ∈ ℝ

(NT×N
�
�
)
→ �

�L,

Converged?

Global solve with 
ℎ , ℎ ,

Local solve with 

= + 1

No

Yes

No
Yes

IGL Algorithm

= + 1

= 1

= ?

Update ,

Update ,

= 1

Model parameters:

ℎ
1

…

ℎ
,

ℎ
1

…

ℎ
,

1
… ,

1

…

Training Data:
1,1 … 1, 1

… … …

,1 … ,

,
1,1 … 1, 1

… … …

,1 … ,

Start

End

Fig. 18  Collecting uG,�L , and SIF training data from the physics 
model
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(6)

Decoder� = E�
�V

�T

�
,

Encoderu = (E�
uV

�T

u
)†,

uG = u�G × Decoderu,

�
L = �

�L × Decoder�,

u�G = uG × Encoderu,

�
�L = �

L × Encoder�,

where (E�
uV

�T

u
)† is the (Moore–Penrose) pseudoinverse 

(Moore 1920) of E′
uV

′T

u
 , which extends matrices inversion 

to non-square matrices (the decoders are non-square matri-
ces in most cases).

The latent space of the surrogate model now can be 
presented as

In this example, the 720-DOF displacement vector uG is 
compressed into a 4-dimensional vector ( Nu� = 4 ), which 
forms a 5-dimensional input combining with crack length 
parameter in the latent space. Similarly, the 720-DOF reac-
tion force �′L is compressed into a 4-dimensional output 
( N�� = 4 ) in latent space. The GPR-based surrogate models 
are then built and trained in the designed latent space with 
training samples �′ and �′ . Since �� ∈ ℝ

(NT×N
�
�
) , GPR sur-

rogate models are constructed for each dimension of �′ as 
follows:

where Ĝi(⋅),∀i = 1, … , N�
𝜆
 is the i-th GPR surrogate model. 

Note that the surrogate modeling in this paper is not lim-
ited to GPR. Because GPR can be computationally ineffi-
cient when handling high-dimensional data, the GPR can 
be replaced by a neural network architecture or other deep 
learning methods in a case that low-dimensional data can 
not be accurately generated.

For any given value of �′ , we have the prediction from 
the i-th GPR surrogate model as follows:

in which N(⋅) is Gaussian distribution, �Yi
 and �Yi are, respec-

tively, the mean and standard deviation of the prediction.
Due to the imbalance of the initial training data col-

lected in Sect. 4.1.1, the GPR surrogate models given 
in Eq. (8) may not accurately represent the original 
local-domain FE model. Using the GPR surrogate mod-
els to replace the original local-domain model in the 
global–local iterative scheme will lead to large prediction 
errors due to error accumulation over iterations. To over-
come this issue in surrogate model-based IGL algorithm, 
we present a framework to refine the local-domain sur-
rogate models in the subsequent section.

(7)

�
� = u�G

= [(u�G
1
, a1), (u

�G
2
, a2), ..., (u

�G
NT
, aNT

)]

∈ ℝ
(NT×(N

�
u
+1)),

�
� = �

�L = [��L
1
,��L

2
, ...,��L

NT
] ∈ ℝ

(NT×N
�
�
).

(8)Y �
i
= Ĝi(�

�), i = 1, … , N�
𝜆
,

(9)Ĝi(�
�) ∼ N(𝜇Yi

, 𝜎2
Yi
),∀i = 1, … , N�

𝜆
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Fig. 19  Dimension reduction strategy of the proposed method com-
pared with IO of FEM local model

Fig. 20  Illustration of the importance values of different features in 
the matrix represented by the singular values
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4.2  Refinement of local‑domain surrogate models

An important issue in surrogate modeling is how to 
achieve a good accuracy with a reasonable number of sam-
ple points in the latent space. Due to the error accumula-
tion over iterations as mentioned above, the performance 
of the surrogate model that replaces the FE process must 
be carefully calibrated in order to avoid additional sys-
tem error. As an example shown in Fig. 21, an input that 
locates in the area with sufficient training points (i.e., well-
trained area) will result a low model error when passing 
the GPR model, while poor-trained area will result a high 
model error.

Three sequential sampling approaches, i.e., the Maxi-
min approach, Variance Minimization (VM) method, and 
the Voronoi method are proposed to identify the sample 
points that need to be trained in the latent space. The goal 
of this section is to adaptively identify new training points 
�
∗ in the input space, utilizing the information obtained 

from the existing input space �C.

4.2.1  Global refinement

The global refinement is defined as a strategy which adds 
essential points based on current well-trained region to extend 
the cover range of the latent space. In this case, the Maxi-
min approach (Jin et al. 2002) is adopted which adaptively 
determines new training points by maximizing the minimum 
distance between the new point and all current available train-
ing points

where dnew is the identified location of the new training point 
x∗ , dt denotes all current available training points, and ‖ ⋅ ‖2 
is the l2-norm of a vector. By using this method, a larger 
training space of the design domain can be evenly sampled 
with training points.

