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Bayesian Network Learning for
Data-Driven Design
Bayesian networks (BNs) are being studied in recent years for system diagnosis, reliabil-
ity analysis, and design of complex engineered systems. In several practical applications,
BNs need to be learned from available data before being used for design or other pur-
poses. Current BN learning algorithms are mainly developed for networks with only dis-
crete variables. Engineering design problems often consist of both discrete and
continuous variables. This paper develops a framework to handle continuous variables in
BN learning by integrating learning algorithms of discrete BNs with Gaussian mixture
models (GMMs). We first make the topology learning more robust by optimizing the num-
ber of Gaussian components in the univariate GMMs currently available in the literature.
Based on the BN topology learning, a new multivariate Gaussian mixture (MGM) strat-
egy is developed to improve the accuracy of conditional probability learning in the BN. A
method is proposed to address this difficulty of MGM modeling with data of mixed dis-
crete and continuous variables by mapping the data for discrete variables into data for a
standard normal variable. The proposed framework is capable of learning BNs without
discretizing the continuous variables or making assumptions about their conditional
probability densities (CPDs). The applications of the learned BN to uncertainty quantifi-
cation and model calibration are also investigated. The results of a mathematical
example and an engineering application example demonstrate the effectiveness of the
proposed framework. [DOI: 10.1115/1.4039149]
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1 Introduction

Data-driven design requires the use of machine learning algo-
rithms to learn the system characteristics from available data.
Among many machine learning algorithms, Bayesian networks
(BNs) have been receiving increasing attention in recent years and
are being studied for uncertainty quantification, reliability analy-
sis, and model calibration, which are essential elements in engi-
neering design under uncertainty [1–6]. For example, Shahan and
Seepersad applied BN for the set-based collaborative design [7];
Khakzad et al. developed a dynamic safety analysis approach by
mapping bow-tie into BN [8,9]; Yuan et al. evaluated the risk of
dust explosion scenarios using BNs [10]; Gradowska and Cooke
developed a method to estimate the expected information using
BNs and applied it to fish consumption advisory [11]; Liang and
Mahadevan proposed a Bayesian Network-based reliability-based
design optimization method [12]; Bartram and Mahadevan used
BNs to integrate heterogeneous information in structural health
monitoring [13]; Groth et al. developed a method for human reli-
ability analysis using BNs [14,15]; Sankararaman and Mahadevan
proposed a methodology to integrate model verification, valida-
tion, and calibration using BNs [16]. All of the aforementioned
applications of BNs are based on known physics models or model-
ing of BNs based on known causal dependence relations. In these
problems, we usually assume that we know the conditional proba-
bility densities (CPDs) or conditional probability tables (CPTs),
and the BN topology.

In practical applications, often we may not have mathematical
models, but only observed data. In that case, the BN needs to be
constructed (learned) purely based on data before being used for
design or other purposes mentioned previously [17]. For instance,
connections between social factors and parameters of green

vehicles are sought to be discovered from data to guide the design
of vehicles [18]. Learning of a BN refers to discovering the under-
lying BN topology and/or CPTs or CPDs from data. During the
past decades, BN learning approaches and algorithms have been
studied in many fields including bioinformatics [19], biological
engineering [20], and machine learning [21].

Most of the current algorithms focus on learning of BNs with
only discrete variables. In many engineering applications,
however, we often have both discrete and continuous variables.
Learning of a BN with both discrete and continuous variables is
more challenging than learning with only discrete variables. To
overcome this difficulty, approaches have been proposed based on
discretization of continuous variables [22], vine-copula models
[23,24], mixture of truncated exponential polynomials [25], Gaus-
sian mixture models (GMMs) [26], and assumption of linear Gaus-
sian CPDs [27]. Even if these approaches can perform BN learning
for some specific problems, the accuracy and efficiency of these
methods need to be further improved for application to generalized
engineering problems with both discrete and continuous variables.

In this paper, we propose a new framework for the learning of
BNs based on the integration of score functions (defined for BNs
with only discrete variables) and GMMs. The two main contribu-
tions of this paper are: (1) the development of an optimal univari-
ate Gaussian mixture (OUGM) approach for BN structure
learning and (2) the development of a new multivariate Gaussian
mixture (MGM) approach to improve the accuracy of CPD learn-
ing. Two kinds of data mapping approaches are implemented in
order to realize the above-mentioned two contributions respec-
tively, namely: (1) mapping of data for continuous variables to
data for hidden discrete variables and (2) mapping of data for dis-
crete variables to data for a standard normal variable. The applica-
tions of the learned BN to uncertainty quantification and model
calibration are also studied.

The remainder of this paper is organized as follows. Section 2
reviews background concepts of BN learning and GMMs.
Section 3 develops the proposed method. Section 4 considers two
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numerical examples to illustrate the proposed method, and Sec. 5
gives concluding remarks.

2 Background

2.1 Bayesian Networks. A Bayesian network is a probabilis-
tic graphical model that represents the joint probability distribu-
tion of a set of variables through a directed acyclic graph [28,29].
It is capable of representing the causal dependence and flow of
information in complex systems. For a Bayesian network with
variables (nodes), V1; V2;… ; Vn, the joint probability is given by

PðV1; V2;… ; VnÞ ¼
Yn

i¼1

PðVijpiÞ (1)

in which Pð�Þ stands for probability, pi are the parent nodes of
node Vi, and PðVijpiÞ is defined by CPTs for discrete nodes and
by CPDs for continuous nodes.

In general, there are three elements in a BN: (a) the directed
acyclic graph, G, which defines the BN structure, (b) the condi-
tional probabilities PðVijpiÞ, i ¼ 1; 2; …; n, which give the CPTs
and CPDs between parent nodes and child nodes, and (c) marginal
probabilities PðVjÞ, j ¼ 1; 2; …; r, where Vj are the root nodes
(no parents) and r is the number of root nodes.

2.2 Learning of Bayesian Network From Data. Learning of
BN from data mainly consists of two parts: structure learning
(topology) and parameter learning. The problem can be summar-
ized as

Given: data, D.
Find: topology G, and marginal and conditional probabilities

(CPTs and/or CPDs) given G.
Algorithms for BN structure learning can be roughly classified

into constraint-based methods and score-based methods [30]. The
basis of constraint-based methods is the inductive causation algo-
rithm proposed in Ref. [31]. The score-based methods are more
widely used than constraint-based methods. Three commonly
used score functions include the minimal description length
(MDL), Bayesian–Dirichlet equivalence (BDe), and mutual infor-
mation test (MIT). The MDL score function is given by [30]

MDLðG; DÞ ¼ �log PðDjG; hÞ þ ðrðGÞlog NÞ=2 (2)

where N is the number of training data, h are parameters estimated
using maximum likelihood (ML) for given G, and rðGÞ is the
number of free parameters in G.

The BDe criterion maximizes the following posterior condi-
tional probability [32]

PðGjDÞ / PðGÞPðDjGÞ ¼ P
�

GÞ
ð

PðDjG; hÞPðhjGÞdh (3)

After derivations, the BDe score function is given by [32]

BDeðG; DÞ ¼
Yn

j¼1

Y
b

ðCðajbÞ=Cðajb

þ a0jbÞ
Y

a

ðCðajab þ a0jabÞ=a0jabÞÞ (4)

where Cð�Þ is Gamma function, ajab is the number of instances in
the data, and a0jab are the Dirichlet distribution parameters.

The MIT score function is defined as [32]

MITðG; DÞ ¼
Xn

i¼0; pi 6¼1
2N � IðXi; piÞ �

Xsi

j¼1

valiri ðjÞ

( )
(5)

where IðXi; piÞ is the mutual information between Xi and its
parents pi, si is the number of parent nodes, and valiriðjÞ

is the chi-
square distribution at confidence level 1� a.

After the BN topology is learned from the data, the CPTs are
estimated using the ML approach, or expectation maximization
(EM) method [33]. The above-mentioned score functions, how-
ever, have been developed for problems with only discrete varia-
bles and cannot be directly applied to BN with both discrete and
continuous variables.

2.3 Gaussian Mixture Model. Gaussian mixture model rep-
resents an arbitrary probability distribution using mixtures of
Gaussian components. For a random variable X with probability
density function (PDF) fXðxÞ, its PDF is approximated in GMM
using K component Gaussian distributions as follows:

fXðxÞ ¼
XK

i¼1

kifiðxÞ (6)

where fiðxÞ is the PDF of the ith Gaussian component, ki is the
weight of the ith Gaussian component, and

PK
i¼1 ki ¼ 1.

The EM method is commonly used to estimate the parameters
of fiðxÞ and weights ki [33]. The optimal number of components is
selected using the Bayesian information criterion (BIC) and
Akaike’s information criterion (AIC) scores. The BIC score is
given by [33]

BICðGGMMÞ ¼ log PðDjGGMM; hÞ � ðrðGGMMÞlog NÞ=2 (7)

where h are the parameters of GGMM and rðGGMMÞ is the number
of parameters in GGMM.

The AIC score is given by

AICðGGMMÞ ¼ log PðDjGGMM; hÞ � rðGGMMÞ (8)

The AIC and BIC scores are used throughout this paper to
select the optimal number of components in GMM. In addition,
samples can be generated from a GMM model in two steps:

(1) Generate a discrete number (component index i,
i ¼ 1; 2;…; K) based on the values of ki;

(2) Generate a sample from the distribution associated with the
discrete number.

In Sec. 3, we will develop the method to integrate BN learn-
ing with GMMs for BNs with both discrete and continuous
variables.

3 Learning of Bayesian Networks Using Gaussian

Mixture Model

In this section, we first give a brief review of related work in
engineering applications and methodologies. Following that, we
will present the proposed new learning method.

3.1 A Brief Review of Related Work

3.1.1 Related Engineering Applications. During the past dec-
ades, learning BN based on data for Bayesian inference has been
widely used in various engineering applications. For example, the
air quality of Washington, DC and its relationship between the
power plant emissions near the city has been modeled using BN
based on data from observation stations [23]. The causality
between the faults of a hydraulic actuator system and the system
parameters needs to be mined from the operational data of the sys-
tem [13]. Sahin et al. performed fault diagnosis for airplane
engines using BN learned from data sets obtained from airplane
engines during actual flights [34]. Yang and Lee [35] developed a
diagnostics and prognostics method of semiconductor manufactur-
ing systems using BN learned from data collected from sensors.
Regarding the application of GMM in Bayesian inference,
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Rodriguez-Zas and Ko [36] applied the GMM to the inference of
gene pathways, Sun et al. [37] constructed BN using GMM to pre-
dict traffic flow, and Zhang et al. [38] used hierarchical GMMs to
perform probabilistic community discovery.

3.1.2 Related Methodologies and Software Packages. As dis-
cussed in the introduction, various methods have been investi-
gated for the learning of BN, such as the software of Hugin which
discretizes continuous variables into discrete variables in learning
[22], the development of vine-copula models [23,39], and the
employment of mixture of truncated exponential polynomials
[25], and assumption of linear Gaussian CPDs [27]. Several meth-
ods have also been studied for the learning of BNs using GMMs
during the past decades. For instance, Davies and Moore [40]
developed a method called mix-nets, which uses a factored mix-
ture of Gaussians for BN parameter learning with discrete and
continuous variables, and Wilczynski and coworkers [26,32]
developed Python packages called BNFINDER and BNFINDER2 for the
hybrid BN structure learning by using GMMs to handle continu-
ous variables. Among the above reviewed methods, most of them
only focus on the CPD modeling of continuous variables. BNFINDER

is the one which focuses on both structure learning and parameter
learning. Since BNFINDER is also the one that is the most related to
the method developed in this paper, we therefore briefly review
this method first, before developing the proposed method.