(10)dnew = max
{
min

[‖‖d − dt‖‖2
]}
,

4.2.2  Local refinement

The local refinement is defined as a strategy which optimizes 
the training space by further sampling the regions with the 
largest prediction error. Given the different definitions of “pre-
diction error,” two local refine strategies are developed. In VM 
method, the new training point in each iteration is selected by 
minimizing the maximum mean square error (MSE) or predic-
tion variance as

where MSE(⋅) is the prediction variance of the surrogate 
model. The VM methods can effectively construct a global 
surrogate model when the variation of the response is similar 
across the design domain. However, VM is limited to the 
GP-based surrogate modeling method because it requires 
additional information from model outputs. Besides, when 
the underlying black box function is highly non-linear in 
only certain design regions, the VM methods become inef-
ficient (Hu and Mourelatos 2018).

We then further proposed Voronoi method, serving as an 
alternative to the VM method. The Voronoi method finds 
the most sensitive Voronoi cell to sample more points in this 
region. Such sensitive region when removed, the predicted 
response constructed by the rest of existing points will be far 
away from the actual response (Xu et al. 2014).

As shown in Fig. 22, the design space is partitioned into 
NC Voronoi cells in each iteration, where NC is the number of 
training data at current iteration, as follows:

where Ri is the domain of the i − th cell defined as below:

in which �∕�i represents the training data excluding �i.
From the NC Voronoi cells, the most important cell is 

identified in each iteration as follows:

where ei
LOO

 is the leave-one-out (LOO) prediction bias given 
by

in which f (�i) represents the true response of the train-
ing data �i and Ĝ

�∕�i
(�i) is the prediction of a GPR model 

trained using training data � excluding �i.
After the important cell (i.e., i∗ ) is determined, the new 

training input is identified in that cell by maximizing the 

(11)dnew = max{MSE(d)},

(12)Ω = ∪
i=1,...,NC

Ri,

(13)Ri = ∩
di∈D∕di

{
x ∈ X, ‖‖� − �i

‖‖2 ≤ ‖‖� − �i
‖‖2
}
,

(14)i∗ = max
i∈{1,,⋯NC}

{ei
LOO

},

(15)ei
LOO

=
‖‖‖f (�i) − Ĝ

�∕�i
(�i)

‖‖‖,

Fig. 21  Model error from differently trained regions
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distance between the new training data and the current train-
ing data (i.e., �i∗ ) as follows:

where Ri is the Voronoi cell defined in Eq. (13).
Once the new training point is added, the design space 

is then re-partitioned into NC + 1 Voronoi cells in the next 
iteration as illustrated in Fig. 22. Voronoi method takes use 
of the information from the existing surrogate models and 
are not limited to the GP-based surrogate modeling method.

The overall process of combining global refine and local 
refine from initial surrogate modeling to well-trained model 
is shown in Fig. 23. The input space of the GPR is suf-
ficiently sampled by adaptively identifying new training 
points in the poor-trained region, which improves the sur-
rogate performance without filling the training space blindly. 
Denoting all the identified new sample point in the input 
space as xnew , to form a complete training dataset for GPR, 
the corresponding training points in the output space ynew 
have to be obtained. Firstly, the displacement in physical 
domain uG

new
 is reconstructed from the compressed displace-

ment u′G
new

 determined in xnew . By imposing uG
new

 into the 
local ABAQUS FE model, the local reaction �L

new
 can be 

solved. The new training point in the output space of GPR 
model �′G

new
 is then obtained by compressing the full-dimen-

sional data into latent space using output encoder as follows:

The updated training dataset in the latent space of GPR after 
refinement is now obtained as follows:

(16)�
∗ = argmax

�∈Ri∗

{‖‖� − �i∗
‖‖},

(17)

Decoderu = E�
uV

�T

u
,

Encoder� = pseudoinverse(E�
�V

�T

�
),

uG
new

= u�G
new

× Decoderu,

�
�L
new

= �
L
new

× Encoder�,

where Nnew is the total number of added training points in 
the refinement. The GPR model is then considered as fine-
developed as it covers a larger well-trained training region.

4.3  Surrogate IGL method combining statically 
condensed physics‑based model in global 
domain and data‑driven surrogate model 
in local domain

For the miter gate example, solution of the global domain 
reduced system of equations (in this example the matrix 
is 720 × 720) takes less than a second. This is particularly 
attractive when considering the IGL iterations of a non-
linear problem. For example, say a crack-propagation is 
discretized to c crack lengths and each crack length takes 5 
IGL iterations. The static condensation reduced matrix can 
be used 5c times with only one front-end cost, resulting in 
dramatic time savings.