3.1.3 BNfinder. Figure 1 gives the main principle of BNFINDER.
Three kinds of score functions (MDL, BDe, and MIT) as reviewed
in Sec. 2.2 are implemented in BNFINDER. All these score functions
were originally developed for the learning of BNs with only
discrete variables. To apply these score functions to structure
learning with both discrete and continuous variables, BNFINDER

treats the distribution of a continuous node Ci as a mixture of two
Gaussian components without arbitrary discretization of the con-
tinuous variables. Based on this treatment, a hidden discrete vari-
able Wi is introduced to represent the Gaussian component
corresponding to a given value of Ci. The conditional distribution
of Ci is computed by

PðCijpÞ ¼
X

d2flow; highg

X
d2flow; highgjp

PðCijWi ¼ dÞ

� PðWi ¼ djp0 ¼ dÞPðp0 ¼ djpÞ (9)

where d is a realization of the hidden discrete node Wi.

Analyses show that this treatment (Eq. (9)) does not work well
for the BN learning of some problems for two reasons. First, only
a two-component Gaussian mixture model is used in BNFINDER to
represent a continuous node. In many practical situations, two
components are not enough when variables follow multimodal
distributions. Second, BNFINDER is developed for structure learning
but not for model calibration. When it is applied to model calibra-
tion with continuous variables, the CPD modeling of a continuous
variable will have large error due to the two-component univarite
Gaussian mixture model used in Eq. (9). The fundamental reasons
for the large errors are explained in Sec. 3.2.2.

Based on all the previously-mentioned observations, we
develop a new method below for the learning of BNs with both
discrete and continuous variables.

3.2 Proposed Bayesian Network Learning Framework. In
this section, we first provide an overview of the proposed
framework. Following that, details of the new methods are
explained.

3.2.1 Overview of the Proposed Framework. The proposed
framework consists of three elements: the OUGM, score func-
tions for learning, and a new MGM. The OUGM model is first
built for each continuous variable. Based on the OUGM, data for
continuous variables are mapped into data for latent discrete var-
iables using GMM clustering. Once the mapping of data is com-
pleted, we apply available score functions for BN learning with
only discrete variables to learning of the BN topology and CPTs
between discrete nodes. After that, we develop a new MGM
model to improve the accuracy of CPD learning of continuous
variables. Figure 2 shows the overall framework for BN learning
with both discrete and continuous variables. There are two
stages:

� Stage 1—Learning of the BN topology and CPTs (of discrete
variables and latent discrete variables of continuous varia-
bles) using available learning algorithms for BNs with only
discrete variables. The learning is based on the mapping of
data for continuous variables to data for latent discrete varia-
bles through GMM clustering based on OUGM.

� Stage 2—Continuous nodes with parents are identified from
the learned BN topology, and the joint probability density
functions of continuous nodes and their parents are modeled
using MGMs.

Fig. 1 Concept of the BNFINDER method

Fig. 2 Overview of the proposed method

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems,
Part B: Mechanical Engineering

DECEMBER 2018, Vol. 4 / 041002-3

Downloaded From: http://risk.asmedigitalcollection.asme.org/ on 04/18/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Note that Stage 1 uses univariate Gaussian mixtures whereas
Stage 2 uses multivariate Gaussian mixtures. The final learned BN
will be a BN with MGMs embedded as CPD functions.

3.2.2 Optimal Univariate Gaussian Mixture for Structure
Learning. For BN structure learning (topology), in this paper, we
extend the current approach of using two Gaussian components to
using an optimal number of components according to the actual
distribution of available data. The optimal number is determined
based on the BIC scores of the GMMs. For each continuous vari-
able Ci, i ¼ 1; 2; …; n, its marginal distribution is approximated
using a multiple-component univariate GMM as follows:

f ðCiÞ ¼
XKi

j¼1

kjNðCijlj; r2
j Þ (10)

where Ki is the number of components for variable Ci,
NðCijlj; r2

j Þ is the PDF of the jth Gaussian component, lj and rj

are the mean and standard deviation of jth Gaussian component,
and kj is the weight of jth component. After extending the two—
component GMM to multiple number of Gaussian components,
Eq. (9) becomes

PðCijpÞ ¼
X

d2f1; 2;…;Kig

X
d2fKgjp

PðCijWi ¼ dÞ

� PðWi ¼ djp0 ¼ dÞPðp0 ¼ djpÞ (11)

where K stands for all possible realizations of parents of Ci.
Based on this extension, we map the data for continuous varia-

bles into discrete data for hidden discrete variables Wi and then
use score functions reviewed in Sec. 2.2 for the structure learning.
From the learned structure, we then estimate the CPTs of discrete
variables using the ML method. As indicated in the numerical
examples in Sec. 4, this strategy is adequate for the structure
(topology) and CPT learning. However, the use of univariate
Gaussian mixtures (with either two components or an optimal
number of components) may have large error in conditional prob-
ability learning. The reason is explained as follows.

Based on Eq. (11), the CPD of a continuous variable, Ci is writ-
ten as

PðCijpÞ ¼
X

d2f1; 2;…;Kig
kðdÞPðCijWi ¼ dÞ (12)

where kðdÞ ¼
P

d2f1; 2;…;Kigjp PðWi ¼ djp0 ¼ dÞPðp0 ¼ djpÞ.
The mean lCijp and variance r2

Cijp of Cijp are given by

lCijp ¼
ð
ðci

X
d2f1; 2;…;Kig

kðdÞPðCijWi ¼ dÞÞdci

¼
X

d2f1; 2;…;Kig
kðdÞlðdÞ (13)

r2
Cijp ¼

ð
ðc2

i

X
d2f1; 2;…;Kig

kðdÞPðCijW ¼ dÞÞdci � l2
Cijp

¼
X

d2f1; 2;…;Kig
kðdÞðr2ðdÞ þ l2ðdÞÞ � l2

Cijp (14)

where lðdÞ and rðdÞ are the mean and standard deviation of com-
ponent d, respectively.

Equations (13) and (14) show that lCijp is bounded by the

means lðdÞ of Gaussian components of Ci and r2
Cijp is also

bounded by the variances of the Gaussian components. No matter
how the parents p change, the mean and variance of the condi-
tional distribution will not go beyond those bounds. In Bayesian
inference, however, it is quite often that the mean and variance of
CPD fall outside of those bounds. This implies that there may be a

large error in the conditional probability by treating it as in
Eq. (11). Note that the original BNFINDER (reviewed in Sec. 3.1.1)
using two-component Gaussian mixture model is a special case of
the OUGM. The above-mentioned limitation therefore exists in
both BNFINDER and OUGM, i.e., in the use of univariate Gaussian
mixtures. To improve the accuracy of CPD learning and make the
learned BN applicable for model calibration, we introduce the
multivariate Gaussian mixture approach in Sec. 3.2.3.

3.2.3 Multivariate Gaussian Mixture for Conditional Proba-
bility Density Learning. Multivariate GMMs are developed in this
section for the purpose of CPD modeling of continuous nodes.
They are used to model the joint PDF of multiple variables instead
of marginal distributions of individual variables. The GMM for n
continuous variables, C ¼ ½C1; C2;…; Cn�, i ¼ 1; 2;…; n, is
given by

f ðCÞ ¼
XKm

j¼1

kjNðCjlj; RjÞ (15)

where Km is the number of components in the multivariate GMM,
NðCjlj; RjÞ is the PDF of the jth multivariate normal distribution,

lj and Rj are the mean and covariance matrix of the jth multivari-

ate normal distribution, and kj is the weight of the jth multivariate
normal distribution. Based on the MGM, as indicated in
Eqs. (17)–(19), the conditional probability distributions will
change with the values of parents instead of fixing at several given
distributions presented in Eqs. (13) and (14). Thus, the accuracy
of CPD modeling is improved.

The application of multivariate GMMs to the modeling of
CPDs is not straightforward. In this section, we will study how the
CPDs can be approximated using multivariate GMMs. This is the
critical part of stage 2 in the proposed framework. There are two
cases of CPD modeling using multivariate GMMs. We discuss
these two cases separately.

3.2.3.1 Case 1—Continuous node with only continuous
parents. When both the parent and child nodes are continuous
variables, the CPD modeling using GMMs has been studied and
reported in the literature [37]. For a given continuous variable Ci

with continuous parents, CPa, the CPD of Ci is given by

f ðCijCPaÞ ¼ f ðCi; CPaÞ=f ðCPaÞ ¼ f ðCÞ=f ðCPaÞ (16)

where f ðCPaÞ stands for the joint PDF of continuous parent nodes
and f ðCÞ is the joint PDF of Ci and its continuous parents. If f ðCÞ
is modeled using a multivariate GMM as given in Eq. (15), then
the CPD of Ci is also a GMM given by

f ðCijCPaÞ ¼
XKm

j¼1

wjNðlj;CijCPa
; Rj;CijCPa

Þ (17)

where lj;CijCPa
and Rj;CijCPa

are the conditional mean and variance,
respectively, and

lj;CijCPa
¼ lj;Ci

þ Rj;CiCPa
R�1

j;CPa
ðCPa � lj;CPa

Þ (18)

Rj;CijCPa
¼ Rj;CiCi

� Rj;CiCPa
R�1

j;CPa
RT

j;CiCPa
(19)

wj ¼ kjfjðCPaÞ
�XKm

j¼1

kjfjðCPaÞ (20)

In Eq. (17), wj can also be treated as the posterior probability of
weights for CPa.

3.2.3.2 Case 2—Continuous node with both discrete and con-
tinuous parents. If a continuous node has both discrete and
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continuous nodes, the GMM method in case 1 is not applicable
anymore. A possible way of solving this problem is using the
mix-nets method [40]. Figure 3 shows the main principle of the
mix-nets method. The main idea of handling discrete variables
in mix-nets is to use a lookup table. Suppose a set of nodes V
includes both discrete nodes D ¼ ½Di�i¼1; 2;…; n and continuous

nodes C ¼ ½Cj�j¼1; 2;…;m. For each possible realization d of D,

there are two elements in the lookup table: the marginal probabil-
ity PðdÞ of d, and a Gaussian mixture model, PðCjdÞ, conditioned
on d. The Gaussian mixture model, PðCjdÞ, is learned using the
EM algorithm based on a subset of data of C associated with the
values of d. Based on the lookup table, algorithms [40] are devel-
oped to compute the following conditional probability:

PðVijpÞ ¼ PðpjViÞ=PðpÞ (21)

where Vi is a node in V and p is a vector of its parents which may
have both discrete and continuous nodes.

It can be found that the data set of continuous nodes is parti-
tioned in the mix-nets method based on the values of discrete
nodes. When the data are abundant, the mix-nets method works
well. When the number of discrete nodes or possible values of the
discrete node increases, as being pointed out [40], the data of con-
tinuous variables will be shattered into many separate GMMs and
the data support for each of the GMMs will be very little, thus
affecting the accuracy. Inspired by the latent variable approach
developed by Morlini [41] for data clustering of mixed binary and
continuous variables, a new MGM method is developed in this
section to overcome this challenge.

In the latent variable approach, a continuous latent variable
with threshold is introduced to represent binary variables. The
thresholds and correlations of the latent continuous variables are
determined according to the statistical properties of the binary
variables. Suppose the following CPD needs to be evaluated,
where CPa are continuous parents and DPa ¼ ½D1; D2; …; Dm� are
discrete parents

PðCijCPa ¼ cPa; DPa ¼ dPaÞ ¼ PðCi; cPa; dPaÞ=PðcPa; dPaÞ (22)

where Ci is the child node, PðCi; cPa; dPaÞ is the joint probability
density function of Ci, cPa, and dPa.

In the threshold method presented by Morlini [41], a latent vari-
able is introduced for each binary variable. For a given binary
variable Di, its associated latent variable Xi (Gaussian variable)
has the following property:

Di ¼
1; if Xi � ni

0; otherwise

(
(23)

in which ni is a threshold determined according to the marginal
probability of Di.