No special handling is required for the inputs and outputs 
of the statically condensed global model, making it a plug-in 
replacement for the FEM global model in IGL as shown in 
Fig. 24. With these improvements, the bottleneck for IGL 
solution time is now the local problem. However, while 
calculating pi the reaction forces of ΩGA cannot be pulled 
directly from the FEM model without element information 
around the boundary, so the statically condensed global aux-
iliary domain is used instead.

The proposed surrogate local model in Sect. 4 removes 
the local solution bottleneck. The GPR surrogate local 
model receives uG

i
 and outputs �L

i
 , making it a plug-in 

replacement for the FEM local model. The surrogate itera-
tive global–local method is illustrated in Fig. 25.

(18)

�
�
updated

= [(u�G
1
, a1), (u

�G
2
, a2), ...,

(u�G
N
, a

N
), (u�G

new
, anew)]

∈ ℝ
((NT+Nnew)×(N

�
u
+1)),

�
�
updated

= [��L
1
, ��L

2
, ..., ��L

N
, ��L
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]

∈ ℝ
((NT+Nnew)×N

�
�
),

Fig. 22  Iteratively adding new 
training points by the Voronoi 
method
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4.4  Extracting SIF values after convergence

After the IGL reaches its convergence, the local FE model 
after the last iteration is considered to preserve a true phys-
ics. As mentioned above, the SIF value at the middle node 
through the thickness of the is extracted from the local 
model after post-processing. In SIGL, however, due to the 
physics is replaced by surrogate modeling, it is important to 
fill the gap between local reaction forces �L

convergence
 and SIF. 

Given that, another surrogate model is built and trained to 
increase the running efficiency.

In this case, the 720-DOF reaction force vector �L
i
 is com-

pressed into a 4-dimensional vector, which forms a 5-dimen-
sional input combining with crack length parameter in the 
latent space. The output is then defined as the desired SIF 
value K1−SIGL . The GPR-based surrogate models are then 
built and trained in the designed latent space with training 
samples X and K1−SIGL.

where GSFIF(⋅) is the GPR surrogate model connecting local 
reaction forces with SIF.

(19)K1−SIGL = GSIF(�),

For any given value of local reaction forces � , we have 
the prediction of SIF from the GPR surrogate model as 
follows:

Fig. 23  Flowchart of the overall procedure from initial surrogate modeling to well-trained model

uG
i

uG
i

pi+1

λL
i

λGA
i

Fig. 24  Illustrated IGL algorithm for miter gate with (1) global and 
global auxiliary static condensation uncondensed nodes and (2) local-
domain mesh discretization
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in which N(⋅) is Gaussian distribution, �K and �K are, respec-
tively, the mean and standard deviation of the SIF prediction.

Next, we will use the miter gate example presented in 
Sect. 3 to compare the different approaches including sub-
modeling, IGL, and surrogate-based IGL (SIGL).

5  Results and discussion

Several solution methods have been covered: (1) Refer-
ence tying method, (2) submodeling, (3) IGL, (4) IGL with 
static condensation for global and auxiliary domains, and 
(4) SIGL. The methods for which accuracy is considered in 
this research are the IGL and SIGL methods. An example 
of their accuracy with a miter gate and a = 1 in, hup = 50 ft, 
hdown = 16 ft, and ldmg = 0.5 in is shown in Fig. 26. The IGL 
method with and without static condensation gives the same 
solution, so it is not shown in the figure.

For the IGL method, the error drops below 10−5 after only 
three iterations. The SIGL method takes more iterations, 
but reaches an error below 10−4 . While the error definition 
in Algorithm 1 is convenient for defining the IGL method 
convergence, the example problem proposed depends on the 
accuracy of the stress intensity factors along the crack front 
as compared with the reference tying method. Figure 27 
shows the relative stress intensity factor error eK evaluated 
at each IGL method and SIGL method iteration.

The IGL method quickly converges to below 10−3 while 
the SIGL method lags somewhat, but still achieves an eK 
near 2% . Since the residual convergence e showed better 

(20)GSIF(�) ∼ N(�K, �
2
K
),

convergence, it seems likely that this is due to lack of accu-
racy in the SIF surrogate model. As for the higher eK than e, 
it can be helpful to look at the physical quantities each deal 
with. The error e deals with residual forces at nodes, quanti-
ties solved for directly in the system of equations. However, 
eK depends on contour integrals involving evaluation of 
stress, a derived quantity from the displacements. There-
fore, the error will be higher for SIF outputs than for residual 
forces. However, the SIF error stagnates at around 4 × 10−4 . 
This may be due to computer precision error between the ref-
erence tied model definition and IGL model definition, e.g., 
the geometry in Abaqus seems to only have single precision. 
Figure 28 shows the SIF error eK accuracy of the converged 
IGL and SIGL compared with the submodeling solution.