In order to account for the correlations among D1; D2; …; and
Dm, the covariance matrix R of all the latent variables Xi, i ¼
1; 2; …; m is computed based on the following probability
equivalency:

PðDPaÞ ¼
ð

…

ð
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞmjRj

q� �
expð�ðx� lÞTR�1ðx� lÞ=2Þdx

(24)

where PðDPaÞ is the joint probability of discrete variables obtained
from data.

Based on Eq. (24), the covariance matrix of the GMMs of all
the continuous nodes and latent variables is estimated in Morlini’s
method [41] through the principle of maximum a posteriori esti-
mation. It is found that this method has the following drawbacks:

(1) The number of latent variables and the dimensionality of
integration are high.

(2) Solving the high-dimensional covariance matrix based on
the joint probability equivalency is computationally inten-
sive and often has singularity problems.

(3) Analytically estimating the global optimal covariance
matrix for all continuous variables and latent variables is
very difficult.

To overcome the above-mentioned difficulties, we develop a
new method by using only one latent variable U to represent all
the discrete parents of a continuous node. Before discussing the
proposed method, we define a new discrete variable Da with the
following characteristics

PðDaÞ ¼ PðDPaÞ (25)

Suppose each Di has ni states, Da is a discrete variable with the
number of states given by

N ¼
Ym
i¼1

ni (26)

Based on the definition of Da, we have

PðCijCPa ¼ cPa; DPa ¼ dPaÞ ¼ PðCijCPa ¼ cPa; Da ¼ daÞ
¼ PðCi; cPa; daÞ=PðcPa; daÞ (27)

and

PðDPa ¼ dPaÞ ¼ PðDa ¼ di
aÞ ¼ Pi; i ¼ 1; 2; …; N (28)

In order to model the CPD of Ci with parents CPa and Da using
GMM, thresholds of the latent variable U are defined as follows:

Da ¼
d1

a ; if u � u1

di
a if ui�1 < u � ui; 8 1 < i < N

dN
a if uN�1 � u

8>><
>>: (29)

Fig. 3 Concept of the mix-nets method
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in which ui, i ¼ 1; 2; …; N � 1 are thresholds computed by

ui ¼

U�1ðPiÞ; if i ¼ 1

U�1
Xi

j¼1

Pj

0
@

1
A; otherwise

8i ¼ 1; 2; …; N � 1

8>>><
>>>:

(30)

Note that in this paper, the standard normal variable is used as
the latent variable U. Other variables such as Lognormal, Uni-
form, or Weibull can be used as the latent variable as well.

After introducing the latent variable into Eq. (27), we have

PðCijCPa ¼ cPa; Da ¼ di
aÞ

¼

ðu1

�1
PðCijCPa ¼ cPa; uÞPðU ¼ ujDa ¼ d1

aÞduðui

ui�1

PðCijCPa ¼ cPa; uÞPðU ¼ ujDa ¼ di
aÞdu; if 1 < i < Nð1

ui

PðCijCPa ¼ cPa; uÞPðU ¼ ujDa ¼ dN
a Þdu

8>>>>>>>><
>>>>>>>>:

(31)

where PðU ¼ ujDa ¼ di
aÞ is the PDF of U at u given Da ¼ di

a.
For a given Da ¼ di

a, the corresponding distribution of U is a
truncated normal distribution. We therefore have

PðU ¼ ujDa ¼ di
aÞ ¼ /ðuÞ=PðDa ¼ di

aÞ (32)

where /ðuÞ is the PDF of the standard normal variable.
In Eq. (31), PðCijCPa ¼ cPa; uÞ is a continuous CPD given by

PðCijCPa ¼ cPa; uÞ ¼ PðCi; cPa; uÞ=PðcPa; uÞ (33)

Suppose that the joint PDF of Ci; CPa, and U is modeled using
the multivariate GMM. We then have

PðCijCPa ¼ cPa; uÞ ¼
XKm

j¼1

wjNðlj;CijcPa ; u; Rj;CijcPa; uÞ (34)

lj;CijcPa; u ¼ lj;Ci
þ Rj;CicPa; uR

�1
j;cPa ; u
ð½cPa; u� � lj;cPa; u

Þ (35)

Rj;CijCPa
¼ Rj;CiCi

� Rj;CiCPa
R�1

j;CPa
RT

j;CiCPa
(36)

and

wj ¼ kjfjðcPa; uÞ
� XKm

j¼1

kjfjðcPa; uÞ

0
@

1
A (37)

Substituting Eqs. (32)–(37) into Eq. (31), we have

P CijCPa ¼ cPa; Da ¼ di
a

� �

¼
ðuU

uL

XKm

j¼1

kjfj cPa; uð ÞN lj;CijcPa; u; Rj;CijcPa ; u
� �

/ uð Þ

P Da ¼ di
a

� � XKm

j¼1

kjfj cPa; uð Þ

0
@

1
A

du (38)

where

½uL; uU� ¼
½�1; u1�; if i ¼ 1

½ui�1; ui�; if 1 < i < N

½uN�1; 1�; if i ¼ N

8>><
>>: (39)

in which ui, i ¼ 1; 2; …; N � 1 are obtained from Eq. (30).

3.2.3.3 Constructing multivariate Gaussian mixture for dis-
crete and continuous data. The earlier-mentioned derivations are
based on the assumption that we know the multivariate GMMs for
the joint PDF of Ci; CPa, and U. In the CPD learning, however,
we need to construct this MGM with available data. Suppose that
ns observation samples have been collected for BN learning of a
problem with m discrete nodes and nc continuous nodes, we
denote the sample matrix as

s ¼

d
ð1Þ
1 … dð1Þm cð1Þ

d
ð2Þ
1 … dð2Þm cð2Þ

� . .
.

� �

d
ðnsÞ
1 … dðnsÞ

m cðnsÞ

2
6666664

3
7777775

ns�ðmþncÞ

(40)

where d
ðjÞ
i is the jth sample of ith variable di.

Based on the definition in Eq. (25), the sample matrix is rewrit-
ten as

s ¼
dð1Þa dð2Þa … dðnsÞ

a

cð1Þ cð2Þ … cðnsÞ

" #T

ð1þncÞ�ns

(41)

Since we need to learn the joint PDF of Ci; CPa, and U using
the MGM, the data of da in Eq. (41) need to be converted into

data of U. Any given data, dðiÞa , i ¼ 1; 2; …; ns corresponds to an
interval ½uL; uU� given in Eq. (39). In order to preserve this prop-
erty and maintain the correlation between Da and all other contin-
uous variables as given in Eq. (40), we present an algorithm in
Table 1.

Table 1 Pseudo code for converting discrete data into continuous data

Step Description

1 Identify all possible states di
a, i ¼ 1; 2;… ; N, of Da, the probability, PðDa ¼ diÞ, and indices Ini of each state di

a in the data set
2 Define an initial sampling matrix snew ¼ 0ðnit�nsÞ�ð1þncÞ, where nit is a parameter used to repeat the data of continuous variables to account for the fact

that each data of dðiÞa corresponding to an interval ½uL; uU�.
3 For i¼ 1:N
4 Generate a sampling matrix utempwith dimension of nit � lengthðIniÞ using the Latin Hypercube sampling (LHS) approach.
5 Convert utemp into the truncated standard normal probability interval according to PðDa ¼ di

aÞ.
6 Convert �u temp into data of continuous variable,u, in the standard normal space using the inverse CDF function
7 For it¼1:nit

8 snewððit� 1Þns þ 1 : it� ns; 2 : endÞ ¼ sð:; 2 : endÞ
9 snewððit� 1Þns þ Ii; 1Þ ¼ uðit; :ÞT
10 End

11 End
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Based on the algorithm in Table 1, we convert data of mixed
discrete and continuous variable given in Eq. (41) into continuous
data. With the continuous data, an MGM is constructed for
PðCi; CPa; UÞ using the EM method reviewed in Sec. 2.3. Once
the MGM is available, the CPD of continuous nodes are obtained
using the method presented in Sec. 3.2.3.2.

The proposed method overcomes the aforementioned three
drawbacks of Morlini’s method [41] since only one latent variable
U is used to represent the discrete variables. Due to the introduc-
tion of only one latent variable U and a new discrete variable Da,
we do not need to solve the high-dimensional covariance matrix
and find the optimal covariance matrix. The correlations between
the different discrete variables are automatically accounted for in
the new discrete variable Da. An example is given below to illus-
trate the effectiveness of the proposed CPD modeling for continu-
ous nodes with both discrete and continuous parents. As indicated
in Fig. 4, a continuous node x2 and its parents (Fig. 4(b)) are iden-
tified from the overall BN (Fig. 4(a)). The exact CPTs and CPDs
of x2 and its parents are given in Table 2. The CPD of x2 is learned
using the proposed method and the mix-nets method based on 500

collected samples. Figure 5 shows the comparison between the
learned CPDs of x2 from different methods.

The results show that for this example, overall the learned
CPDs from the proposed method are better than their counterparts
from the mix-nets approach. For some situations, the mix-nets
approach fails to learn the CPDs (i.e., (d1, d2)¼ (1, 3) and (d1,
d2)¼ (2, 2)). The proposed method, however, always works well
for all kinds of scenarios.

3.3 Summary of Bayesian Network Learning Scenarios. In
this section, we summarize the CPT and CPD learning of different
parent to child scenarios.

(a) Discrete to discrete: Discrete CPTs PðdjDPa ¼ dPaÞ are
learned using the OUGM (Sec. 3.2.2) based on the score
functions given in Sec. 2.2. Here, OUGM means the opti-
mal univariate Gaussian mixture model instead of two –
component GMM.

(b) Continuous to discrete: For this scenario also, we also use
the method presented in OUGM. The CPT for PðdjCPa ¼
cPaÞ is expressed as

PðdjCPa ¼ cPaÞ ¼
X

d2fKg
Pðdjp0 ¼ dÞPðp0 ¼ djcPaÞ (42)

(c) Mixed discrete and continuous to discrete: This scenario is
a combination of scenarios (a) and (b). The CPT, PðdjDPa

¼ dPa; CPa ¼ cPaÞ is modeled as

PðdjDPa ¼ dPa; CPa ¼ cPaÞ ¼
X

d2fKg
Pðdjp0 ¼ dÞPðp0 ¼ djcPa; dPaÞ

(43)

(d) Continuous to continuous: The CPDs are modeled using
the GMM method presented in Sec. 3.2.3.1.

(e) Mixed discrete and continuous to continuous: The
CPDs are modeled using the new method developed in
Secs. 3.2.3.2 and 3.2.3.3.

Once the BN topology, CPTs, and CPDs are learned, model cal-
ibration can be performed based on the learned BN when new
observation data are available.

3.4 Implementation Procedure. Table 3 summarizes the
overall implementation procedure of the proposed framework for
learning BNs with both discrete and continuous variables.

4 Illustrative Examples

In this section, a comprehensive mathematical example and an
engineering example are used to illustrate the proposed BN

Fig. 4 A continuous node with discrete and continuous
parents

Table 2 CPT and CPD of nodes

Node CPT and CPD

d1 d1¼ 1 d1¼ 2 d1¼ 3
0.1 0.1 0.8

d2 d1¼ 1 d2¼ 1 d2¼ 2 d2¼ 3
0.2 0.7 0.1

d1¼ 2 d2¼ 1 d2¼ 2 d2¼ 3
0.1 0.1 0.8

d1¼ 3 d2¼ 1 d2¼ 2 d2¼ 3
0.3 0.1 0.6

x1 N(15, 52)

x2 N((x1 þ 5)2þ100d1þ 50d2, 402)

Fig. 5 Results comparison of learned CPDs, given x1 5 14 (Note: Gray background implies mix-nets failed to model the CPD)
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learning methodology (OUGM and MGM). Model calibration is
also investigated with the learned BN.