It can be seen that while eK is similar for submodeling and 
the SIGL method, e is much smaller for the SIGL method. 
Since the IGL method is much more accurate than the sub-
modeling model, this points to room for improvement in the 
surrogate SIF model. Also, the crack length is very small 
( a = 1 ), helping the submodeling St. Venant’s assumption 
hold. As the crack length grows, the submodeling solution 

uG
i

uG
i

pi+1

λL
i

λGA
i

Fig. 25  Illustrated surrogate IGL algorithm for miter gate with (1) 
global and global auxiliary static condensation uncondensed nodes 
and (2) local-domain GPR surrogate

Fig. 26  Error convergence of IGL and SIGL methods for a = 1 in, 
hup = 50 ft, hdown = 16 ft, and ldmg = 0.5 in

Fig. 27  SIF error eK convergence of IGL and SIGL methods for a = 1 
in, hup = 50 ft, hdown = 16 ft, and ldmg = 0.5 in
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will become much less accurate. The SIGL method accu-
racy for varying a and ldmg will be explored later in this sec-
tion. For now, Fig. 29 shows the time to solution for several 
methods on the same desktop computer using 2 processors 
(CPUs) with a RAM of 32 GB.

The reference solution takes about 150 s. Interestingly, 
the submodeling solution takes longer than the reference 
solution, which bodes ill for the IGL method. A possi-
ble explanation for this may be inefficiencies in multiple 
Abaqus calls versus one in input file analysis, assembly, 
solution, and post-processing. The IGL method takes three 
iterations and about three times the time of the reference 
solution. Using static condensation on the global and aux-
iliary problems cuts the IGL solution time in half, but 
IGL with static condensation is still slower than the refer-
ence solution. This is surprising given some of the discus-
sion in Sect. 2.2 claiming a potential speed advantage for 
IGL. However, this can be explained by the limitations of 
performing analysis with Abaqus. Abaqus does not store 
the factorized stiffness matrix between jobs, so every job 
called after the first IGL iteration requires an (unnecessary 
to IGL) stiffness matrix assembly and factorization. How-
ever, The SIGL method has such a small time to solution 
1.06 s that the bar is not visible.

Figure 30 shows the reference SIF results over cracks 
from 0.5 to 4.0 in and damage gap height from 10 to 150 in. 
The SIF values get higher for longer cracks, but the behavior 
for higher damage gaps is more complicated. In the range of 
60–120 in the SIF values are actually smaller, showing the 
importance of the location of the crack on the miter gate. 
Since the damage gap is at the bottom of the gate, the load 
path travels up and around it, and coincidentally the crack 
as well. However, the pintle (bottom hinge support) can 

take load, so as the damage gap grows higher the load paths 
somewhat divert back down through the crack.

Figure 31 shows the ability of the surrogate iterative 
global–local method to model the miter gate. Interest-
ingly, globally refining the surrogate local model leads 
to overestimation of the SIF value for large damage gaps. 
Considering that local refinement improves the solution 
drastically, the solution must be very sensitive for large 
damage gap heights. In fact, looking at the residual map 
for global refine, the error clearly depends on damage gap 
height more than crack length, peaking at the extremes. 
Higher errors are near the edges. Both local refine methods 
manage to control the prediction error based on the global 
refine improvement.

Fig. 28  SIF error eK accuracy of submodeling, IGL and SIGL meth-
ods for a = 1 in, hup = 50 ft, hdown = 16 ft, and ldmg = 0.5 in

Fig. 29  Solution time for reference tying model, submodeling, IGL, 
IGL with global and auxiliary static condensation, and SIGL methods 
for a = 1 in, hup = 50 ft, hdown = 16 ft, and ldmg = 0.5 in

Fig. 30  Heatmap of SIFs for reference solution in ksi
√
in
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6  Conclusion

A surrogate iterative global–local methodology has been 
proposed to reduce computation time for problems with 
cracked large steel structures. This research novelly repre-
sents the local domain in an IGL problem using a surrogate 
model rather than a physics-based model. It was shown that 
for the example problem (with a linear local domain) IGL 
was extremely accurate, while the required computational 
cost is high which is not suitable for probabilistic analy-
sis such as failure diagnostics under the Bayesian frame-
work. However, SIGL achieves acceptable accuracy and is 
extremely fast. This makes SIGL well suited for diagnosis 
and prognostic tasks in digital twins.

Future research will look at handling non-linear global 
problems and utilization of SIGL to probabilistically infer 
crack length given sensor readings.
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