4.1 A Mathematical Example

4.1.1 Problem Statement. A BN as shown in Fig. 6 is used as
our first example. In this BN, there are four discrete nodes
(D1; D2; D3; D4) and four continuous nodes (C1; C2; C3; C4). All
possible scenarios of parent–child combinations between discrete
and continuous nodes are included in this BN. The exact
CPTs and CPDs of this example are given in Tables 4–8 and
Eqs. (44)–(46).

The CPDs of C1, C2, and C4 are assumed to be as follows:

C1jD1 	 Nð10þ 4D1; 2Þ (44)

C2jD2 	 Nð6þ 2D2
2; 1Þ (45)

C4jC2 	 Nð0:1C2
2 þ 0:6C2 þ 1; 2Þ (46)

4.1.2 Bayesian Network Structure Learning. We assume that
we do not have any prior information about the topology, CPTs,
or CPDs of the BN. We learn all of the above information purely
based on data. There are many possible structures for the BN.
Following the procedure given in Table 3, we first map the data
for each continuous variable into data for corresponding hidden
discrete variables using two-component GMM and optimal uni-
variate GMM, respectively. In OUGM, the optimal number of
Gaussian mixture used for variables C1; C2; C3, and C4 are all
three with an optimization interval of three to ten. Based on that,
we performed structure learning using score functions reviewed in
Sec. 2.2. Figures 7 and 8 give the learned BN topologies with dif-
ferent numbers of samples from the two-component GMM (i.e.,
BNFINDER) and OUGM, respectively.

Figures 7 and 8 show that both the structure learning algorithms
based on two-component GMM and OUGM successfully recov-
ered most of connections in the network. For this example, the
learned BN structures from OUGM with 1000–3000 samples are
exactly the same as the true BN structure given in Sec. 4.1.1. The
learning based on only two-component GMM cannot exactly learn
the true structure (Connection C3!D4 cannot be learned). It
implies that the effectiveness of structure learning has been
improved by extending the two-component GMM to OUGM.
Besides, with more and more samples available, some additional
spurious connections (D2!C3, D2!C4) are learned for both
BNFINDER and OUGM, which are different from the true structure.
The reason for this phenomenon is that there are some weak corre-
lations between D2 and C3, and between D2 and C4, over fitting
occurs as the sample size becomes large.

The previously-mentioned study is to investigate the effective-
ness of the BN structure learning algorithm using OUGM to han-
dle continuous variables. In the following study, the CPD learning

Table 3 Summary of BN learning implementation procedure

Step Description

Data organization
1 Map the data on continuous variables into data of hidden discrete variables based on the clustering of optimal univariate GMMs (Sec. 3.2.2).

Learning of topology and CPTs
2 Perform BN structure learning using score functions which are originally defined for discrete BNs. (Sec. 2.2).
3 Obtain the BN structure topology and CPTs of discrete variables from the learned BN structure
4 Identify continuous variables and their parents

Learning of CPDs
5 Construct multivariate GMM (Sec. 3.2.3.1) based on original data for the continuous variables with continuous parents identified in Step 4.
6 Construct multivariate GMM (Sec. 3.2.3.3) for continuous variables with mixed continuous and discrete parents identified in Step 4.
7 Model the CPDs of continuous variables with mixed continuous and discrete parents (Sec. 3.2.3.2).
8 Obtain the learned BN with embedded MGMs for further analyses

Fig. 6 Bayesian network of Example 1

Table 4 CPT of D1

Value of D1 D1 ¼ 0 D1 ¼ 1

Probability 0.3 0.7

Table 6 CPT of D3

Value of ðD1; D2Þ ð0; 0Þ ð0; 1Þ ð0; 2Þ ð1; 0Þ ð1; 1Þ ð1; 2Þ

Probability D3 ¼ 0 0.1 0.3 0.4 0.6 0.8 0.9
D3 ¼ 1 0.9 0.7 0.6 0.4 0.2 0.1

Table 5 CPT of D2

Value of D2 D2 ¼ 0 D2 ¼ 1 D2 ¼ 2

Probability 0.6 0.3 0.1

Table 7 CPD of C3

Value of D3 D3 ¼ 0 D3 ¼ 1

C3jC2;D3 Nð0:15C2
2; 2Þ Nð1:5C2; 1Þ
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is based on the topology learning results obtained from 3000 data
points using OUGM. The parents of C1, C2, C3, C4 are first identi-
fied based on the learned BN topology. The CPDs are learned
next using the MGM method proposed in Sec. 3.2.3.

4.1.3 Conditional Probability Densities Learning. In order
to verify the effectiveness of the learned CPDs, we give realiza-
tions of child nodes and investigate the variations in the outputs.
Figure 9 shows the CPDs of C3 obtained from different methods
by fixing its parent nodes at different values. The results indicate
that the proposed MGM method performs much better than the
method just using univariate GMM (OUGM and BNFINDER) in the
CPD learning. Here, only the OUGM is used for comparison
because BNFINDER is just a special case of OUGM with two Gaus-
sian components.

4.1.4 Model Calibration Based on the Learned Bayesian
Network. We also perform model calibration based on the learned
BN. Assume that we have some observations collected for C3; we
calibrate the values of the parent nodes, D3 and C2, based on the
observations. Table 9 and Fig. 10 give the calibration results from
different methods.

Table 9 and Fig. 10 show that the learned BN from the pro-
posed method can be effectively applied to both CPD learning and
later model calibration.

4.2 A Cantilever Beam With Possible Crack and Support
Damage

4.2.1 Problem Statement. A cantilever beam as shown in
Fig. 11 is employed as our second example. This example is
modified from Ref. [42]. The exact BN of this problem is given in
Fig. 11(b). There are two discrete nodes (C and D) and five con-
tinuous nodes (A,B1,B2,P,F).

C is a crack indicator. C ¼ 1, if there is a crack, otherwise,
C ¼ 0. D is the bolt damage indicator. D ¼ 1, if the bolt is dam-
aged, otherwise D ¼ 0. A is the crack length. P is the applied
load. B1 and B2 are two parameters (obtained from finite element
simulations) relating the deflection, F, of the beam to the load P.
Tables 10 shows the true CPTs of C and D.

If there is a crack, suppose the crack length is given by

A ¼ A1=100000 (47)

where A1 	 LNð8þ 3C; 0:1þ 0:4CÞ and LNð�; �Þ stands for log-
normal distribution. Note that, when C ¼ 0, A1 represents the ini-
tial crack length which is inherent in the beam structure.

The load P is assumed to follow a normal distribution,

P 	 Nð25; 2:52ÞNewton. Distributions of B1 and B2 are given by

B1 	 NðlB1
; ð0:1jlB1

jÞ2Þ and B2 	 NðlB2
; j0:1lB2

j2Þ, where lB1

Fig. 7 Learned BN topology from BNFINDER with different numbers of samples

Fig. 8 Learned BN topology from OUGM with different numbers of samples

Table 8 CPT of D4

D3 ¼ 0 D3 ¼ 1

Value of ðD3; C3Þ C3 < 9 9 � C3 < 11 C3 � 11 C3 < 9 9 � C3 < 11 C3 � 11

Probability D4 ¼ 0 0.4 0.3 0.6 0.4 0.1 0.3
D4 ¼ 1 0.6 0.7 0.4 0.6 0.9 0.7
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and lB2
are obtained from finite element analysis simulations and

are given by

½lB1
; lB2
�

¼

½�0:0025; 5:5933� 10�4� if C ¼ 1 and D ¼ 1

½�2:3332� 10�4; 5:3143� 10�4� if C ¼ 1 and D ¼ 0

½�1:8231� 10�4; 5:5932� 10�4� if C ¼ 0 and D ¼ 1

½�1:2488� 10�5; 5:3141� 10�4� if C ¼ 0 and D ¼ 0

8>>>><
>>>>:

(48)

The CPD of F is given by

F 	 NðB1 þ B2Pþ Að0:0013þ 0:008DÞ; ð3� 10�4Þ2Þm (49)

4.2.2 Bayesian Network Structure Learning. Similar to Exam-
ple 1, we assume that we have no knowledge of the exact BN and
CPDs. We learn the structure and parameters from synthetic data
generated based on the information in Sec. 4.2.1. Figure 12 gives
the learned structures with different amount of data from different

Fig. 9 Learned CPDs of C3 with different values of parent
nodes: (a) D3 5 0 and (b) D3 5 1

Table 9 Calibration results of D3 from different methods

Five observations Ten observations

True value Prior Proposed MGM OUGM Proposed MGM OUGM

PðD3 ¼ 1Þ 1 0.45 0.9203 0.6887 0.9810 0.8317
PðD3 ¼ 0Þ 0 0.55 0.0797 0.3113 0.0190 0.1683

Fig. 10 Model calibration results based on different methods:
(a) five observations and (b) ten observations

Fig. 11 A beam with possible crack and support damage: (a) a
beam with crack and (b) exact BN

Table 10 CPTs of C and D

Value of C C ¼ 0 C ¼ 1
Probability 0.25 0.75
Value of D D ¼ 0 D ¼ 1
Probability 0.4 0.6
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methods (BNFINDER with two-component GMM and OUGM). In
OUGM, the optimal number of Gaussian mixture used for varia-
bles A,B1,B2,P, and F are 3, 5, 2, 2, and 2, respectively.

Figure 12 shows that the BN structure learning algorithms can
effectively learn most of the BN topology based on available data.
Some connections, however, was not learned due to the identifi-
ability problems of the particular nodes. For the BNFINDER with
two-component GMM, the connection D!F is not learned. For
OUGM, the connection B1!F is not learned. Note that the true
model given in Sec. 4.2.1 indicates that the connection D!F is
more important than B1!F. This implies that OUGM learns the
structure better than the two-component GMM.

4.2.3 Conditional Probability Densities Learning and Model
Calibration. Based on the learned BN topology obtained from
1000 samples, we perform CPD learning and model calibration
using the learned BN. Figure 13 shows the CPD of F under given
values of its parents. Table 11 and Fig. 14 present the calibration
results of D and A based on different numbers of observations of
P, B2, and F.

The results show that the proposed method (MGM) gives
results much closer to the true value than the method using univar-
iate GMM for both CPD learning and backward uncertainty quan-
tification problems.

5 Conclusion

In practical engineering applications of data-driven design, it is
quite common to have both discrete and continuous variables.
This paper pursued the Bayesian network methodology for
machine learning, and investigated the Gaussian mixture approach
for topology learning and parameter learning. It is observed that
existing approaches in the literature employ two-component uni-
variate GMM, which may not perform well for some problems.
By extending the two-component univariate GMM to optimal uni-
variate GMM, the OUGM is adequate for topology learning and
also for parameter learning in BNs that have only discrete varia-
bles. For BNs with both discrete and continuous variables, a new
MGM method is proposed in this paper to map the data of discrete
variables into data of a standard normal variable. Two numerical
examples illustrate the effectiveness of the proposed framework
and its application in model calibration.

Conditional probabilities obtained from GMMs have constant
variances; therefore, the proposed method is affected by this limi-
tation of GMMs. Besides, the proposed method to transform dis-
crete data into continuous data may not be the best way of

Fig. 12 Learned BN from different methods with 1000–5000
samples

Fig. 13 Learned CPD of F under given values of its parents

Table 11 Calibration results of D from different methods

Four observations Eight observations

True value Prior Proposed MGM OUGM Proposed MGM OUGM

PðD ¼ 1Þ 0 0.6080 0.1620 0.5240 0.0470 0.4730
PðD ¼ 0Þ 1 0.3920 0.8380 0.4760 0.9530 0.5270

Fig. 14 Model calibration results using different methods: (a)
four observations and (b) eight observations
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handling this problem. For some problems, it may cause difficul-
ties in the modeling of multivariate GMMs. Future work needs to
explore other ways of addressing this issue.
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